Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Mathematics (Multiple Choices) 17 – Geometry (Circle) HKCEE 1980’ 1 24. ○ A. C. E. In the figure, the two circles intersect at A and B. CAE and CBD are straight lines. CED y . 180 x y . 360 x y . 2 25. ○ B. D. 180 y . 180 x y . In the figure, circle AXB passes through the centre of circle AYB. y = A. 2x. B. 180 2x. C. 180 x. D. 1 (90 x) . 2 E. 1 (180 x) . 2 3 27. ○ In the figure, the inscribed circle of ABC touches AC at D. If AB = 7, AC = 5 and AD = 2, then BC = A. C. E. 4 42. ○ A. . 10 C. 3 . 10 E. 9 . 10 5 47. ○ A. C. E. B. D. 9.5. 8.5. 7.5. 9. 8. In the figure, diameter AB = 2. CAB = 18 . Minor arc BC = B. . 5 D. 4 . 5 B C 2 18 10 A In the figure, AB = BC = CD. AED = 50 . 75 . 105 . B. D. 65 . 90 . 235 HKCEE 1980’ 6 48. ○ A. C. E. the chords AB, BC and CA must be equal in length? AB and BC only B. AC and BC only AB and AC only D. All of them No two of them 7 49. ○ A. C. E. In the figure, AB = AC, D is the midpoint of B C . Which of the following is/are true? I. AD bisects BAC II. BC AD III. AD is a diameter of the circle I only B. II only III only D. I and II only II and III only 8 50. ○ A. C. E. In the figure, RS is a tangent to the circle at C. BA is any chord parallel to RCS. Which of In the figure, AOB is a diameter of the circle, centre O. CD is the perpendicular bisector of OA. Which of the angles a, b, c, d is/are equal to 30 ? a only B. a and b only a, b and c only D. a, b, c and d None of them 9 51. ○ In the figure, circle O is inscribed in ABC, touching BC at X. Which of the following must be true? A. C. E. I. OX BC II. OA bisect A III. AO produced bisect BC I only B. I and II only I and III only D. I, II and III only None of them 10 54. ○ A. C. E. In the figure, O is the centre of the circle. PAB is a straight line. x + y = 2 . 180 . 180 . B. D. 90 . 180 2 . 236 HKCEE 1981’ 11 24. ○ A. B. C. D. E. In the figure, BE is a diameter of the circle. ABC and EDC are straight lines. xo = C o 21 . 31o. 38o. 52o. 59o. 21o D xo 38o B E A 12 25. ○ In the figure, AT touches the circle at A. In ABC, A : B : C = 2 : 3 : 4. = C o A. B. 40 . 50o. C. D. E. 60o. 70o. 80o. B A T 13 26. ○ In the figure, AB is a diameter of the circle with centre at O. The length of the minor arc AC is twice the length of the minor arc CD. BOD = o A. B. C. 72 . 90o. 108o. D. E. 132o. 144o. 14 27. ○ 24o B C D In the figure, two circles both with radius 2 cm touch each other externally. AP and AQ are A equal tangents to the two circles. AP =? P Q 120 o A. 3 cm. B. 2 3 cm. D. 4 3 cm. E. 4 3 cm. 3 C. 15 51. ○ A. E. O A 4 cm. In the figure, AB and AC touch the circle at B and C. If P is any point on the minor arc BC, A what is ? o 56o 112 B. 118o C. 124o D. 146o P It cannot be determined. C B 237 HKCEE 1981’ 16 52. ○ I. A B D II. C BAC = 90o ADBC. A B E C D III. AC and BC intersect at E. A T C B BC produced meets the tangent AT at T. A. Which of the above figures contains one or more pairs of similar triangles? I only B. I and II only C. I and III only D. II and III only E. I, II and III HKCEE 1982’ 17 27. ○ A. a b. B. a + b. D. 1 a. 2 E. 1 a + b. 2 C. D A In the figure, AKC and BKD are two chords of the circle. CBD = b a + b 90o. a E B C 18 28. ○ A. C. E. 48o. 84o. 96o. In the figure, PQ and RS touch the circle at A and C respectively. ABC = B. D. P 60o. 90o. A 78o Q B 238 R 18o C S HKCEE 1982’ 19 47. ○ A. B. C. D. E In the figure, BP is a diameter of the circle. The minor arc AB and the radius are of equal length. APB = 28.6 . (correct to 3 significant figures) 57.3 . (correct to 3 significant figures) 30 . 45 . 60 . 20 52. ○ B A P In the figure, O is the centre of the circle. PQ is a diameter. Which of the following is/are true? Q I. a = b II. c = 2a III. c + d = 180o A. D. I only II and III only 21 53. ○ B. E. I and II only I, II and III O a C. I and III only b c P d In the figure, the length of the minor arc CD is half the length of the minor arc BC. A ACD o A. 30 . B. C. D. E. 35o. 40o. 45o. 50o. 22 54. ○ D 50o 55o. 40o. 35o. D. E. 30o. 20o. B C In the figure, TP and TQ touch the circle at P and Q respectively. R is the point on TQ T produced such that PR passes through the centre O of the circle. QPR = A. B. C. 70o P O Q 20o R 239 HKCEE 1983’ 23 24. ○ A. C. E. In the figure, chords AB and CD intersect at P. BP = DP. CAD = 58o. 88o. 142o. B. D. A C 86o. 92o. 100 o P 42o B 24 25. ○ D In the figure, the three sides of ABC touch the circle at the points P, Q and R. PQR = A o A. B. C. D. 30 . 50o. 55o. 70o. E. 75o. 30o Q P 70o B 25 53. ○ In the figure, chords AB and CD intersect at E. The length of the minor arc BD is three times C the length of the minor arc AC. BAD = A. B. C. D. 31o. 35o. 42o. 45o. E. 56o. 124 o B A E D 26 54. ○ In the figure, PQ and XY touch the circle at A and B respectively. PQ // XY and QAC 60 . CBX = A. B. C. D. E. C P A P 150 . 135o. 120o. 110o. 100o. Q 60o o C X Y B HKCEE 1984’ 27 24. ○ A. C. E. 30o. 50o. 85o. In the figure, AB and AC touch the circle at B and C respectively. A = B. D. 40o. 80o. B 56o 240 A C D HKCEE 1984’ 28 25. ○ In the figure, O is the centre of the circle. TA and TB touch the circle at A and B respectively. A OA = 2. The length of the AP B is A. D. . 4 3 2 . 29 53. ○ A. 5. B. C. D. 6. 6.4. 8. E. 9.6. B. . 2 E. 3 . C. 2 3 . 4 P O 45o T B In the figure, AB is a diameter of the circle. AP = AQ. AB = 10 and BP = 8. PQ = P 8 A B 10 Q 30 54. ○ In the figure, the chords BA and CD, when produced, meet at P. The chords AD and BC, P when produced, meet at Q. B = A. B. 35o. 40o. C. D. E. 45o. 50o. 55o. 40o A 30o B HKCEE 1985’ 31 22. ○ 40 . 50 . 65 . 32 25. ○ Q C In the figure, ABCD is a cyclic quadrilateral. BA is produced to E. DA bisects CAE . BCD = A. C. E. D B. D. 45 . 55 . In the figure, ABCD is a rhombus B is the centre of the circle. ABC = A. 105 . C. 130 . E. 150 . B. D. 120 . 135 . 241 HKCEE 1985’ 33 48. ○ In the figure, AB is a diameter of the circle ABC. If AC has the same length as AB, then CAB = A. B. C. D. E. 90 . 61.4 . (correct to 3 significant figures) 32.7 . (correct to 3 significant figures) 24.6 . (correct to 3 significant figures) 151 . (correct to 3 significant figures) 34 53. ○ In the figure, FG touches the circle at E. The chord CB is produced to meet FG at A. ACE = A. C. E. 10 . 25 . 35 35 54. ○ B. D. 20 30 In the figure the circle touches the sides of ABC at X, Y and Z. O is the centre of the circle. Which of the following must be true? I. OA bisects BAC II. A, X, O and Z are concyclic III. AX = AZ A. C. E. III only I and III only I, II and III B. D. I and II only II and III only HKCEE 1986’ 36 25. ○ In the figure, A, B, C, D and E lie on a circle. AC intersects BE at K. ACD = 100o and B CDE = 130 . If BE // CD, then ACB = 25 . B. 30o. 36o. D. 40o. 42o. o A. C. E. A o C 100 o 130 o E 37 49. ○ A. D. D DA and DC are equal chords of the circle ABCD. CDB = 40o and DAB = 100o. ADB C o 20 . 35o. B. E. o 25 . 40o. C. o 30 . D 242 40o 100 o A B HKCEE 1986’ 38 50. ○ A. C. E. In the figure, AB and AC are tangents to the circle BCD. If BDC = 50o, then A = o 130 . 85o. 50o. B. D. B o 100 . 80o. D 50o A C HKCEE 1987’ 39 20. ○ In the figure, chords AC and BD meet at E and AB // DC. If CED = 104o, find ABD. B C o A. B. C. 76 52o 38o D. E. 14o It cannot be determined. 104 o 40 23. ○ A D In the figure, AB, BC and CD are three equal chords of a circle. If BAC = a, then AED E A. B. 2a. 3a. C. D. E. 90o a. 180o 2a. 180o 3a. D C a A 41 45. ○ A. D. B In the figure, O is the center of the circle. a + b = a o 180 . 180o c. 42 53. ○ B. c. E. c 180o . 2 C. c . 2 b c O In the figure, C is the centre of the circle. ABCD is a straight line. AQR touches the circle at Q. If DAR = 20o, then DQR = A. B. C. D. E. 35o. 40o. 55o. 65o. 70o. D C B 20o A 243 Q R HKCEE 1988’ 43 21. ○ A. B. In the figure, O is the centre of the circle of radius 5. AB is a tangent and AO = 12. AC = A 13. 17. C. 219 . D. E. 244 . 269 . 44 24. ○ 12 C In the figure, TP and TQ are tangents to the circle PQR. If RPQ = 70o and PTQ = 50o, then RQP = 20 . 45o. 50o. D. E. 60o. 70o. 45 51. ○ C. D. E. R o A. B. C. A. B. B O 5 Q 70o 50o P T ABCD is a cyclic quadrilateral with AB = AD and CB = CD. Find ABC. 75o 90o B A D o 105 120o It cannot be found. 46 52. ○ C In the figure, O1 and O2 are the centres of the two circles, each of radius r and AB = 12 . Find r. A. 1 2 B. C. 2 4 D. E. 6 8 O1 A 12 O2 244 B HKCEE 1989’ 47 23. ○ A. C. E. In the figure O is the centre of two concentric circles. ADOEB and CGFB are straight lines. Which of the following is/are true? I. AC // DG II. BF = CG III. A, E, F and C are concyclic I only B. II only I and II only D. I and III only I, II and III 48 24. ○ A. B. C. D. E. C G F A D B E O In the figure, TC is a tangent to the circle at C and AB // DC. If BCT = 48o, then = B o 48 . 72o. 84o. 48o 90 . 96o. 49 32. ○ A o C D In the figure, ABCD and WXYZ are sectors of equal radii. If BCD : XY Z = s : t, then which of the following is/are true? A. I only 50 51. ○ A. B. 56o 108o C. D. E. 112o 118o 124o B I. BD s = XZ t II. area of sector ABCD s = area of sector WXYZ t III. BAD s = XWZ t B. II only X Y C C. A III only D. D I and III only E. W Z II and III only In the figure, O is the centre of the smaller circle. OAB and PQR are straight lines. Find . B R A O 124 o Q P 245 HKCEE 1989’ 51 52. ○ A. B. C. D. E. In the figure, B is the mid-point of AC . AC = AD. If ADC = 56o, then BCD = A o 84 . 90o. 96o. 112o. 124o. 56o B D C HKCEE 1990’ 52 20. ○ In the figure, TQ is the tangent to the tangent to the circle at A. If AC BC and P PAQ 48 , then QAC = o A. B. C. 42 . 48o. 66o. D. E. 71o. 84o. A T 48o Q B C 53 21. ○ In the figure, O is the centre of the circle. If OR // PQ and ROQ = 42o, find RMQ. A. B. 21o 42o C. D. E. 63o 84o 126o R O 44o M Q P 54 50. ○ A. D. In the figure, PA and PC are tangents to the circle ABC. If P = 48o, then ABC = A o o o 84 . B. 96 . C. 106 . o o 114 . E. 132 . P 48o B C In the figure, TA and TB are tangents to the circle ABC. If TA TB and BD AC, find 55 51. ○ CBD. A. C. E. o 30 45o 60o B. D. 40o 50o C B E D A 246 HKCEE 1990’ 56 53. ○ A. C. E. 3 5 7 In the figure AB, AC and BC are three tangents touching the circle at D, E and F respectively. A If AC = 24, BC = 18 and ACB = 90o, find the radius of the circle. B. 4 D. 6 D E HKCEE1991’ 57 21. ○ A. B. C. D. E. 40 70 80 90 140 59 24. ○ A. B. C. D. E. C In the figure, O is the centre of the circle BCD. ABC and EDC are straight lines. BC = DC and AED 70 . Find BOD . In the figure, TPA and TQB are tangents to the circle at P and Q respectively. If PQ = PR, which of the following must be true? I. APR = QRP II. QTP = QPR III. QPR = APR I only II only III only I and II only I and III only 60 52. ○ A. B. C. D. E. F b 2b 180 b 360 b 360 2b 58 22. ○ A. B. C. D. E. B In the figure, O is the centre of the circle. Find a + c. In the figure, A B : B C : CD : D E : E A = 1 : 2 : 3 : 4 : 5 . Find . 30 36 60 72 120 247 HKCEE 1992’ 61 14. ○ A. B. C. D. E. In the figure, TP and TQ are tangent to the circle of radius 3cm. Find the length of the minor arc PQ. 3 cm 2 cm 3 cm 2 cm 2 cm 62 24. ○ A. B. C. D. E. 42 36 24 21 18 63 26. ○ A. B. C. D. E. In the figure, O is the centre of the circle. Find . 30 32 35 36 45 64 27. ○ In the figure, the circle is inscribed in a regular pentagon. P, Q and R are points of contact. Find . In the figure, ST is a tangent to the smaller circle. ABC is a straight line. If TAD 2x and DPC 3x, find x. A. B. C. D. E. 30 36 40 42 65 50. ○ A. B. C. D. E. 24 In the figure, the two circles touch each other at C. The diameter AB of the bigger circle is tangent to the smaller circle at D . If DE bisects ADC, find . 38 45 52 66 248 HKCEE 1993’ 66 24. ○ A. B. C. D. E. 20 22.5 25 27.5 30 67 26. ○ A. B. C. D. E. In the figure, points A, B, C and D are concyclic. Find x. In the figure, AB is a diameter. Find ADC. 100 110 120 135 140 68 50. ○ In the figure, TP and TQ are tangents to the circle at P and Q respectively. If M is a point on the minor arc PQ and PMQ = , then PTQ = A. C. E. . 2 180 . 2 180 . 69 51. ○ A. C. E. B. 90 . D. 180 2 . In the figure, O is the centre of the circle. AB touches the circle at N. Which of the following is / are correct? I. M, N, K, O are concyclic. II. HNB ~ NKB III. OAN = NOB I only B. II only III only D. I and II only I, II and III 70 54. ○ In the figure, the three circles touch one another. XY is their common tangent. The two larger circles are equal. If the radius of the smaller circle is 4 cm, find the radii of the larger circles. A. B. C. D. E. 8 cm 10 cm 12 cm 14 cm 16 cm HKCEE 1994’ 71 21. ○ In the figure, O is the centre of the circle. If AC = 3 and BAC = 30 , find the diameter AB. A. D. 3 2 2 3 B. 6 E. 3 3 C. 3 3 2 30 249 HKCEE 1994’ 72 22. ○ A. B. C. D. E. In the figure, PA is tangent to the circle at A, CAP = 28 and BA = BC. Find x. 28 48 56 62 76 73 23. ○ In the figure, O is the centre of the inscribed circle of ABC. If OAC = 30 and OCA = 25 , find ABC. A. B. C. D. E. 50 55 60 62.5 70 74 51. ○ In the figure, ABCD is a semi-circle, CDE and BAE are straight lines. If CBD = 30 and DEA = 22 , find x. A. 38 C. 44 E. 60 75 52. ○ A. B. C. D. E. B. D. 41 52 In the figure, OABCD is a sector of a circle. If A B = B C = CD , then x = 105 . 120 . 135 . 144 . 150 . HKCEE 1995’ 76 22. ○ A. B. C. D. E. 25 . 40 . 45 . 50 . 65 . 77 23. ○ A. B. C. D. E. In the figure, ABCD is a semicircle. CAD = 20 . 35 . 45 . 50 . 70 . In the figure, O is the centre of the circle, POQR is a straight line. TR is the tangent to the circle at T. PRT = 250 HKCEE 1995’ 78 24. ○ A. B. C. D. E. In the figure, ABCD is a cyclic quadrilateral. If DAB = 110 and BC = BD, find DAC. 20 35 40 55 70 HKCEE 1996’ 79 25. ○ A. B. C. D. E. 20 27.5 35 37.5 40 80 26. ○ A. B. C. D. E. 21 24 42 In the figure, O is the centre of the circle. PA is the tangent to the circle at A and CB // PA. Find x. 45 48 81 50. ○ A. D. In the figure, O is the centre of the circle. Find x. In the figure, O is the centre of the circle. AP, AB and BR are tangents to the circle at P, Q and R respectively. Which of the following must be true? I. AP + BR = AB II. OQ bisects AOB. 1 III. AOB = POR 2 I only B. II only C. I and II only I and III only E. I, II and III HKCEE 1997’ 82 18. ○ A. D. 5 2 13 83 20. ○ A. B. C. D. E. In the figure, BCA is a semicircle. If AC = 6 and CB = 4, find the area of the semicircle. B. E. 13 2 26 C. 10 In the figure, EC is the tangent to the circle at C. Find CBD. 40 50 65 70 75 251 HKCEE 1997’ 84 50. ○ A. D. be true? I. BCE ~ ADE II. ABC ~ AED III. ABC ~ BDA I only B. I and II only II and III only E. I, II and III 85 51. ○ A. B. C. D. E. In the figure, AC is the angle bisector of BAD. Which of the following statements must C. I and III only In the figure, A B = 2, B C =3, CD = 4 and D A = 6. Find BCD. 72 84 90 96 144 HKCEE 1998’ 86 28. ○ A. B. C. D. E. 2 . 4 . 90 . 180 . 180 2 . 87 29. ○ A. B. C. D. E. In the figure, AD is a diameter of the circle. If A B : B C : CD = 3 : 5 : 7, then ADC = 36 . 45 . 48 . 49 . 72 . 88 49. ○ A. B. C. D. E. In the figure, AB is a diameter of the circle and ABD is a straight line. CBD = In the figure, CE is tangent to the circle at C. Find DCE. 40 42 49 54 78 HKCEE 1999’ 89 26. ○ A. B. C. D. E. In the figure, O is the centre of the circle. Find x. 12 20 24 40 60 252 HKCEE 1999’ 90 27. ○ A. B. C. D. E. 26 32 38 52 64 91 50. ○ A. B. C. D. E. In the figure, AB is a diameter of the circle. Find x. In the figure, AT is tangent to the circle at T and ABC is a straight line. Find AT. 9 cm 12 cm 15 cm 16 cm 20 cm HKCEE 2000’ 92 20. ○ A. B. C. D. E. 40 46 57 66 68 93 31. ○ A. B. C. D. E. 70 75 90 95 105 95 46. ○ A. B. C. D. E. In the figure, CAB is a semicircle and ABCD is a parallelogram. Find the area of ABCD. 65 cm2 60 cm2 52 cm2 32.5 cm2 30 cm2 94 45. ○ A. B. C. D. E. In the figure, O is the centre of the circle. EAOB and EDC are straight lines. Find x. In the figure, AB is tangent to the circle at B. Find DCE. In the figure, A B : B C : CD = 2 : 1 : 3. Find ADC. 56 60 63 72 84 253 HKCEE 2001’ 96 18. ○ A. C. E. In the figure, AEC is a diameter and DEB is a straight line. Find x. 54 74 94 97 32. ○ A. B. C. D. E. 70 92 B. D. In the figure, ABCD is a semicircle, AB : BD = 4: 3. Find AB correct to the nearest 0.1 cm. 5.7 cm 7.6 cm 10.7 cm 13.0 cm 14.3 cm 98 45. ○ In the figure, O is the centre of the circle, AOB is a straight line and BCD is the tangent to the circle at C. Find x. A. C. E. 99 46. ○ A. B. C. D. E. 53 59 B. D. 50 56 62 In the figure, A B = B C = 0.5 CD . Find ABC . 100 105 112.5 130 150 HKCEE 2002’ 1○ 00 28. In the figure, O is the centre of the semicircle ABCD and BC // AD. If COD 42 , then x= A. B. C. D. 48 63 84 90 1○ 01 29. In the figure, AE D 1 and CF D 4 . If ABC 100 , then ABD A. B. C. D. 18 20 24 25 254 HKCEE 2002’ 1○ 02 51. In the figure, EAF is a common tangent to the circles at the point A. Chords AC and BC of A. B. C. D. the smaller circle are produced to meet the larger circle at G and D respectively. Which of the following must be true? I. ADG EAG II. ABD AGD III. BAE ADB I only II only I and III only II and III only HKCEE 2003’ 1○ 03 25. In the figure, ABC is a semicircle with BC 7 and ACB 55 . Find A B . A. B. C. D. 9 10 11 14 1○ 04 50. The figure shows a circle with diameter AD. If AB = BC = CD, find x + y + z. A. B. C. D. 315 324 330 360 1○ 05 51. In the figure, XAB and XDC are straight lines. If DX = 5, AX = 6 and AB = 4, find CD. A. B. C. D. 5 7 10 3 24 5 1○ 06 52. In the figure, BE and BF are tangents to the circle at A and C respectively. If ADC 100 , then ABC A. B. C. D. 20 . 30 . 40 . 50 . 255 HKCEE 2004’ 1○ 07 23. In the figure, O is the centre of the circle ABCD. If EAB and EDOC are straight lines and EA = AO, find AEO . A. B. C. D. 18 24 27 36 1○ 08 24. In the figure, O is the centre of the circle ABC. Find x. A. B. C. D. 17.5 27.5 35 55 1○ 09 25. In the figure, ABCD is a circle. AC and BD meet at E. If AD = 4, AE = 2, EC = 5 and BE 4 , then BC = A. B. C. D. 6. 7. 8. 10. 1○ 10 26. In the figure, ABC is a circle. If ABC 30 and AC 4 , then the circumference of the circle is A. B. C. D. 24. 48. 8 . 16 . 1○ 11 50. In the figure, ABCD is a circle. If CD 2 DA 2 AB 2 BC , then x = A. B. C. D. 108 . 112 . 120 . 144 . 1○ 12 51. In the figure, TS, SQ and QP are tangents to the circle at T, R and P respectively. If TS // PQ , TS = 3 and QP = 12, then the radius of the circle is A. B. C. D. 4.5. 6. 7.5. 9. 256 HKCEE 2005’ 1○ 13 24. In the figure, ABCD is a circle. AB produced and DC produced meet at E. If AC and BD intersect at F, then ABD A. B. C. D. 41 . 52 . 56 . 60 . 1○ 14 25. In the figure, ABCD is a circle. If AC is a diameter of the circle and AB = BD, then CAD A. B. C. D. 18 . 21 . 27 . 36 . 1○ 15 49. In the figure, AB and AC are tangents to the circle at X and Y respectively. Z is a point lying on the circle. If BAC 100 , then XZY A. B. C. D. 40 . 45 . 50 . 55 . 1○ 16 50. In the figure, O is the centre of the circle and AOC is a straight line. If AB and BC are tangents to the circle such that AB = 3 and BC = 4, then the radius of the circle is A. B. C. D. 3 . 2 12 . 7 2. 5 . 2 1○ 17 51. In the figure, ABCD is a circle. If A B : BC : CD : D A = 1: 2: 3: 3 and E is a point lying on BD, then CAE A. B. C. D. 45 . 50 . 55 . 60 . 257 HKCEE 2006’ 1○ 18 46. In the figure, O is the centre of the circle ABC. If OBC 50 and ACO 20 , then BOA A. B. C. D. 50 . 60 . 70 . 80 . 1○ 19 47. In the figure, O is the centre of the circle. A and B are points lying on the circle. If AOC is a straight line and BC is a tangent to the circle, then the radius of the circle is A. B. C. D. 3 . 2 3. 2 3 3 3. HKCEE 2007’ 1○ 20 49. In the figure, A, B and C are points lying on the circle. AB is a diameter of the circle. DB is A. B. C. D. 2 4 4 8 the tangent to the circle at B. If ACD is a straight line with AC = 4 and CD = 2, then AB 6. 3. 6. 3. HKCEE 2008’ 1○ 21 50. In the figure, O is the centre of the circle ABCD. If ADC 84 and CBO 38 , then AOB A. B. C. D. 64 88 104 168 1○ 22 51. In the figure, AB is the tangent to the circle at B and ADC is a straight line. If AB : AD 2 : 1, then the area of ABD : the area of BCD = A. B. C. D. 1 : 2. 1 : 3. 1 : 4. 2 : 3. 258 HKCEE 2009’ 1○ 23 48. In the figure, AB is a diameter of the circle ABCD. It is given that AC and BD intersect at E. If AED , then A. B. C. D. sin . cos . tan . 1 . tan CD AB 1○ 24 49. In the figure, ABCD is a circle. If AB = AC, AB // DC and ABD 40 , then CBD A. B. C. D. 10 . 20 . 30 . 40 . 1○ 25 50. In the figure, AB is the tangent to the circle at A. If AB = 20 and BC = 50, find the radius of the circle. A. B. C. D. 20 25 29 30 HKCEE 2010’ 1○ 26 49. In the figure, AD is a diameter of the circle ABCD. It is given that XBCY is a straight line. A. B. C. D. If AD = 20cm and BC = 12cm, then AX + DY = 12 cm. 16 cm. 32 cm. 36 cm. 1○ 27 50. In the figure, XY and XZ are the tangents to the circle ABCD at A and B respectively. If AXB 50 and DAY 30 , then BCD A. B. C. D. 65. 80. 95. 130. 259 HKCEE 2011’ 1○ 28 48. In the figure, ABCDE is a circle. AC and BD intersect at F. If AE//BD, DAE 20 and A. B. C. D. 20 . 35 . 45 . 50 . CFD 70 , then CBD 1○ 29 49. In the figure, BC is a diameter of the circle ABC. BCD is a straight line and DA is the tangent to the circle at A. If ABC 28 , then ADB A. B. C. D. 22. 28. 34. 62. HKDSE 2012’ 1○ 30 20. In the figure, O is the centre of the circle ABCD. If BAO 28 , BCD 114 and CDO 42 , then ABC A. B. C. D. 90 . 96 . 100 . 138 . 1○ 31 41. In the figure, PQ is the tangent to the circle ABC at O, where O is the centre of the semicircle PBQ. It is given that BCP is a straight line. If BPQ 12 , then ABC A. B. C. D. 18 . 24 . 36 . 54 . HKDSE 2013’ 1○ 32 19. In the figure, ABCD is a circle. AC and BD intersect at E. If AB = AD and AD // BC , then BAE A. B. C. D. 53 . 57 . 69 . 74 . 260 1○ 33 41. In the figure, O is the centre of the circle ABC. DE is the tangent to the circle at A. If AB is the angle bisector of CAE , then ACO A. B. C. D. 26 . 28 . 31 . 34 . HKDSE 2014’ 1○ 34 20. In the figure, AC is the diameter of the circle ABCDE. If ADE 28 , then CBE A. B. C. D. 56 . 62 . 72 . 76 . 1○ 35 21. In the figure, O is the centre of the circle ABCDEF. PQR intersect the circle at A, B, C, A. B. C. D. D, E and F. If QPR 38 and AB = CD = EF, then QOR 109 . 117 . 123 . 142 . 1○ 36 41. In the figure, PQS is a circle. PQ is produced to R such that RS is the tangent to the circle at S. I is the in-centre of QRS . If IRQ 12 and PSQ 70 , then QPS A. B. C. D. 24 . 37 . 43 . 62 . HKDSE 2015’ 1○ 37 20. In the figure, AD is a diameter of the circle ABCDE. If BAD 58 and BC = CD, then A. B. C. D. AEC 32 . 58 . 61 . 64 . 261 HKDSE 2015’ 1○ 38 40. In the figure, AB and AC are the tangents to the circle at B and C respectively. BD is a A. B. C. D. diameter of the circle. AC produced and BD produced meet at E. If AB = 6 cm and = 10 cm, then BD = 3 cm. 5 cm. 6 cm. 8 cm. 262 AE This is a blank page. 263