Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
College Math Survey Notes 1.3 Part 2 Mathematician: Thursday 8/28/14 Part 1 – Signs of the 6 Trig Functions Let (x, y) be a point other the origin on the terminal side of an angle in standard position. The distance from the point to the origin is r x 2 y 2 . The six trigonometric functions of are defined as follows. P (x, y) csc cos sec tan cot y x Ex 1: sin All Students Take Calculus Suppose that (x, y) is in the indicated quadrant. Decide whether the given ratio is positive or negative. A) III, r x B) II, x y C) IV, x r Part 2 - Quadrantal Angles ______________________________________________________________________ Ex 2: Find the values of the six trig functions of a sin csc cos sec tan cot 90 angle. Ex 3: Find the values of the six trig functions of a sin csc cos sec tan cot 180 angle. Undefined Function Values If the terminal side of a quadrantal angle lies along the y-axis, then . If the terminal side of a quadrantal angle lies along the x-axis, then . Ex 4: Find the values of the six trig functions of sin 0,90,180, 270, 360 cos tan cot sec csc 0 90 180 270 360 Ex 5: Use the trig function values of quadrantal angles to evaluate each expression. a) tan 0 6sin 90 b) 2 sec 0 4 cot 2 90 cos 360 College Math Survey Homework 1.3 Part 2 Mathematician: Suppose that the point (x, y) is in the indicated quadrant. Decide whether the given ratio is positive or negative. Hint: Drawing a sketch may help. 17) II, x r 18) III, y r 19) IV, y x 20) IV, x y x2 = x x Note: cos2 90o = cos90o cos90o 33) cos 90O + 3 sin 270 O 34) tan 0 O – 6 sin 90 O 35) 3 sec 180 O – 5 tan 360 O 36) 4 csc 270 O + 3 cos 180 O 37) tan 360 O + 4 sin 180 O 38) 2 sec 0 O + 4 cot2 90 O + cos 360 O Find the values of the six trigonometric functions for each angle in standard position having the given point on its terminal side. 41) (-4, -3) 42) (-5, 12) sin csc sin csc cos sec cos sec tan cot tan cot