Survey
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
```Solutions to Physics I Gravity and Keplerβs Laws Practice Problems
1.) Titan, the largest moon of Saturn, has a mean orbital radius of 1.22x109 m. The orbital period
of Titan is 15.95 days. Hyperion, another moon of Saturn, orbits at a mean radius of 1.48x109 m.
Use Keplerβs third law of planetary motion to predict the orbital period of Hyperion in days.
ππ = 1.22π₯109 π
ππ = 15.95 πππ¦π
ππ» = 1.48π₯109 π
ππ» =?
ππ 2
ππ 3
( ) =( )
ππ»
ππ»
3
15.95 πππ¦π  2
1.22π₯109 π
(
) =(
)
ππ»
1.48π₯109 π
15.95 πππ¦π  2
(
) = 0.8243
ππ»
254.4 πππ¦π  2
ππ» 2
ππ» = β
= 0.560
254.4 πππ¦π  2
0.560
ππ» = 21.3 πππ¦π
2.) The mass of Earth is 5.97x1024 kg, the mass of the Moon is 7.35x1022 kg, and the mean
distance of the Moon from the center of Earth is 3.84x105 km. Use these data to calculate the
magnitude of the gravitational force exerted by Earth on the Moon.
ππΈ = 5.97π₯1024 ππ
ππ = 7.35π₯1022 ππ
π = 3.84π₯105 ππ = 3.84π₯108 π
πΊ = 6.673π₯10β11 π β π2 βππ2
πΉππΈ =?
πΉππΈ = πΊ
ππΈ ππ
π2
(5.97π₯1024 ππ)(7.35π₯1022 ππ)
πΉππΈ = (6.673π₯10β11 π β π2 βππ2 ) [
]
(3.84π₯108 π)2
4.39π₯1047 ππ2
πΉππΈ = (6.673π₯10β11 π β π2 βππ2 ) (
)
1.47π₯1017 π2
πΉππΈ = (6.673π₯10β11 π β π2 βππ2 )(2.98π₯1030 ππ2 βπ2 )
πΉππΈ = 1.99π₯1020 π
3.) The planet Mercury travels around the Sun with a mean orbital radius of 5.8x1010 m. The
mass of the Sun is 1.99x1030 kg. Use Newtonβs version of Keplerβs third law to determine how
long it takes Mercury to orbit the Sun. Give your answer in Earth days.
ππ = 5.810π₯1010 π
ππ = 1.99π₯1030 ππ
ππ =?
ππ
2
4π 2 3
=(
)π
πΊππ
ππ 2 = [
ππ 2 = [
(6.673π₯10β11
39.5
] (5.810π₯1010 π)3
π β π2 βππ2 )(1.99π₯1030 ππ)
39.5
] (1.96π₯1032 π3 )
π β π2 βππ
1.33π₯1020
ππ 2 = (2.96π₯10β19 π  2 βπ3 )(1.96π₯1032 π3 )
ππ 2 = 5.82π₯1013 π  2
ππ = β5.82π₯1013 π  2
1 βππ’π
1 πππ¦
ππ = 7.63π₯106 π  (
)(
) = 88.3 πππ¦π
3600 π  24 βππ’ππ
4.) Earth has an orbital period of 365 days and its mean distance from the Sun is 1.495x108 km.
The planet Plutoβs mean distance from the Sun is 5.896x109 km. Using Keplerβs third law,
calculate Plutoβs orbital period in Earth days.
ππΈ = 365 πππ¦π
ππΈ = 1.495π₯108 ππ
ππ = 5.896π₯109 ππ
ππ =?
ππΈ 2
ππΈ 3
( ) =( )
ππ
ππ
3
365 πππ¦π  2
1.495π₯108 ππ
(
) =(
)
ππ
5.896π₯109 ππ
365 πππ¦π  2
(
) = (2.54π₯10β2 )3
ππ
1.32π₯105 πππ¦π  2
(
) = 1.63π₯10β5
2
ππ
1.32π₯105 πππ¦π  2
ππ = β
1.63π₯10β5
ππ = 9.00π₯104 πππ¦π
5.) The planet Venus orbits the Sun with a mean orbital radius of 1.076x1011 m. The mass of the
Sun is 1.99x1030 kg. Using Newtonβs version of Keplerβs third law, calculate the orbital period of
Venus.
ππ = 1.076π₯1011 π
ππ = 1.99π₯1030 ππ
ππ =?
ππ
2
4π 2
=(
)π 3
πΊππ π
2
ππ = [
(6.673π₯10β11
ππ 2 = [
4π 2
] (1.076π₯1011 π)3
π β π2 βππ2 )(1.99π₯1030 ππ)
39.5
] (1.25π₯1033 π3 )
π β π2 βππ
1.33π₯1020
ππ 2 = (2.97π₯10β19 π  2 βπ3 )(1.25π₯1033 π3 )
ππ 2 = 3.17π₯1014 π  2
ππ = β3.17π₯1014 π  2
ππ = 1.93π₯107 π
```
Related documents