Survey

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
```Name _________________________________________ Hour ______
4-6 Isosceles and Equilateral Triangles Worksheet
RACTICE
GPUIDED
PRACTICE
TICE
!
!
!
!
Find the unknown measure(s). Tell what theorems you used.
1. Describe the
meaning the
of equilateral
equiangular.
y Check
1. Describe
meaning ofand
equilateral
and equiangular.
Vocabulary Check
1. Describe the meaning of equilateral and equiangular.
t Check
Find the unknown
measure(s).
Tell what theorems
you
used. you used.
Concept Check
Find the
unknown measure(s).
Tell what
theorems
2.
2.
2.B
B
?
?
50!
?
A
50!
3.
A
B 3.
E
?50!
?
E
4.
5 cm
5 cm
?
C
3.
E
F
F
?
C
D
H
4.
H
5 cm
?
H
4.
?
?
F
?
G
G J
J
2.
A Is every equilateral
C triangle isosceles?
D
G
J
D
Is every isosceles triangle equilateral?
Determine
whether
youwhether
are given
enough
information
to prove that
l Check SkillExplain
Determine
you
are given
enough information
tothe
prove that the
Check
Determine triangles
whether you
are given
enough
information
to
prove
that
the
aretriangles
congruent.
Explain
your
Describe
meaning
FD
Vocabulary
Check
6. equiangular.
7.
Uequilateral
Vand
M
Pofthe
1.5.the
Describe
the1.
meaning
equilateral
and
equiangular.
Check
5.of
6.
1. Describe
meaning
equilateral
and
U equiangular.
V D 7.
M
P of
D
F
5. Find
6.
7.
U
V
M the unknownPmeasures.
B
S
B
S youtheorems
Concept
Find the
unknown
measure(s).
Tell
what
you used.
Check
Find the unknown
measure(s).
Tell
3.the Check
4. what theorems
5.
Find
unknown
measure(s).
Tell what
theorems
you
used.
B used.
S
?
! PRACTICE
G
UIDED
!
PRACTICE
TICE
!
!
!
!
!
!
B2.
2. B
2.
?
?
N
A
50!
A
50! ?
q
R
? 50!
A
C
E B3.
?
N
q
N
3.
C
E
5 cm
W
R q
T
?
? C
D
3.
4. E
5 cm W
F
TR
AF
LGEBRA Find the value of x.
Hxy4.USING AH
E
E
?
?17.
18.
CA
C
(x + 13) ft
24 ft
4.H
5 cmW
? AE
T
F
C
?
?
DG
G
J
GJ
2x in.
J
CE
AND APPLICATIONS
P
AND
PPLICATIONS
Determine
are given
information
prove that the
Check
! Awhether
Determine
you whether
are
givenyou
enough
information
prove
the
!Skill
ARACTICE
PPLICATIONS
Determine
whether
you
are given
enough
information
toenough
prove to
that
the thatto
!Check
are
congruent.
Explain
your
Solvetriangles
for x andare
y. triangles
D
F
12 in.
xxy congruent.
triangles are
your
HELP
for value
x and
y. x.
USING
SING A
AxLGEBRA
LGEBRA
Find
the
of
yExplain
STUDENT HELPy U
USINGSolve
ALGEBRA
Solve
for
x and y.
xy U8.
6.
7.
SING ALGEBRA Find the values of x and y.
xy U
SING A
LGEBRA Solve
for
xPand y.
F
5.
6.
U
V
M
P
D
F D
5.
6.
7.
U
V
M
D
F 7.
19.
ctice
5. Practice
U
V 9. 7.
M 56 17.
P8. 6.
ft8.
9.
10.
Extra
18.
19.
5620.
ft10.
21.
x!
y ! 9.
B
y!
master
y!
y!
B
to help
8. you master
10.x ! S B
S
(x + 13) ft
x!
24x!ft S
y!
810.
y!
skills is on p. 810.
2x40!
in.
x!
8x ft
x !8x ft x !
75!
40!
y!
46!
y!
x!
46!
x!
x ! 40!
E
W
E
63!
W
E
W
63!
46!
x!
x!
y!
y!
A
C
63!
R
T
N
q
A
C
A
C
RT
N
Rqy!
N
q
12Tin.
9.
10.
11.
REASONING
whether
enough
is
given to is given to
xy L
LOGICAL
RDecide
EASONING
Decide
whether
enough information
UOGICAL
SING ALGEBRA
Find
the values
of
x and
y. information
23.
24.
x!
prove
that the
triangles
aretriangles
congruent.
yourExplain
LOGICAL
REASONING
Decide
enough
information
is
givenyour
prove
that whether
the
are Explain
congruent.
22.
20. triangles
22.
40!
y ! are congruent.21.
prove that the
y!
F
y!
11.
13.
T
y!
F
11.
12. B x !
13.
T 12. B
F
11.
12. B ALGEBRA Solve
13.
T
xy U
STUDENT
HELP
xyA
75!y. for x and
x ! SING
y ! y.
HELP xy USING
U
xSING
! y ! ALGEBRA
LGEBRA
Solve
forSolve
x and for
y. x and
x!
E
H
A
C
E
H
U
A
C
U W
W
x!
140!
Practice
8.
9.
10.
140!
iceExtra
x
!
8.
9.
10.
8.
9.
10.
E
H
A
C
U master
W y!
x
!
y
!
y
!
to
help
you
x!
x!
y!
y!
aster
y!
G
D
G
D
10.skills is on p. 810.
V
V
x!
40!
x
!
x
!
G
D
PROOF In Exercises 26–28, use the diagrams th
40!
T HELP
STUDENT HELP
x ! 40!
46! x !
x !46!
46! V
25.
63! 236 and 237.
theorems
on pages
23.
24.
25.
63!
63!
x!
HELP HOMEWORK HELP14.
y!
D
K
q
D
y ! q 15. y !
14.
15.
16. A
K 16. A
xs.Example
26–28 1: Exs.60!
26. The Converse of the Base Angles Theorem on pag
26–28
y
!
40!
A
D
14.
15.
16.
K
q
y!
60!
PEARACTICE
AND APPLICATIONS
AND
APPLICATIONS
PPLICATIONS
22.
y!
12.
"# !
13.
14.
x!
!
140!
12.
13.
14.
!
!
25.
60!
!"#\$%&'()
\$%&'()
!"#\$%&'()x !
y!
!"#\$%&'()
!"#\$%&'()
!
!
\$%&'()Find the value of the missing variables.
!
!"#\$%&'
17.
!"#\$%&'
15.
16.
!"#\$%&'
Find the value of the missing variables.
%&'
that
accompany
the
15.
!"#\$%&'
! 16.
%&'
ge 236 states, “If two angles
e them are congruent.”
17.
!
!
!
, “If a triangle is equilateral,
lary.
18. is equiangular,
, “If a triangle
ry.
18.
D
19.
19.
20.
20.
"# !
!
!
!
!
!
21.
21.
22.
!
22.
23.
!
!
!
23.
24.
25.
24.
26.
27.
28.
29.
30.
31.
32.
33.
34.
```
Related documents