Download dlscrib.com-pdf-math-biostatistics-boot-camp-1-dl 7c9dc3df2fe5f71ee1ff2af5ce5e9edf

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript




















































P (A

∪ B)





















P (A













√


√
√










































































n
i=1























































































n
i=1




P(

P (E
( Ei )


n
i=1
Ei )





















mini P (E
( Ei )

( Ei )
maxi P (E





mini P (E
( Ei )



































( Ei )
maxi P (E








P (E
( Ei )









































































































































































































































A:









P (A








P (A

























































B:



















P (A) = 0.12




∪ B) = 0.17











































− P (AC ∩ B C )
=1









∪ B )C
(A



































∪ B) = 1 − P










− P (AC ∩ B C )
1 − P (AC ∪ B C )
1 − P (AC )P (B C )
P (AC ∩ B C )
1













P (A
∩ B) = 0.06


∪ B) = P (A) + P (B) − P (A ∩ B)







P (B ) = P (A
∪ B ) + P (A ∩ B) − P (A) = 0.17 + 0.0.06 − 0.12 = 0.0.11











































































X



















































f (x) = 1



0

≤x ≤1



















































x




f (t) dt =



1< x<




























x
0











f (x)
1 dt = [t]x0 = x
x75



1
x2












−0= x
F (x75 ) = 0.75

1< x<
∞





























F (x75 ) = x75


















x75 = 0.75
































1
x3
1
x



3




∞
−1
1 − x1
1 − x1



1
x




0



F (x) =





















F (x) =





x
1
1
dt
dt =
t2
x
−   
1
t
1
1
=
t
1
=
x
1
1
− x1 = 1 − x1


































p

x
e













x
(1 + e
−

−
)
2
−

1/ (1 + ex )



/p)
− pp)) /p)
p/ (1 − p
p))
p)) /p
(1 − p



log ((1



log(p/ (1

− p))
p))


































F (x) =






































t
(1 + e t )





dt
dt
2

u(t) = 1 + e

u(x)


−
−1 du =
u2
u(−∞)


−



e
−∞


x

F (x) =






t



1+e
1+e−x







−e
−1 du =
u2
∞

du =
−

xp








t
−

1
u
dt





1+e
1+e−x
=
∞
F (xp ) = p

1
1+e
ex
ex e x
=
ex + 1
e x (ex + 1)
−
x
−
=
−

F (xp ) = p
ex
=p
ex + 1
ex = p (ex + 1)
ex = pe x + p
ex
pex = p
ex (1 p)
p) = p
p
ex =
1 p
p
xp = log
1 p
p
p
p
p
p
p
−
p
p
p
−
p
−
 
−















c


































cxk















c>1



0<x<1










k 1
k
k+1
−










1




xk+1
cx dx = c
k+1
 
k
0




































0


c
(1
k+1
=
− 0) = k +c 1












1








1
0
 






x> 0



























































































































x







1
e
2

2
t/
t/2
−
0



F (x) =














1 −x/2
e x/2
2
c
xk+1
k+1
=



1
⇒ c= k +1
f (x) =




c
=1
k+1


1
k+1




2




1
k




k+2


















dt =














x










2
t/
t/2
e
−




0


x50
= e





0
−   
2
t/
t/2
−
x








= e0
F (x)


2
x/
x/2
−e
−
F (x50 ) = 0.5
=1
−e
2
x/
x/2
−

F (x50 ) = 0.5
1
−e
x50 /2
= 0.
0 .5
x50 /2
= 0.
0 .5
−
e
−



−
−x50/2 = log
x50 /2 =
log
1
2
1
2
x50 /2 = log (2)
(2)
x50 = 2 log
log (2
(2))










≈ 1.386

















x2
2xe
x> 0
−











































































































F (x) =






x




t2
2te
dt
−





























F (x)


0

−t2
u(x)
eu du = −
F (x) = −



























u(t) =


u(0)







x50






du =

x
−
2
−2tdt



0
eu du = [eu ]
x2
−
0




F (x50 ) = 0.5



= e0
−e
x2
−
=1
−e
x2
−

F (x50 ) = 0.5
−
1
−e
2
x50
2
x50
e
−
2
x50
−
= 0.5
= 0.5
= log

1
2
2
x50
= log (2)
(2)
x50 =

log (2)
≈ 0.833










































h(x)
c


















0 < h(x) <






∞


x = 1, 2, . . . , I





c h(x)
·

























1



1+

I
x=1




h(x)
h(x)
I
x=1


I
x=1

h(x)
h(I )

1
−























0 < c h(x) <
·

∞














































I
·





c h(x) = 1
·
x

c h(x) = 1
x=1
I
c
h(x) = 1
x=1
1
−
I
c=
h(x)
 
x=1


























































Related documents