Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CLEGLCCPGLE KCAF?LGAQ Tubujdt!boe!Ezobnjdt Bcpvu!uif!Bvuipst Bojm!Eijnbo ! " ! * # $ % , + & '()$ % , * - / 0 ( & # 6 , 5 % '* % ! ' ! # & ( '* 3 4 ( 7 & ' & .. 1 ! $ * 2 ) & , & & & , ' Qppobn!Eijnbo! 4 8 % ! /! / '& ! ! % 8 0 . 1 ( # & '& ' Evshfti!Lvmtisftiuib # ( ! * !( '* .<> ' * A 2 '& / ! & & & & 7' - & '& & '* & , , , ! : 1 & '* ! ( #; !( .<=> % .<? ' @ 9 0 1 7 '* , ( ( ! / % & , #0& - $ -, ' ' 4 CLEGLCCPGLE KCAF?LGAQ Tubujdt!boe!Ezobnjdt Bojm!Lvnbs!Eijnbo !" !# $ Qppobn!Eijnbo !" !# $ Evshfti!Lvmtisftiuib $ !" !# % $ McGraw Hill Education (India) Private Limited NEW DELHI McGraw Hill Education Offices New Delhi New York St Louis San Francisco Auckland Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal San Juan Santiago Singapore Sydney Tokyo Toronto McGraw Hill Education (India)!Qsjwbuf!Mjnjufe 0 , 02 B $ , % $ !* 0 - : !( .. ;0 .= + : ;0 Fohjoffsjoh!Nfdibojdt E .7 , % $ ! * , , , ! ' , , D 2.9D <>?2<929< 2.<.>2? 2. D <929< 2.<.>2. , & & D 2.9D <>?2<929< 2.< <2. 2. D <929< 2.< <27 D- % "0 & % / / & "0 % % $ & 0 , - ( " D* & $ D * & -% "0 , ; ' 0 C & , % $ !* ; : ; ' ! , 6 5F 9<. % D D !!!' & , ! , , % $ !* : % $ !* , '* ! : ) D" " % D# 8 ;D ' ( , D" $ ". & & D" )% D & * +$ D) %* & * , ' 0 DD' " "0 % "0 , . ) $ % + :* / & ! - , ;0 0 & & * , : ( ; , ! ' % $ !* % ' , , : , + ' ' : ; , , , , ! % $ ! , !( .. =9 , ' Uijt!cppl!jt!efejdbufe!up/// ///pvs!Qbsfout- ! Tnu/!Tbspk!Cbmb!! '! Tnu/!Sbltib!Efwj ' ! Ti/!Cbmcjs!Tjohi! Ti/!Sbk!Lvnbs boe!pvs!ebvhiufs-!Bohfm ! Bojm!boe!Qppobn!Eijnbo ///nz!xjgf-!Bsvob E!D!Lvmtisftiuib ɏ ½°° #¶µ»¬µ»ºɏ Dpoufout / 0 $ 1 11 !2/! Hfofsbm!Qsjodjqmft! .'. .' .'9 .'B .'7 .'= 2 % & C + ! # ( & "% G 2 % 3 3 4 % 0 5 3 0 0 , 26 3 27 % 28 / % " 9 0 :% 2; * 0 :% <(& :% ( 25 2; 2; 2= 62 3/! Gpsdf!Tztufnt!boe!Sftvmubout! '. ' '9 'B '7 '= '> '? '< '. 66 @ 64 @ ) C & & / / ) # $$ "% & 33 63 64 67 ! C 68 C 65 @ 32 C @ ! ) / 0 35 " $ 1 7> / % 72 4> C 34 ½°°°ɏ #¶µ»¬µ»º " 9 0 :% 76 * 0 :% <(& :% ( 72 76 73 77 4/! Npnfout!boe!Dpvqmft! 9'. 9' 9'9 9'B 9'7 9'= 9'> 9'? 9'< 6: 7= @ % $ C ) 8> ) & % 82 @ 86 H 0 88 @ 8= @ 2 ) ) 0 & 56 @ 0 @ & 0 2 @ $$ " $ 1 55 "% ;4 / % ;7 " 9 0 :% ;7 ;8 * 0 :% ;8 <(& :% ;5 ( ;= & 53 57 5/! Frvjmjcsjvn!pg!Cpejft! B'. B' B'9 B'B B'7 B'= & 6 , / @ @ 0 + 2 H $$ "% :5 6 ( 6 , =; $ 1 " 226 / % " 9 0 :% 224 * 0 :% <(& :% ( =5 2>3 223 224 224 227 228 @ @ =8 =8 ( , & =4 & =7 ɏ °¿ #¶µ»¬µ»ºɏ 6/! Cfbnt!boe!Gsbnft! 7'. 7' 7'9 7'B 7'7 7'= 7'> 7'? 7'< 7'. 232 262 + 266 263 & 263 & 267 ) ) & ( 0 @ 23> @ % 6 ( 6 , ") & @ % 246 $$ " $ 1 244 "% 282 / % 286 " 9 0 :% 286 283 * 0 :% 283 <(& :% 284 ( 288 232 , ! 23; 7/! Usvttft!boe!Dbcmft! ='. =' ='9 ='B ='7 ) 235 281 25> 25> 253 @ / 257 2;6 " $ 1 2=4 6>; / % 6>; " 9 0 :% 6>= 62> * 0 :% 62> <(& :% 62> ( 626 , $$ "% 8/! Gsjdujpo! >'. >' >'9 >'B >'7 >'= 0 " 328 625 + ! 662 ( 5 665 @ @ + ) / @ @ ( 662 664 @ @ 66; ¿ɏ #¶µ»¬µ»º $$ "% " $ 1 66= 642 / % 646 " 9 0 :% 646 646 * 0 :% 643 <(& :% 643 ( 644 9/! Tjnqmf!Mjgujoh!Nbdijoft! ?'. ?' ?'9 ?'B ?'7 ?'= ?'> ?'? ?'< ?'. 359 64; 64= + ) + ! % + % 0 5 $$ "% 67> % , % & %/ 674 2+ 673 % - 676 % g 673 0 678 684 2/- + % 68; " $ 1 653 65= / % 65= " 9 0 :% 6;2 6;2 * 0 :% 6;6 <(& :% 6;6 ( 6;7 & 2 :/! Dfousf!pg!Hsbwjuz!boe!Dfouspje! <'. <' <'9 <'B <'7 399 6;; + $ + & 3>3 0 3>7 $$ " $ 1 3>5 "% 364 / % 364 " 9 0 :% 367 367 * 0 :% 367 % 6=2 6;; ɏ #¶µ»¬µ»ºɏ <(& :% ( 368 365 21/! Npnfou!pg!Jofsujb! . . . . . . . '. ' '9 'B '7 '= '> ¿° 443 336 % 0 0 ) 0 0 0 336 & % 333 / 334 334 337 $ 2/% 343 / " $ 1 345 35= / % 3;> " 9 0 :% 3;2 3;6 * 0 :% 3;6 <(& :% 3;6 ( 3;4 $$ "% 22/! Wjsuvbm!Xpsl! ..'. ..' ..'9 ..'B 4:1 3=> 0 0 & , $$ "% C 5 3=; 3=3 6 , 4>> " $ 1 4>3 423 / % 424 " 9 0 :% 424 427 * 0 :% 427 <(& :% 427 ( 428 23/! Npujpo!jo!b!Tusbjhiu!Mjof! . . . . . . . '. ' '9 'B '7 '= '> 532 462 % $ % % /, 466 / ! ) # # % $ C ) 433 , / C 467 46; 43; 43= ¿°°ɏ #¶µ»¬µ»º $$ "% " $ 1 446 47> / % 472 " 9 0 :% 476 476 * 0 :% 476 <(& :% 473 ( 477 24/! Dvswjmjofbs!Npujpo!boe!Qspkfdujmf! .9'. .9' .9'9 .9'B .9'7 .9'= 569 47; $ 0 % 6 0 8 0 8 $$ "% 47= % 483 % 487 % 483 0 452 " $ 1 458 4;= / % 4=> " 9 0 :% 4=2 4=2 * 0 :% 4=2 <(& :% 4=6 ( 4=4 25/! Ljofnbujdt!pg!Sjhje!Cpejft! .B'. .B' .B'9 .B'B .B'7 5:: 4== 7>6 / 7>7 C 726 0 , ) $$ " $ 1 728 "% 76= / % 76= " 9 0 :% 73> 73> * 0 :% 73> <(& :% 732 ( 736 $ $ ) % 0 2% ) % 26/! Ljofujdt!pg!Qbsujdmft!boe!Sjhje!Cpejft! .7'. .7' 735 ! H + ! % 735 727 648 ɏ ¿°°° #¶µ»¬µ»ºɏ .7'9 .7'B .7'7 .7'= .7'> (H/ ) ) $ % $$ "% , H 0 ( 6 , 0 742 # @ - 2/- ) 746 0 % ) 743 C + ) " $ 1 74; 758 / % 755 " 9 0 :% 75; 75; * 0 :% 75= <(& :% 75= ( 7;> 27/! Xpsl-!Fofshz!boe!Qpxfs! .='. .=' .='9 .='B .='7 .='= 74> 744 696 7;7 7=2 5 2 0 ! 7=3 7=5 7== 7== 0 @ $$ "% " $ 1 8>6 8>= / % 82> " 9 0 :% 82> 822 * 0 :% 822 <(& :% 822 ( 826 28/! Jnqvmtf!boe!Npnfouvn! .>'. .>' .>'9 .>'B .>'7 .>'= .>'> .>'? .>'< .>'. 827 % + % + I, 6 & $$ 827 9% 0 / 726 % 0 , " % 86> 866 864 ( 832 $ 1 825 82= 86= 836 834 ¿°½ɏ #¶µ»¬µ»º "% 842 / % " 9 0 :% 843 * 0 :% <(& :% ( 846 846 843 843 848 29/! !Cfmu!boe!Spqf!Esjwft! .?'. .?' .?'9 .?'B .?'7 .?'= .?'> .?'? 872 873 ( 0 ! C + 762 , ) @ ( 877 87; ) 874 882 884 0 ! 887 " $ 1 888 85= / % 8;> " 9 0 :% 8;2 8;2 * 0 :% 8;2 <(& :% 8;6 ( 8;4 % $$ "% 2:/! Wjcsbujpot! .<'. .<' .<'9 .<'B .<'7 .<'= .<'> .<'? 8;5 ) @ C, @ C, 8=2 @ C, 8=6 @ C, 8=7 @ C, 8=8 % 8=5 , & 5>> $$ " $ 1 5>6 "% 526 / % 523 " 9 0 :% 523 524 * 0 :% 524 $ # ( # ( 0 798 8;; ɏ #¶µ»¬µ»ºɏ <(& :% ( 524 527 !31/! Tjnqmf!Tusfttft!boe!Tusbjot! '. ' '9 'B '7 '= '> '? '< '. '.. 82: 52= 52= 562 % & & 566 2& % & 563 H + ! 568 & @ & 56; & 56= & 53> 0 H ) 532 $ G * H + ! 536 $$ " $ 1 537 "% 542 / % 546 " 9 0 :% 546 543 * 0 :% 543 <(& :% 543 ( 547 & * 5 32/! Cfoejoh!boe!Upstjpo! .'. .' .'9 .'B .'7 .'= .'> 859 54; 54= 0 54= 0 & 0 573 % 574 @ 0 ! $$ "% 577 , $ 1 " 58; / % " 9 0 :% 55> * 0 :% <(& :% ( Joefy! ¿½ 575 57= & 58= 58= 55> 552 553 886 / 2 2 , Gpsfxpse ! ( 0 , , % ( ! 0 , ' ! , ! ( - , ! ' ! , & ( & 6 % ! ! ! ! % ' ! , ! 2 - ' , , ' / - , J% , ') , J& ! ! , ! , H , J0 @ 2 ,8 6 0 , ' ! , H '% J5 H 2/ ! 3 & ' ! , K ' H ! 4 - 2 2! L , '( 4 , + I,8 ! 2, ! ' Es/!Wjkbz!Lvnbs!Tfihbm+ ? ! A % A -% % @ B=2925449633337C +!W!L!Tfihbm ) : ! * 2& , 7 ) .<>B .<< ) , -% % !# E @ @ D % @ & .<>> 2 '* '* 2) 6 8 '( & ( ; @ 9= 0 ( # 4 ( '* & 4 '* 0 ( : ; '0 * 0 ' @ , 2 Qsfgbdf UIF!OFFE!PG!UIJT!CPPL & , ! -, 4 ! G -, '/ , ' , ' M M 0 , , , , J& - , H ' ! J0 0 , H , ! , ' XIBUÜT!TQFDJBM!JO!UIJT!CPPL@ 5 5 , ! ' , ' 6 ! ! 2 2 2 2 !' $ % % 0 $ %$ D 2 2 ! ! , -, D 62 $ 0 % Vtf!pg!Ufdiopmphz , , ! ! , @ RS! dpeft tnbsuqipoft ! ubcmfut' 3) ! ' 5 difdl! zpvs!voefstuboejohT!& 8 3) D DFFG $ @H @ F $ 1@ F28; ¿¿ɏ 0¹¬¨ª¬ M Difdl!Zpvs!Voefstuboejoh ! , ! . A@ : ,8 ;6 Mfbsojoh!Uppmt M Mfbsojoh! Pckfdujwft , ! I,8 ' + .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ ! 4 ɏ ɏ ,8 , ɏ ɏ ɏ ɏ ' ' , ! - +I ' , ,°º»ɏ»¯¬ɏ»¯¹¬¬ɏ·¨¹¨´¬»¬¹ºɏµ¬¬«¬«ɏ»¶ɏª¶´·³¬»¬³Àɏ«¬ºª¹°©¬ɏ¨ɏ¶¹ª¬ȍɏ 2¬·¹¬º¬µ»ɏ¨ɏ¶¹ª¬ɏ®¹¨·¯°ª¨³³Àȍ $°º»°µ®¼°º¯ɏ©¬»¾¬¬µɏ«°Ĺ¬¹¬µ»ɏ²°µ«ºɏ¶ɏ½¬ª»¶¹ºɏșķ¿¬«Ȏɏº³°«°µ®ɏ¨µ«ɏ¹¬¬ɏ½¬ª»¶¹ºȚȍ $¬ķµ¬ɏº¶´¬ɏº·¬ª°ķªɏ½¬ª»¶¹ºɏș¼µ°»ɏ½¬ª»¶¹Ȏɏµ¼³³ɏ½¬ª»¶¹Ȏɏ¬¸¼¨³ɏ½¬ª»¶¹ºȎɏ¬¸¼°½¨³¬µ»ɏ½¬ª»¶¹ºȎɏµ¬®¨Ɋ »°½¬ɏ½¬ª»¶¹Țȍɏ .1!drgɏ #¨»¬®¶¹°Á¬ɏºÀº»¬´ºɏ¶ɏ¶¹ª¬ºȍɏ .1!drhɏ $¬»¬¹´°µ¬ɏ»¯¬ɏ¨µ®³¬ɏ©¬»¾¬¬µɏ»¾¶ɏ½¬ª»¶¹ºɏª¶¹¹¬ª»³ÀȎɏ¨µ«ɏª³¨ºº°Àɏ¨ɏ·¨°¹ɏ¶ɏ½¬ª»¶¹ºɏ«¬·¬µ«°µ®ɏ¶µɏ »¯¬ɏ¨µ®³¬ɏ©¬»¾¬¬µɏ»¯¬´ȍ .1!driɏ #¨³ª¼³¨»¬ɏ»¯¬ɏº¼´ɏ¶ɏ»¾¶ɏș¶¹ɏ´¶¹¬Țɏ½¬ª»¶¹ºɏ®¹¨·¯°ª¨³³Àɏ¨µ«ɏ¨µ¨³À»°ª¨³³Àȍ .1!drjɏ 2¬º¶³½¬ɏ¨ɏ®°½¬µɏ½¬ª»¶¹ɏ¨³¶µ®ɏ¨µÀɏ»¾¶ɏº·¬ª°ķ¬«ɏ«°¹¬ª»°¶µºȍ .1!drkɏ #¨³ª¼³¨»¬ɏ»¯¬ɏº¼´ɏ¶ɏ½¬ª»¶¹ºɏ©Àɏ¼º°µ®ɏ»¯¬°¹ɏ¹¬ª»¨µ®¼³¨¹ɏª¶´·¶µ¬µ»ºȍɏ .1!drclɏ #¨³ª¼³¨»¬ɏ»¯¬ɏȟºª¨³¨¹ɏ·¹¶«¼ª»Ƞɏ¨µ«ɏȟ½¬ª»¶¹ɏ·¹¶«¼ª»Ƞɏ¶ɏ»¾¶ɏ½¬ª»¶¹ºȍ .1!drcɏ ɏ .1!drdɏ ɏ .1!dreɏ ɏ .1!drfɏ ' 6 ! +I' �! 9ORTHY!OF!0OTE M Xpsuiz!pg!Opuf! 5 ! , ! , Cvdlmjoh " $ > $ > C ' M Nzui!'!Gbdu! ( ,8 , '& @ "? D > ? " , ' Myth M Tvnnbsz @ & ! ! +I ' 57//#4; .1!drcɏ ,°º»ɏ »¯¬ɏ »¯¹¬¬ɏ ·¨¹¨´¬»¬¹ºɏ µ¬¬«¬«ɏ »¶ɏ ª¶´·³¬»¬³Àɏ «¬ºª¹°©¬ɏ¨ɏ¶¹ª¬ȍ @ :.; ! :9; : ; 5 difdl! zpvs!voefstuboejohT!& 8 3) DFFG D $ @H @ F $ 1@ F28; ' .1!drdɏ 2¬·¹¬º¬µ»ɏ¨ɏ¶¹ª¬ɏ®¹¨·¯°ª¨³³Àȍ / , ! ! $ %$ ! ' .1!dreɏ $°º»°µ®¼°º¯ɏ©¬»¾¬¬µɏ«°Ĺ¬¹¬µ»ɏ²°µ«ºɏ¶ɏ½¬ª»¶¹ºɏșķ¿¬«Ȏɏº³°«°µ®ɏ¨µ«ɏ¹¬¬ɏ½¬ª»¶¹ºȚȍ / cpvoe 6 Ýyfe!wfdups! ' / gsff!wfdups ' ' / tmjejoh! !usbotnjttjcmf!wfdups , ! ! , Uif!dpnqpofou!pg! b!wfdups!B!bmpoh!b! ejsfdujpo!nbljoh! bo!bohmf!q!xjui!ju! jt!B!dpt!q/ Fact! ' ɏ ¿¿° 0¹¬¨ª¬ɏ Lfz!Ufsnt!boe!Jnqpsubou!Ufsnt -';!6'4/5 .1!drc .1!dre .1!drg < @ 1 1 1 .1!drj .1!drcl < 6 .1!drh .1!dri 6$ 1 < < 6 B A #1 Qfebhphz!gps!Tuvefou!Tvddftt" ( ( <(& J % I 1 @ ! 9 $ $ ( " # Bssbohfnfou!pg!Qfebhphz! $ # ' " . * + () ' , $ 1 01 31 51 2 ) #&&+6+10#.!51.8'&!':#/2.'5 !ɏº»¬¬³ɏ©¬¨´ɏ¶ɏ¯¶³³¶¾ɏº¸¼¨¹¬ɏº¬ª»°¶µɏ¶ɏźŴɏ´´ɏ¶¼»¬¹ɏº°«¬ɏ¨µ«ɏŹŴɏ´´ɏ°µµ¬¹ɏº°«¬ɏ 'XAMPLE!dcrd °ºɏº°´·³Àɏº¼··¶¹»¬«ɏ¶µɏ¨ɏº·¨µɏ¶ɏŸɏ´¬»¹¬ºȍɏ&°µ«ɏ»¯¬ɏ´¨¿°´¼´ɏª¶µª¬µ»¹¨»¬«ɏ³¶¨«ɏ »¯¬ɏ©¬¨´ɏª¨µɏª¨¹¹Àɏ¨»ɏ»¯¬ɏ´°««³¬ɏ¶ɏ»¯¬ɏº·¨µɏ°ɏ»¯¬ɏ©¬µ«°µ®ɏº»¹¬ººɏ°ºɏµ¶»ɏ»¶ɏ¬¿ª¬¬«ɏŵŶŴɏ.Ʉ´´Ŷȍ \MP!32/4^ E G 5O = # $ G 4O #JG3 G 3OOO # s G /0O ;S 0 D 4 d 4 604 - 504 = G 4 4[ ¥ /O4 12 12 12 60 = G 2O ! # !G 2 2 # ^ ! # # G , ! ,+# 0# # 3# # ) % % % 7 Dbvtbmjuz cspvhiu! pvu! jo! Tpmwfe! Fybnqmft 8 5OLUTION \ * ! 4 ! $ $ / / 2 4 $ ! # - 1 @ % & $0 % 5# # 6 % # % $ ' 6 ' 3 $ 402 ! % % # % Dibqufs.Foe!Fyfsdjtft Tipsu.Botxfs! Rvftujpot! ' * 5*146 #059'4!37'56+105 + % ! " 2/! B!qfstpo!usjft!up!mjgu!b!sjhje!cmpdl!cz!ipmejoh!b!spqf!ujfe!up!b!ippl!po!jut!upq/!Gps!tuvezjoh!uif!frvjmjcsjvn! pg!uif!cmpdl-!dbo!xf!usfbu!uif!gpsdf!bqqmjfe!bt!b!tmjejoh!wfdups@! \MP!3/4^ ! 9 $# 3/! Jt!uif!qsjodjqmf!pg!usbotnjttjcjmjuz!bqqmjdbcmf!up!b!gpsdf!bqqmjfe!up!boz!uzqf!pg!cpez@! \MP!3/4^ ; # 1 4/! Dbo!uif!nbhojuvef!pg!b!wfdups!rvboujuz!cf!ofhbujwf@! ! ; ' \MP!3/4^ ¿¿°°ɏ 0¹¬¨ª¬ ' Sfwjfx! Rvftujpot! $ ! 4'8+'9!37'56+105 ! 2/ , C . 6 \MP!3/2^ ! 3/! & D \MP!3/2^ 4/ 6 \MP!3/8^ ! 5/ > " ! ! 6/! 7! $ ! 7/ 6 D \MP!3/8^ ! C \MP!3/6^ . C . \MP!3/9^ ! 8/! 7! \MP!3/8^ Pckfdujwf! Rvftujpot! =1h # @ %- $ # = 1 # 6 1 ' ! 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS 0 0 E # ! 2/ * + * + : ! 3/ # * + P 2 + Q 2 + 2 PQ sin q * + P 2 + Q 2 - 2 PQ sin q B#!C D 4/! $ ! * + 5Oj $ Qsbdujdf! Qspcmfnt! *6 # $ 1 S /0# 4 ! \MP!3/8^ *(+ P 2 + Q 2 + 2 PQ cos q *$+ P 2 + Q 2 - 2 PQ cos q /2 *(+ [Oj D!>!B!,!C Z3O * + /0Oj B \MP!3/8^ *$+ # +# = $ ! ! 24#%6+%'!241$.'/5 ! 2/ , 4O ; ! 3/ @ /2O ; ! 4/ B 19 ! 5Oj kBot/!RO ;# 0/ RZjp \MP!3/8^ kBot/!0OO ;# 2O 4jp /0S4 \MP!3/8^ # JBJ G J CJ G J B q C J , Q!G /2O ;# 5Oj# Q , /O $; ! 6/ 2O ; //O ; C ! 5/ /4 $; R G 0ZO ;# 20Oj# R $ # kBot/!5Ojp \MP!3/8^ kBot/!20Z ;# 0[Rjp \MP!3/:^ @ 0 22 , kBot/!0O $;# q0/ 0jp \MP!3/8^ BDDVSBDZ! ) # # # # 6 # ! # ! . 7 \MP!3/2^ C 8<61# ; <1# ;\1# ! ! ! *(+ *$+ - $ $ ɏ ¿¿°°° 0¹¬¨ª¬ɏ TUSVDUVSF!PG!UIF!CPPL $# 0/ # ' ! # 0O Qbsu.J;!Tubujdt!* 6 22+ , $ Qbsu.JJ;!Ezobnjdt * 26 2=+ , Qbsu.JJJ;!Jouspevdupsz!Tpmje!Nfdibojdt!* , ! #6 E # ' 6> $ 62+ $@ $% XFC!TVQQMFNFOUT DFF @ F F=33=62=252 E Tuvefout!Tfdujpo ) ) *+ ) - $ 6 @ < 1 6 1 JotusvdupsÜt!Tfdujpo 6 = << ) ' # RS!dpef! !ÑDifdl!zpvs!VoefstuboejohÒ( BDLOPXMFEHFNFOUT $ $ # \ 6 ) $ 1 < 6 *OZ/50O+ \ *O[/5O0+ \ *O[/5O2+ 6 *O[/5O3+ ; $ *O[/5O4+ v *O[/5/[+ 9 9 < = 6 $ 6 ) A ) \ ) - $ *O[/53O+ *O[/53/+ */O/5/0+ , */O/530+ */O/5R0+ */O/5R2+ < *///5[R+ ) $ = " */2/5/O+ ) $ & */2/5/Z+ , $> */2/50/+ = \ */2/504+ A 6 */2/52Z+ ¿¿°½ɏ 0¹¬¨ª¬ 6 , = ) $A 6 *O[/503+ *O[/522+ *O[/52R+ ) > A B$ 1 */O/5[5+ *///5/R+ *///5RR+ \ \ & 6 #= \ $= > ) $ #1 A $ $ */2/5RR+ */2/5Z3+ 6 6 # < < # $ $ Sbk!Lvnbs!Tjohi-!E!T!Obhfti !A 0 Tbujti!O!Eftbj " $ ' ( ( A % "'A B!D!T!Lvnbs-!L!Lbmzboj!Sbeib 0 A % ! "% ! ,%& A !# $ ( $! Wfmb!Nvsbmj ! ,% $ ! Tisjibsj!Qsbtbe!Boof -J ! ,% % ! Evshbn!Ebt!Nvoeisb ) % $ A $% $ ) ! % !) Lbodibo!Dibuufskff . * ! % Njijs!Diboesb $ % " . $ Qbmmbw!Hphpj . " !" ( %! $ Nbopk!Lvnbs!Cbsbj /% % % $) Tbnbeibo!Q!Eftinvli % % % Bmgsfe!Gsbolmjo " %! ! ,%0 !$ !" ! A $% ! ! % . . ! )% ( ! ) $ & ɏ ¿¿½ #¶µ»¬µ»ºɏ 0¹¬¨ª¬ɏ Tboeffq!Dibccsb % - Wjwfl!Lvnbs , U $ , !, !, + ( $! A $ ! $ $ # & $ ) @&% E $ QvcmjtifsÜt!Opuf = \ > @ $ E < % 7 * $% @ + *$ # " + @ ɏ ¿¿½°° #¶µ»¬µ»ºɏ Mjtu!pg!Tzncpmt Tzncpm B )# -# 1# b bÏ b V Eftdsjqujpo B ' < ) ) ) ) = ) ; ( , D = 1 1 1 1 , , 1 D $ f f f 8 8 8 fq 8 G @ )! / F= S F= BF! 6 - ) FA F= " % ! % ! F& F F= F1 F, F9 ! . * = + ! F1 F@ F@ F= F6 ¿¿½°°°ɏ ,°º»ɏ¶ɏºÀ´©¶³º / / R H H \ , I I #) ) 1 1 @ ; ' ' ' A 1 \ = ) ) A > ) F1 F1 F 6 F = F ) F> J \ X 1 1 j l 1 ) = 1 = < 8 < - $ < % < % A 8 A A 7' 7' A F F= ! X9 ! 19 ! 19 9 ! 1% ! F $ $ $ $ +% ! F6 * 6 ! 9 ! + ɏ ¿¿°¿ ,°º»ɏ¶ɏºÀ´©¶³ºɏ 19 ! A J N N N* N = A ) )) )) ) A A Q Q R S * s s " " t F6 1 = = = = = 6 = = = ) ; ; 1 @ F= ! A F= * + ) ) ) F= % $ F; % F ! Q 7 < \ 7 @ A A < < , 6 , , , , F@ F< FB FA FA FA - F< " ) FA F, F F6 ¿¿¿ɏ ,°º»ɏ¶ɏºÀ´©¶³º F A F ^ " F F ' F ' F & $ $ FB F $F < F6 7 \ % W ' ') '* w A B B B B v 6 & & 0 X 6 x# y# z A K 6 ` ) a ) a# b# g# d# q# y @ ' g 6 D 6 7 d( B e 7 e 1 e e ) F ^ # # F1 ! F) " ) b d ) F6 B F6 ' F , F F6 F B ɏ ,°º»ɏ¶ɏºÀ´©¶³ºɏ z , l 8 h 7 q ) m 1 r , t 6 f ) v ) w q w ) w, , w ; S)J) 6 S/1 6 s 6 v < F) F< FA F F) F< F) 1 ' ' ' ' ) 1% ! . ¿¿¿° ɏ ŵ '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ 2 #¯¨·»¬¹ Hfofsbm!Qsjodjqmft .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ ! .1!crcɏ )«¬µ»°»Àɏ»¯¬ɏ«°Ĺ¬¹¬µª¬ɏ©¬»¾¬¬µɏ½¨¹°¶¼ºɏ©¹¨µª¯¬ºɏ¶ɏ´¬ª¯¨µ°ªºȎɏ½°ÁȍȎɏº»¨»°ªºȎɏ«Àµ¨´°ªºȎɏ²°µ¬»°ªºɏ ¨µ«ɏ²°µ¬´¨»°ªºȐɏ¨µ«ɏ»¯¬ɏ°«¬¨³°Á¨»°¶µºɏ¼º¬«ɏ°µɏ´¬ª¯¨µ°ªºȍ ɏ .1!crdɏ %¿·³¨°µɏ»¯¬ɏ«°Ĺ¬¹¬µª¬ɏ©¬»¾¬¬µɏ½¬ª»¶¹ɏ¨µ«ɏºª¨³¨¹ɏ¸¼¨µ»°»°¬ºȍɏ ɏ .1!creɏ $¬ºª¹°©¬ɏ»¯¬ɏ©¨º°ªɏ³¨¾ºɏ¼º¬«ɏ°µɏ´¬ª¯¨µ°ªºȎɏ½°ÁȍȎɏ.¬¾»¶µȠºɏ³¨¾ºɏ¶ɏ´¶»°¶µȎɏ³¨¾ɏ¶ɏ®¹¨½°»¨»°¶µȎɏ ·¨¹¨³³¬³¶®¹¨´ɏ³¨¾ɏ¨µ«ɏ³¨¾ɏ¶ɏ»¹¨µº´°ºº°©°³°»Àɏ¶ɏ¶¹ª¬ȍɏ ɏ .1!crfɏ ,°º»ɏ»¯¬ɏ3)ɏ¼µ°»ºɏ¶ɏ·¯Àº°ª¨³ɏ¸¼¨µ»°»°¬ºɏ¼º¬«ɏ°µɏ´¬ª¯¨µ°ªºȍɏ ɏ .1!crgɏ $¬ķµ¬ɏ«°´¬µº°¶µ¨³ɏ¶¹´¼³¨ɏ¶ɏ¨ɏ¸¼¨µ»°»Àɏ¨µ«ɏº»¨»¬ɏ»¯¬ɏ·¹°µª°·³¬ɏ¶ɏ¯¶´¶®¬µ¬°»Àɏ¶ɏ«°´¬µº°¶µºȍɏ ɏ .1!crhɏ 5º¬ɏ¹°®¯»ɏ·¹¶ª¬«¼¹¬ºɏ»¶ɏº¶³½¬ɏ·¹¶©³¬´ºɏ°µɏ¬µ®°µ¬¬¹°µ®ɏ´¬ª¯¨µ°ªºȍ .1!crc )«¬µ»°»Àɏ»¯¬ɏ «°Ĺ¬¹¬µª¬ɏ©¬»¾¬¬µɏ ½¨¹°¶¼ºɏ©¹¨µª¯¬ºɏ¶ɏ ´¬ª¯¨µ°ªºȎɏ½°ÁȍȎɏº»¨»°ªºȎɏ «Àµ¨´°ªºȎɏ²°µ¬»°ªºɏ¨µ«ɏ ²°µ¬´¨»°ªºȐɏ¨µ«ɏ»¯¬ɏ °«¬¨³°Á¨»°¶µºɏ¼º¬«ɏ°µɏ ´¬ª¯¨µ°ªºȍ 2/2! � ! CSBODIFT! PG! NFDIBOJDT! BOE! JEFBMJ[BUJPO! JO! NFDIBOJDT! !jt!uif!tdjfodf-!xijdi!eftdsjcft!boe!qsfejdut!uif!dpoejujpot! pg!sftu!ps!pg!npujpo!pg!tpmjet!ps!Þvjet!)mjrvjet!boe!hbtft*!voefs!uif!bdujpo!pg!gpsdft-! bt!hjwfo!jo!Gjh/!2/2/!B!tpmje!dbo!cf!fjuifs!b! !ps!b! /!Uif!nf. dibojdt!pg!sjhje!cpejft!jt!gvsuifs!ejwjefe!joup! boe! /!Uif!nfdibojdt! pg!efgpsnbcmf!cpejft!jt!vtvbmmz!dbmmfe! / Uif!tdjfodf!pg! !efbmt!xjui!uif!tuvez!pg!gpsdft!boe!dpoejujpot!pg!frvjmjcsjvn! pg!tubujd!cpejft/!Uif!tdjfodf!pg! jt!uif!tuvez!pg!npujpo!pg!sjhje!cpejft!boe! jut!dpssfmbujpo!xjui!uif!gpsdft!dbvtjoh!ju/!Bhbjo-!ezobnjdt!jt!ejwjefe!joup! !boe! /! ! efbmt!xjui!uif!tqbdf.ujnf!sfmbujpotijq!pg!b!npwjoh!cpez!xjuipvu!cpuifsjoh!bcpvu!uif!gpsdft!dbvtjoh!uif! npujpo/! jt!uif!tuvez!pg!uif!sfmbujpotijq!cfuxffo!uif!npujpo!pg!b!cpez!boe!uif!gpsdft!dbvtjoh!ju/! 2/2/2! Jefbmj{bujpo!jo!Nfdibojdt! Gps!tjnqmjgzjoh!uif!bqqmjdbujpo!pg!uifpsz-!nboz!b!ujnft!xf!efqfoe!po!dfsubjo!jefbmj{bujpot!jo!nfdibojdt/!Cz! bttvnjoh!tvdi!jefbmj{bujpot-!uif!bddvsbdz!pg!uif!sftvmut!jt!opu!nvdi!bggfdufe/! Ŷɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Qbsujdmf! B! !jt!b!qpjou!nbtt!ps!b!nbufsjbm!qpjou/!Jo!qsbdujdf-!jg!uif!ejnfotjpot!pg!b!cpez!dbo!cf!jhopsfe! xijmf!tuvezjoh!jut!frvjmjcsjvn!ps!npujpo-!ju!nbz!cf!usfbufe!bt!b!qbsujdmf/! Tztufn!pg!Qbsujdmft! Xifo!uxp!ps!npsf!cpejft!bsf!sfqsftfoufe!cz!qbsujdmft!boe!efbmu!xjui!uphfuifs-!ju! nblft!b!tztufn!pg!qbsujdmft/!Gps!fybnqmf-!uif!qmbofubsz!tztufn!ps!uif!bupnjd!tusvduvsf/ Sjhje! Cpez! B!cpez!jt!tbje!up!cf!b! !jg!uif!ejtubodf!cfuxffo!boz!uxp!pg!jut!qpjout!sfnbjot! vodibohfe!voefs!uif!bdujpo!pg!gpsdft/!Jo!qsbdujdf-!ipxfwfs-!b!cpez!hfut!efgpsnfe!xifo!bdufe!vqpo!cz!gpsdft/! Jg!uijt!efgpsnbujpo!jt!ofhmjhjcmf!dpnqbsfe!up!jut!tj{f-!uif!cpez!dbo!cf!bttvnfe!sjhje/! Engineering Mechanics Mechanics of Rigid Bodies Statics (Study of forces that keep static bodies in equilibrium) Mechanics of Deformable Bodies (Solid Mechanics) Fluid Mechanics Dynamics (Study of motion of rigid bodies) Kinematics (Study of the space-time relationship of moving rigid bodies) Kinetics (Study of the relationship between the motion of a rigid body and the forces causing it) Gjh/!2/2! ;! Ju!efbmt!xjui! -!jo!xijdi!uif!dpoejujpo!pg!tubujd!frvjmjcsjvn!pg!sjhje!cpejft!jt! ejtdvttfe/! Qbsu.JJ!! ;!! Ju!efbmt!xjui! -!jo!xijdi!uif!npujpo!pg!sjhje!cpejft!boe!jut!dpssfmbujpot! xjui!uif!gpsdft!dbvtjoh!ju!bsf!ejtdvttfe/! Qbsu.JJJ!! ;! Ju!efbmt!xjui! -!jo!xijdi!uif!sfmbujpotijqt!cfuxffo! efgpsnbujpot-!tusbjot!boe!tusfttft!dbvtfe!cz!fyufsobm!gpsdft!jo!qiztjdbm!cpejft!bsf! ejtdvttfe/! Qbsu.J!! 2/2/3! Cbtjd!Dpodfqut! Tqbdf! Tqbdf!sfgfst!up!uif!hfpnfusjd!sfhjpo!pddvqjfe!cz!cpejft/!Uif!qptjujpo!pg!b!cpez!jo!tqbdf!jt!eftdsjcfe! cz!mjofbs!boe!bohvmbs!nfbtvsfnfout!sfmbujwf!up!b! /!Gps!b!uxp.ejnfotjpobm!qspcmfn-!xf!offe! ɏ ŷ '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ uxp!joefqfoefou!dppsejobuft-!tbz-! boe! dppsejobuft!)dbmmfe! dbsuftjbo!tztufn*-!ps! !boe!q!dppsejobuft!)dbmmfe!qpmbs!tztufn*/! Gps!b!uisff.ejnfotjpobm!qspcmfn-!xf!sfrvjsf!uisff!joefqfoefou! dppsejobuft!)f/h/-! -! !boe! !dppsejobuft*/! Nbtt! Nbtt!jt!uif!rvboujuz!pg!nbuufs!jo!b!cpez/!Nbuufs!sfgfst! up!uif!tvctubodf!pg!xijdi!uif!cpez!jt!dpnqptfe/!Nbtt!dbo!bmtp! cf!sfhbsefe!bt!b!nfbtvsf!pg! !pg!b!cpez!upxbset!dibohf!jo! jut!tubuf!pg!npujpo/! �! 9ORTHY!OF!0OTE Jo!Ofxupojbo!nfdibojdt-! -! boe! bsf! bctpmvuf! dpodfqut! joefqfoefou! pg! fbdi! puifs/!Ipxfwfs-!uif!dpodfqu!pg! !jt!sfmbufe!up! !uispvhi! OfxupoÔt!tfdpoe!mbx!pg!npujpo/ Ujnf! Ujnf!jt!b!nfbtvsf!pg!tfrvfodf!pg!fwfout/!Ju!sfgfst!up!uif!dpodfqut!pg! pddvssfodft!pg!uxp!ps!npsf!fwfout/! -! !boe! ! Gpsdf! Gpsdf!jt!bo!bdujpo!uibu!ufoet!up!dibohf!uif!tubuf!pg!sftu!ps!npujpo!pg!b!cpez!up!xijdi!ju!jt!bqqmjfe/! Gpsdf!jt!b!wfdups!rvboujuz/!Ju!jt!dpnqmfufmz!eftdsjcfe!cz!tubujoh!jut!)2*!nbhojuvef-!)3*!ejsfdujpo-!boe!)4*!qpjou! pg!bqqmjdbujpo/! 2/3! �! WFDUPS!BOE!TDBMBS!RVBOUJUJFT! .1!crd Uifsf!bsf!tpnf!rvboujujft!xijdi!bsf!opu!dpnqmfufmz!tqfdjÝfe!cz!kvtu!tubujoh!uifjs! nbhojuveft/!Zpv!nvtu!tqfdjgz!uifjs!ejsfdujpot!bt!xfmm/!Gps!jotubodf-!up!tqfdjgz!uif! %¿·³¨°µɏ»¯¬ɏ«°Ĺ¬¹¬µª¬ɏ ©¬»¾¬¬µɏ½¬ª»¶¹ɏ¨µ«ɏ npujpo!pg!b!dbs-!xf!nvtu!ufmm!Ñipx!gbtu@Òboe!Ñxijdi!xbz@Ò!uif!dbs!jt!npwjoh/!Uif! ºª¨³¨¹ɏ¸¼¨µ»°»°¬ºȍ dpodfqu! pg! ! hjwft! uif! eftjsfe! jogpsnbujpo/! Tvdi! rvboujujft-! ibwjoh! cpui! nbhojuvef!boe!ejsfdujpo-!bsf!ufsnfe! /! Hsbqijdbmmz-! b! wfdups! rvboujuz! jt! sfqsftfoufe! cz!b! Uif!mfohui!pg!uijt!mjof! Myth Fact! tfhnfou!hjwft!uif! pg!uif!rvboujuz/!Uif! bohvmbs!psjfoubujpo!pg!uif!mjof!tfhnfou!xjui!sftqfdu! Uifsf!bsf!tpnf!rvboujujft! up!b!sfgfsfodf!boe!uif!qptjujpo!pg!uif!bsspxifbe!hjwf! xijdi!ibwf!ejsfdujpot-!cvu! uif! !pg!uif!rvboujuz/!Dpnqmfuf!eftdsjqujpo! bsf!opu!wfdupst/!Gps!fybnqmf-! pg!b!wfdups!)tvdi!bt!b! *!offet!tqfdjgzjoh!jut! fmfdusjd!dvssfou!qpttfttft! )2*! -!)3*! -!)4*! -!boe! ejsfdujpo!cvu!ju!jt!b!tdbmbs! )5*! /! rvboujuz/! Uif gps! b! wfdups! rvboujuz! jt! qsjoufe! jo! cpmegbdf! mfuufs! )gps! fybnqmf-!uif!tzncpm!gps!gpsdf!jt!qsjoufe!bt!G*+/ qpttftt!pomz!nbhojuvef/!Fybnqmft!bsf!ujnf-!wpmvnf-!efotjuz-!nbtt-!xpsl-!QpjttpoÔt! sbujp-!npevmvt!pg!fmbtujdjuz-!npevmvt!pg!sjhjejuz-!fud/!Tdbmbst!bsf!beefe!cz!psejobsz!bmhfcsbjd!nfuipet/!Gps! fybnqmf-!5!t!,!4!t!>!8!t<!78!lh!Ï!26!lh!>!63!lh/ Opuf!uibu-!jo!Ýhvsft-!uif!wfdupst!bsf!jefoujÝfe!cz!uifjs!nbhojuveft!xifo!uifjs!ejsfdujpot!bsf!pcwjpvt/! ! +!Tjodf!zpv!dboopu!nblf!cpmegbdf!mfuufst!xijmf!xsjujoh!jo!zpvs!opufcppl-!zpv!nbz!qvu!bo!bsspx!ps!b!cbs!bcpwf!uif! � mfuufs!up!joejdbuf!uibu!uijt!tzncpm!sfgfst!up!b!wfdups-!f-h/- !ps! / Ÿɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº .1!cre $¬ºª¹°©¬ɏ»¯¬ɏ©¨º°ªɏ³¨¾ºɏ ¼º¬«ɏ°µɏ´¬ª¯¨µ°ªºȎɏ ½°ÁȍȎɏ.¬¾»¶µȠºɏ ³¨¾ºɏ¶ɏ´¶»°¶µȎɏ ³¨¾ɏ¶ɏ®¹¨½°»¨»°¶µȎɏ ·¨¹¨³³¬³¶®¹¨´ɏ³¨¾ɏ¨µ«ɏ ³¨¾ɏ¶ɏ»¹¨µº´°ºº°©°³°»Àɏ ¶ɏ¶¹ª¬ȍ 2/4! �! MBXT!PG!NFDIBOJDT! Uif!foujsf!tusvduvsf!pg!nfdibojdt!sftut!po!uif!gpmmpxjoh!cbtjd!mbxt; 2/! 3/! 4/! 5/! OfxupoÔt!mbxt!pg!npujpo/! OfxupoÔt!mbx!pg!hsbwjubujpo/! Uif!qbsbmmfmphsbn!mbx/! Qsjodjqmf!pg!usbotnjttjcjmjuz!pg!gpsdf/! 2/4/2! OfxupoÜt!Mbxt!pg!Npujpo Gjstu!Mbx ! ! )jo! b!tusbjhiu!mjof!xjui!b!dpotubou!tqffe*! ! ! Gps!uif!bcpwf!mbxt!up!cf!nfbojohgvm-!xf!nvtu!ibwf!tpnf!ebuvn!ps! uif!tubuf!pg!ÑsftuÒ!ps!Ñvojgpsn!npujpoÒ!dbo!cf!eftdsjcfe/! Tfdpoe!Mbx " Gsbnf! pg! Sfgfsfodf! B! gsbnf! pg! sfgfsfodf! jt! dbmmfe! b! $ ps! jg! fbdi! Myth qpjou!po!uif!gsbnf!sfnbjot!bu!Ñbctpmvuf!sftuÒ/!Ju!jt! jnqpttjcmf!up!mpdbuf!b!Ýyfe!gsbnf!pg!sfgfsfodf!jo!uif! vojwfstf/!Ipxfwfs-!uif!ÑÝyfe!tubstÒ!nbz!cf!ublfo! bt!b!Ýyfe!gsbnf!pg!sfgfsfodf!up!eftdsjcf!uif!tubuf!pg! ÑsftuÒ!ps!ÑnpujpoÒ!pg!b!cpez/!Ju!jt!tffo!uibu!boz!puifs! tztufn!uibu!npwft!vojgpsnmz!)boe!xjuipvu!spubujpo*! sfmbujwf!up!uif!Ýyfe!tubst!nbz!cf!vtfe!bt!b!sfgfsfodf!xjui!frvbm!bddvsbdz/! Bmm!tvdi!sfgfsfodft!bsf!dbmmfe! )ps!% */!Gps! fohjoffsjoh!xpsl-!uif!fbsuiÔt!tvsgbdf!jt!vtvbmmz!ublfo!bt!sfgfsfodf/!Uipvhi! tusjdumz!tqfbljoh-!ju!jt!opu!bo!jofsujbm!sfgfsfodf!cfdbvtf!pg!uif!spubujpo!pg! uif!fbsui!boe!jut!sfwpmvujpo!bspvoe!uif!tvo/!Ipxfwfs-!jo!nptu!tjuvbujpot! )fydfqujpot!bsf!uif!npujpo!pg!hvjefe!njttjmft!boe!tqbdfdsbgut*-!uif!fssps! jodvssfe!jt!tp!tnbmm!uibu!ju!dbo!cf!jhopsfe/! # !sfmbujwf!up!xijdi! Fact! Uifsf!bsf!tpnf!rvboujujft! xijdi!ibwf!nbhojuvef!boe! qpjou!pg!bdujpo!cvu!offe!uxp!ps! npsf!ejsfdujpobm!eftdsjqujpot/! Uifz!bsf!ofjuifs!wfdupst! ops!tdbmbst/!Uifz!bsf!dbmmfe! Ufotpst!bsf!vtfe!up! fyqsftt!tdbmbst-!wfdupst!boe! nbusjdft!boe!puifs!ijhifs!psefs! wbsjbcmft/!Fybnqmft!bsf!tusbjo-! tusftt-!npnfou!pg!jofsujb-! sfgsbdujwf!joefy-!fud/!! Sfmbujpo! cfuxffo! Gpsdf! boe! Nbtt! OfxupoÔt!tfdpoe!mbx!pg!npujpo!sfmbuft!uif!dpodfqu!pg!gpsdf! up!uif!dpodfqu!pg!nbtt!pg!b!cpez/!Uif!bnpvou!pg!npujpo!pg!b!cpez!dbo!cf!sfqsftfoufe!cz!b!rvboujuz!dbmmfe! )&*-!xijdi!jt!tjnqmz!uif!qspevdu!pg!jut!nbtt!boe!wfmpdjuz!)&!>! v*/!Uivt-!OfxupoÔt!tfdpoe!mbx! dbo!cf!tubufe!bt!Ñ ' Ò/!Uif!nbhojuvef!pg!uif!gpsdf! uibu!qspevdft!bo!bddfmfsbujpo! !jo!b!cpez!pg!nbtt! !jt!hjwfo!bt ! ! >! !! )2/2* Uijse!Mbx! " ( # # !)j/f/-!uifz!mjf!po!uif!tbnf!mjof* Ju!tubuft!uibu!uif!gpsdft!bmxbzt!pddvs!jo!qbjst!pg!frvbm!boe!pqqptjuf!gpsdft/!Ju!jt!fttfoujbm!up!ejtujohvjti! cfuxffo!uif!bdujpo!boe!uif!sfbdujpo!jo!b! /!Up!ep!tp-!xf!Ýstu! !uif!cpez!jo!rvftujpo!boe!uifo! jefoujgz!uif!gpsdf!fyfsufe! !uibu!cpez!)opu!uif!gpsdf!fyfsufe! !uif!cpez*/! ɏ Ź '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ Dpoubdu! boe! Cpez! Gpsdft! B! !gpsdf!jt!qspevdfe!cz!ejsfdu!qiztjdbm!dpoubdu-!gps!fybnqmf-!uif! !gpsdf!jt!hfofsbufe!cz! gpsdf! 3!fyfsufe!po!uif!cpez!C!cz!uif!tvqqpsujoh!tvsgbdf!jo!Gjh/!2/3/!Jo!dpousbtu-!b! wjsuvf!pg!uif!qptjujpo!pg!uif!cpez!xjuijo!b!gpsdf!Ýfme-!gps!fybnqmf-!uif!gpsdf! !fyfsufe!po!uif!cpez!pg!nbtt! evf!up!uif!hsbwjubujpobm!Ýfme!qspevdfe!cz!uif!cpez!pg!nbtt! !jo!Gjh/!2/4/! A F1 –F1 m B A F2 B –F2 r F –F M ! Gjh/!2/3! ) * + Gjh/!2/4! * + ! Jo!Gjh/!2/3-!cpez!B!jt!qmbdfe!pwfs!uif!cpez!C-!boe!uif!cpez!C!jt!qmbdfe!pwfs!uif!tvsgbdf!pg!uif!fbsui/!Cf. dbvtf!pg!jut!xfjhiu-!uif!cpez!B!qsfttft!epxo!uif!cpez!C!xjui!b!gpsdf!Ï 2!)ofhbujwf!tjho!jt!vtfe!gps!epxoxbse! ejsfdujpo*/!Cpez!C-!jo!uvso-!qsfttft!Cpez!B!vqxbse!xjui!b!gpsdf! 2/!Uivt-!bu!uif!dpoubdu!qpjou-!gpsdft!Ï 2!boe! !boe! !uibu!bdu!po!ejggfsfou!cpejft/!Tjnjmbsmz-!gpsdft!Ï 3!boe! 2!dpotujuvuf!b!qbjs!pg! 3!bsf!uif!bdujpo!gpsdf!boe!sfbdujpo!gpsdf!cfuxffo!uif!cpez!C!boe!uif!fbsui/! 2/4/3! OfxupoÜt!Mbx!pg!Hsbwjubujpo " ! Xjui!sfgfsfodf!up!Gjh/!2/4-!uif!fyqsfttjpo!pg!gpsdft! boe!Ï jt!hjwfo!bt! Mm ! >! G 3 ! r xifsf-!%!)>!7/78!¥!21 Ï22!O!n30lh3*!jt!dbmmfe! ! ! jouspevdft!uif!jefb!pg!bo!bdujpo!fyfsufe!bu!b!ejtubodf/ ( )2/3* OfxupoÔt!mbx!pg!hsbwjubujpo! Xfjhiu!pg!b!Cpez! Uif!buusbdujwf!gpsdf! !fyfsufe!cz!uif!fbsui!po!uif!qbsujdmf!mpdbufe!po!jut!tvsgbdf!jt! efÝofe!bt!uif!! ,!pg!uif!qbsujdmf/!Ubljoh! !bt!uif!nbtt!pg!uif!fbsui-! !bt!uif!nbtt!pg!uif!qbsujdmf-!boe! -!bt!uif!sbejvt!pg!uif!fbsui!jo!Fr/!)2/3*-!uif!nbhojuvef!pg!uif!xfjhiu!pg!uif!qbsujdmf!jt!hjwfo!bt ,! >! G Mm ! R3 Jouspevdjoh!uif!dpotubou GM ! >! 3 ! R Uif!nbhojuvef!,!pg!uif!xfjhiu!pg!uif!qbsujdmf!pg!nbtt! nbz!cf!fyqsfttfe!bt ,! >! ! )2/4* )2/5* )2/6* źɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Dpnqbsjoh!uijt!frvbujpo!xjui!Fr/!)2/2*-!xf!Ýoe!uibu! !tipvme!sfqsftfou!uif!bddfmfsbujpo!qspevdfe!jo!b! cpez!pg!nbtt! !voefs!uif!bdujpo!pg!jut!xfjhiu!,/!Gps!uijt!sfbtpo-!uif!dpotubou! !jt!dbmmfe! ! /!Opsnbmmz-!gps!fohjoffsjoh!dbmdvmbujpot-!gps!uif!qpjout!po!uif!tvsgbdf!pg!uif!fbsui-!uif!wbmvf!pg! jt! ublfo!bt!:/92!n!tċ3/ 2/4/4! Uif!Qbsbmmfmphsbn!Mbx " . ! /!Ju!nfbot!uibu!uif!uxp! dpnqpofou!gpsdft!dbo!cf!sfqmbdfe!cz!b!tjohmf!gpsdf-!dbmmfe!uifjs! sftvmubou-!up!qspevdf!uif!tbnf!fggfdu/!Up!Ýoe!uif!sftvmubou!pg!gpsdft! G2!boe!G3!bdujoh!bu!b!qpjou-!Ýstu!esbx!uif!uxp!gpsdf!wfdupst!bt!uif! bekbdfou!tjeft!)PB!boe!PC*!pg!b!qbsbmmfmphsbn-!qpjoujoh!bxbz! gspn!)ps!upxbset*!uif!qpjou!pg!joufstfdujpo!)qpjou!P*-!bt!tipxo!jo!! Gjh/!2/5/!Uif!sftvmubou!G!pg!uif!uxp!gpsdft!jt!uifo!sfqsftfoufe!cz! uif!ejbhpobm!)PD*!pg!uif!qbsbmmfmphsbn!PBDC!qbttjoh!uispvhi! uif!tbnf!qpjou/! 2/4/5 ! Qsjodjqmf! pg! Usbotnjttjcjmjuz! pg! Gpsdf C F1 A F O F2 B Gjh/!2/5! ) Myth Fact! Ju! tubuft! uibu! Tjodf!uif!efgpsnbujpot! qspevdfe!jo!uif!cbmm!efqfoe! po!uif!qpjou!pg!bqqmjdbujpo!pg! uif!gpsdf-!uijt!gpsdf!jt!b!$ ! /!! " Uivt-!xifofwfs!xf!bsf!joufsftufe!jo!pomz!uif!sftvmubou!fyufsobm!fggfdut! pg!b!gpsdf!bqqmjfe!up!b! -!uif!gpsdf!nbz!cf!usfbufe!bt!b! /!Xf!offe!up!tqfdjgz!pomz!uif! -! boe! !pg!uif!gpsdf-!boe!opu!jut! /!Tjodf!uijt!cppl!efbmt!fttfoujbmmz!xjui!uif!nfdibojdt!pg!sjhje!cpejft-!xf!xjmm!usfbu!bmnptu!bmm! gpsdft!bt!tmjejoh!wfdupst/! Dpotjefs!b!sjhje!cpez!pg!nbtt! !bcpwf!uif!tvsgbdf!pg!uif! fbsui/!Jut!xfjhiu!,!bdut!epxoxbse!bu!jut!dfousf!pg!hsbwjuz-! Rope T boe!bu!uif!tbnf!ujnf-!ju!jt!cfjoh!qvmmfe!vq!vtjoh!b!spqf!xjui! A A ufotjpo!"!)hsfbufs!uibo!uif!xfjhiu!,*-!bt!tipxo!jo!Gjh/!2/6 /! C C Uif!ofu!gpsdf!po!uif!cpez!jt!"!Ï!,<!boe!ifodf-!bddpsejoh!up! W = mg W = mg OfxupoÔt!tfdpoe!mbx-!uif!vqxbse!bddfmfsbujpo! 2!jt!hjwfo!cz! "!Ï! !>! 2! ps! 2!>! T - mg ! )2/7* m Opx-!tvqqptf!uibu!jotufbe!pg!qvmmjoh!ju!vq-!uif!cpez!jt! qvtife!vq!vtjoh!b!spe!bqqmzjoh!b!gpsdf! -!bt!tipxo!jo!Gjh/! 2/6 /!Sftvmujoh!vqxbse!bddfmfsbujpo! 3!jt!uifo!hjwfo!cz !Ï! !>! 3! ps! 3!>! F - mg ! m B (a) Pulling up by a rope B Rod F (b) Pushing up by a rod Gjh/!2/6! / )2/8* ɏ Ż '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ !Jg!uif!ufotjpo!" )bqqmjfe!bu!uif!qpjou!B!jo!Gjh/!2/6 *!ibt!uif!tbnf!nbhojuvef!bt!uif!gpsdf! !)bqqmjfe!bu!uif! qpjou!C!jo!Gjh/!2/6 *!uifo!Frt/!)2/7*!boe!)2/8*!ejdubuf!uibu!uif!fyufsobm!fggfdu!qspevdfe!jo!uif!uxp!dbtft!xjmm! cf!tbnf-!j/f/-! 2!>! 3/!Uijt!jmmvtusbuft!uif!qsjodjqmf!pg!usbotnjttjcjmjuz!pg!gpsdf/! Opuf!uibu!uif!qsjodjqmf!pg!usbotnjttjcjmjuz!bqqmjft!up!b!sjhje!cpez!boe!jt!wbmje!pomz!gspn!uif!qpjou!pg!wjfx! pg!uif!ofu! /!Ju!epft!opu!bqqmz!up!efgpsnbcmf!cpejft/!Bmtp-!ju!jt!opu!bqqmjdbcmf!fwfo!up!b!sjhje!cpez! gspn!uif!qpjou!pg!wjfx!pg!joufsobm!sfbdujpot!ps!joufsobm!gpsdft!efwfmpqfe/! 2/5! .1!crf ,°º»ɏ»¯¬ɏ3)ɏ¼µ°»ºɏ¶ɏ ·¯Àº°ª¨³ɏ¸¼¨µ»°»°¬ºɏ ¼º¬«ɏ°µɏ´¬ª¯¨µ°ªºȍ �! VOJUT!PG!QIZTJDBM!RVBOUJUJFT! Uif! jt!uif!sfgfsfodf!tuboebse!pg!nfbtvsfnfou!pg!b!qiztjdbm!rvboujuz/ 2/5/2! TJ!Vojut Uif!Joufsobujpobm!Tztufn!pg!Vojut!)bccsfwjbufe!bt!TJ!Vojut+*!jt! -! !boe! ! /!Ju!jt!opx!gpmmpxfe!fwfszxifsf!jo!uif!xpsmeʨbu!mfbtu!jo!fohjoffsjoh/! Ju!ibt! ! !)Ubcmf!2/2*-! !)Ubcmf!2/3*!boe! / B!tztufn!pg!vojut!jt!tbje!up!cf! -!jg!uif!qspevdu!ps!rvpujfou!pg!boz!uxp!voju!rvboujujft!jo!uif!tztufn! jt!uif!voju!pg!uif!sftvmubou!rvboujuz!xjuipvu!jouspevdjoh!boz!ovnfsjdbm!gbdups/!Gps!fybnqmf-!voju!wfmpdjuz!xjmm! sftvmu!xifo!voju!mfohui!jt!ejwjefe!cz!voju!ujnf/! ) Ubcmf!2/2! Qiztjdbm!Rvboujuz Obnf!pg!TJ!Voju Mfohui Nbtt Tzncpm nfusf n ljmphsbn lh Ujnf tfdpoe t Fmfdusjd!dvssfou bnqfsf B Uifsnpezobnjd!ufnqfsbuvsf lfmwjo+ L npmf npm dboefmb de Bnpvou!pg!tvctubodf Mvnjopvt!joufotjuz +!Ju!tipvme!cf!xsjuufo!bt!lfmwjo!pomz-!boe!opu!efhsff!lfmwjo!ps!¡L/! & " # " ! $ " % & ' & ' ( " &' * & # & ' # & ' & ' ' # & ) ' # " # & ' * # , ! & / "0 &+' 1 2 ! - $ ' " 30 2 3& &¢' ' &≤' &.' żɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ) Ubcmf!2/3! Qiztjdbm!Rvboujuz Voju Tzncpm 4 ! Ubcmf!2/4! Efsjwfe!Vojut Tzncpm ,5 8 5 7 7 : 5 96 5 7 ! 95, # *; 5 ! Ubcmf!2/5! Qiztjdbm!Rvboujuz 3/! ( 4/! ( : 6 5 6 * 4 7 4 < $ Voju Op/ 7 8/! 6 7 6 # :/! . 21/! ( 6/! ( 6 22/! ( 7 23/ Voju , = 7 6 Qiztjdbm!Rvboujuz 9/! 5/! 7/ 2/5/3! 6 ( ( 2/! 7 4 5 ,6 ; Op/ 6 Qiztjdbm!Rvboujuz 7 6 ! 6 7 4 # 6 Qsfgjyft : $ # > ? <@@@ Ubcmf!2/6 0 $ Gbdups A QsfÝy Tzncpm Gbdups A QsfÝy Tzncpm < 7 A A<7 A! A<! 1 ɏ Ž '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ AB A<B A@ / A 7 A ? A D 4 > . /4 2/5/4! A<@ C # m 1 A< 7 A< ? A< D # 3 �! 9ORTHY!OF!0OTE Svmft!up!Vtf!TJ!Qsfgjyft # ±! # &' E ; # # # G > . &mm ' & ' ! # # FybnqmfF 0 7 ,6 > ,6 & ' 7 = ( 2/5/5! > H 2 7 ' # $ '7 5 &A A '7 & ¥& ' 5AA 7 & > # &# ' # % > C # 7 = # 7 7 7 ( &C 5 A AAA & ' Hvjefmjoft!gps!Vtjoh!TJ!Vojut # I " ## ' > # # & ## & !' ' 8 # 8 ! % 0 & 9 : 4 & 9 9 # 9 : ' ' # # & # ' # ? # # B , # # 7 1 3G ?A ?A # * # # # > > # m' ( F # > # # # > > ŵŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº J > # # # 7 &7 D ( # > > ? B ' : &? ' > # # ) " ?J+ B¢%%≤ @ ( # # , > " 1# 3 < 6 # # ># # # K A : : &6' # < ¥ 96 96 5 : # < 6 " &6' # # " # # (# # L$ M L M # 0 5 @AD : 5?J $ # 7 : ## ># A # # # " # ( > # 1 &' & ' & ' & ' ! %A AAA %AAAA D 7!% JB? JB%7 ! DJB B ?%! 7 !! # > # 1 7 7 3 %! ( $ opu > # ? J?: ? ( # &' & ' & ' & ' %A AAA D 7!% JB? JB% 7 ! DJB B?%! 7 3 �! 9ORTHY!OF!0OTE &' # 7%) ) #&' # ) opu 1 $ 0 & ' 8 > 2/5/6! # F ) ! # # ? ! AAA N &¥' " # ; 7) Puifs!Tztufnt!pg!Vojut = # # ?A " #$ & " 4 ' # " ( # # ɏ ŵŵ '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ " * : " ( &O' # &P' # B ! Ubcmf!2/7! Op/ Up!dpowfsu! )Puifs!Vojut* 2/! & 3/! Joup!)TJ!Vojut* ' &5 JBA Dpowfstfmz! Nvmujqmz!cz BA@! A B7 % & ' &5 ! ' A @ %% A@!B 4/! & ' &5 7 A !A%D ! 7DAD 5/! & ' 7 ?% A !@!J 7 A AAA A<% 7 %A%B D A 7%J ¥ A<! 7 ?AB 7 7? ! A A!@? < < ' &5 7 ? 6/! &5 D ' 7/! 8/! ' Nvmujqmz!cz ' ' ' &5 7A ' 9/! :/! &5 7A 21/! &0Q' 22/! '/ < &.' % ?%B ! # &0 ' @JB ¥ A<! A 77A <! A ?BD! ¥ A ! JD? A 7B%7 A %?!B 7 7A%B & ;' 7D !? A A!?! AA AA 27/! A BA @ D%7 ¥ A<% 28/! AAA A A<! A A J %? ?J 7@?J 24/ # 25/! 26/! &.' JBA & ' 23/ $ 29/! 6 2:/! 31/! 32/! # 6 # ! 6 6 ! & 6' 33/! # ! & & 6' @%! A A%J @ ??A B A7 A AB7% A A7D! !? !! , % %%D A 77%D 35/! , @ DAJ A A @ 36/! , @ @B% A AA! 4 A !! @ DB@ ¥ A<! 4 @D AJ A A A7 4 B D@? %?A 34/! # 37/! 38/! 39/! 6 # & & 7 6 7 ' ' ! A ? %% ' 1 ŵŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 3:/! & 41/! & ' ' A 7%@ %A ? 4 ! !DB A 7@?! 4 !!! A J?A7 9 !?B A J!J? 44/! 9 @ DAJ A A @ 45/! 9 % D@ A 7!D@ A J%?J !% 42/! # 43/! # 46/! & #' : # 47/! , 6 & & & & 1 3 0 4 ' R 8 ' : ' * 4 2/6! .1!crg 77AA 7 7?AA 7 !!! !! JBD 7 A <% ' # 7 �! EJNFOTJPOT!PG!QIZTJDBM!RVBOUJUJFT! $ ># $ M L Myth " SvT 5 . $ # # $ # 3 ( 193 " p g! > # $ & $ ! # opuf 1, $ " # Fact! % J Ipnphfofjuz! # $ > < ! Qsjodjqmf! pg! Ejnfotjpot! " $ $ < # A% A & 5 5 5 ' 5 # $¬ķµ¬ɏ«°´¬µº°¶µ¨³ɏ ¶¹´¼³¨ɏ¶ɏ¨ɏ¸¼¨µ»°»Àɏ ¨µ«ɏº»¨»¬ɏ»¯¬ɏ·¹°µª°·³¬ɏ ¶ɏ¯¶´¶®¬µ¬°»Àɏ¶ɏ «°´¬µº°¶µºȍɏ # A 6 /Opuf; . 7 7 48/ " 4 # $ 193 # # $ $ Myth * ># # Fact! & ## > q ' (& ! Ejnfotjpomftt! Rvboujujft! ( $ $ " ; tjo!q!@!ubo!q!@!q!>!2 ( # $ # * $ 5 A A J% q@ @ q 5 A A J% F ɏ ŵŷ '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ Dpowfstjpo!pg!Vojut! ## # & 7 7& . $ & ' . . 7 .7 7 . 7 7' 5 & 7 5 Ê M1 ˆ Ê L1 ˆ Ê T1 ˆ ÁË M ˜¯ ÁË L ˜¯ ÁË T ˜¯ 2 2 2 7' ' a b c ( Ubcmf!2/8! Op/ Rvboujuz Ejnfotjpobm!Gpsnvmb A ! A . .!' & 2/! Z 3/! = 4/! Z . < 5/! ( . <7 6/! ( .<! A < < $ 7/! .<!' & 8/! . < 9/! . <7 :/! : .7 <7 21/! 4 .7 <! 22/! 4 .< <7 .< <7 23/! .% 24/! .7 25/! $ 26/! .7 <7 < 27/! ( .7 28/! " # . 29/! E .< 'XAMPLE!crc < <7 2:/! 31/ < 0 < .! <7 #¯¬ª²ɏ¶¹ɏ«°´¬µº°¶µ¨³ɏª¶µº°º»¬µªÀɏ¶ɏ»¯¬ɏ¬¿·¹¬ºº°¶µɏ¯ɏǛɏ²sɄ¹r®ɏ¶¹ɏ»¯¬ɏ¹°º¬ɏ¯ɏ¶ɏ¨ɏ ³°¸¼°«ɏ¶ɏº¼¹¨ª¬ɏ»¬µº°¶µɏsɏ¨µ«ɏ«¬µº°»Àɏrɏ°µɏ¨ɏª¨·°³³¨¹Àɏ»¼©¬ɏ¶ɏ¹¨«°¼ºɏ¹ȍɏ!ºº¼´¬ɏ²ɏ »¶ɏ©¬ɏ¨ɏ«°´¬µº°¶µ³¬ººɏª¶µº»¨µ»ȍɏ \MP!2/6^ ŵŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 5OLUTION : S T5 A A . $ MT -2 [s ] 5 5 [r ][ r ][ g ] L ◊ ML-3 ◊ LT -2 A . $ A $ 4¯¬ɏ½¨³¼¬ɏ¶ɏ¨ªª¬³¬¹¨»°¶µɏ«¼¬ɏ»¶ɏ®¹¨½°»Àɏ°ºɏŽȍżɏ´ɄºŶȍɏ$¬»¬¹´°µ¬ɏ°»ºɏ½¨³¼¬ɏ°ɏ»¯¬ɏ¼µ°»ɏ ¶ɏ³¬µ®»¯ɏ°ºɏ²°³¶´¬»¹¬ɏ¨µ«ɏ»¯¨»ɏ¶ɏ»°´¬ɏ°ºɏ´°µ¼»¬ȍɏ \MP!2/6^ 'XAMPLE!crd <7 7 ' 7 &.7 5OLUTION ejnfotjpobmmz!dpotjtufou/ 5 <7 &. ' 7 \ -2 T1 second 1 5 5 T2 minute 60 L1 m 5 A<! = L 2 km * Ê L1 ˆ Ê T1 ˆ ÁË L ˜¯ ÁË T ˜¯ 2 2 5 5 @ D ¥ A<! ¥ & 6BA'<7 5 @ D ¥ &!B' ¥ A< 5 !? ! 7 46/4!ln0njo3/ 'XAMPLE!cre !ºº¼´°µ®ɏ»¯¨»ɏ»¯¬ɏ´¨ººɏ-ɏ¶ɏ»¯¬ɏ³¨¹®¬º»ɏº»¶µ¬ɏ»¯¨»ɏª¨µɏ©¬ɏ´¶½¬«ɏ©Àɏ¨ɏĸ¶¾°µ®ɏ¹°½¬¹ɏ «¬·¬µ«ºɏ¼·¶µɏ»¯¬ɏ½¬³¶ª°»Àɏ½ɏ¶ɏ¾¨»¬¹Ȏɏ»¯¬ɏ«¬µº°»Àɏrɏ¶ɏ¾¨»¬¹ɏ¨µ«ɏ»¯¬ɏ¨ªª¬³¬¹¨»°¶µɏ «¼¬ɏ»¶ɏ®¹¨½°»Àɏ®Ȏɏº¯¶¾ɏ»¯¨»ɏ-ɏ½¨¹°¬ºɏ¨ºɏ»¯¬ɏº°¿»¯ɏ·¶¾¬¹ɏ¶ɏ»¯¬ɏ½¬³¶ª°»Àɏ½ȍɏ \MP!2/6^ 5 'v r 5OLUTION . .A \ $ A 5 &. # < ' & .<!' &. <7 ' 5 . <! a . $ 5 G 5B 'XAMPLE!crf < <7 5 < ! a 5 AG < <7 5A 7 μv 5<!G 4¯¬ɏ¹¬¸¼¬µªÀɏµɏ¶ɏ¨ɏº»¹¬»ª¯¬«ɏº»¹°µ®ɏ«¬·¬µ«ºɏ¼·¶µɏ»¯¬ɏ»¬µº°¶µɏ&ɏ¨··³°¬«Ȏɏ³¬µ®»¯ɏ³ɏ ¶ɏ»¯¬ɏº»¹°µ®ɏ¨µ«ɏ´¨ººɏ·¬¹ɏ¼µ°»ɏ³¬µ®»¯ɏ´ɏ¶ɏ»¯¬ɏº»¹°µ®ȍɏ%º»¨©³°º¯ɏ»¯¬ɏ¹¬³¨»°¶µɏ¨´¶µ®ɏ »¯¬´ȍɏ \MP!2/6^ μ& ' &' & ' 5OLUTION . 5 & ' &' & ' &' : S < T5S . <7 T S.T S .< T A A < S . T5S a . a < <7 T $ 3 a 5 AG $ 5 & ' 67 4 5 AG 5 b 5 <b & '< & '< 67 <7 5 < 5< 5 K l F m $ &' ɏ ŵŹ '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ 2/7! .1!crh �! TPMWJOH!QSPCMFNT!JO!NFDIBOJDT! : ## 5º¬ɏ¹°®¯»ɏ·¹¶ª¬«¼¹¬ºɏ »¶ɏº¶³½¬ɏ·¹¶©³¬´ºɏ°µɏ ¬µ®°µ¬¬¹°µ®ɏ´¬ª¯¨µ°ªºȍɏ # ( # f # " # $ 2/7/2! ! # Hfuujoh!uif!Botxfst # ! & # ! ! ! ! 7! " !! %! ?! " ! B! 0 # ' ## > # R # # & ' # # ## > # # 2 ! $ $ ># $ ) ! ! ! ! J! f D! @! 0 A! 2/7/3! $ 8 # ) Difdljoh!uif!Botxfst ' ( 7 # # ! % " ># # $ # f # # # 2/7/4! ## ) # ) ( # Gsff.Cpez!Ejbhsbn # ## ## * # # > # ; $ > # # # # ## ' & K ŵźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº : # ) Bddvsbdz! pg! uif! Sftvmu! # 8 # A $ R ! & # , # * * # E ¥ ¥ 7! 5 7?! 9 5 " # ># 8 $ # 8 ,5 8 ; ; ) $ 7?! 9 " ' Fact! ) > * E( "f @@ ) # Myth # 7! f ># 361!K A7# A7# ( # $ 'XAMPLE!crg 5 ¥ 5 ! 7? ¥ 7 J! ( 5OLUTION 4¯¬ɏ³¬µ®»¯ɏ¨µ«ɏ©¹¬¨«»¯ɏ¶ɏ¨ɏ¹¬ª»¨µ®¼³¨¹ɏķ®¼¹¬ɏ¨¹¬ɏŷȍŶŹɏ´ɏ¨µ«ɏŶȍŻŷɏ´ɏ¹¬º·¬ª»°½¬³Àȍɏ #¨³ª¼³¨»¬ɏ°»ºɏ¨¹¬¨ɏ»¶ɏ»¯¬ɏ¨··¹¶·¹°¨»¬ɏº°®µ°ķª¨µ»ɏķ®¼¹¬ºȍɏɏ \MP!2/7^ ! 7 5 D DJ7? 7 5 9/98!n3 57//#4; .1!crc! )«¬µ»°Àɏ »¯¬ɏ «°Ĺ¬¹¬µª¬ɏ ©¬»¾¬¬µɏ ½¨¹°¶¼ºɏ ©¹¨µª¯¬ºɏ ¶ɏ ´¬ª¯¨µ°ªºȎɏ ½°ÁȍȎɏ º»¨»°ªºȎɏ «Àµ¨´°ªºȎɏ ²°µ¬»°ªºɏ ¨µ«ɏ ²°µ¬´¨»°ªºȐɏ ¨µ«ɏ »¯¬ɏ °«¬¨³°Á¨»°¶µºɏ ¼º¬«ɏ °µɏ ´¬ª¯¨µ°ªºȎɏ½°ÁȍȎɏ¨ɏ·¨¹»°ª³¬Ȏɏ¨ɏºÀº»¬´ɏ¶ɏ·¨¹»°ª³¬ºȎɏ¨µ«ɏ ¨ɏ¹°®°«ɏ©¶«Àȍ : difdl! zpvs!voefstuboejohg! 8 hR 566( 7 ' 6 689: $ # ' # # # ## # ; F Qbsujdmf/!( # $ Tztufn!pg!Qbsujdmft/!: # Sjhje!Cpez/!( # # " # # # # # ) ɏ ŵŻ '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ ! .1!crd! %¿·³¨°µɏ»¯¬ɏ«°Ĺ¬¹¬µª¬ɏ©¬»¾¬¬µɏ½¬ª»¶¹ɏ¨µ«ɏºª¨³¨¹ɏ¸¼¨µ»°»°¬ºȍ # # > & ' &7' # &!' + &%' ! .1!cre! $¬ºª¹°©¬ɏ»¯¬ɏ©¨º°ªɏ³¨¾ºɏ¼º¬«ɏ°µɏ´¬ª¯¨µ°ªºȎɏ½°ÁȍȎɏ.¬¾»¶µȠºɏ³¨¾ºɏ¶ɏ´¶»°¶µȎɏ³¨¾ɏ¶ɏ®¹¨½°»¨»°¶µȎɏ ·¨¹¨³³¬³¶®¹¨´ɏ³¨¾ɏ¨µ«ɏ³¨¾ɏ¶ɏ»¹¨µº´°ºº°©°³°»Àɏ¶ɏ¶¹ª¬ȍɏ ! OfxupoÔt!Gjstu!Mbx!pg!Npujpo/! # ' ! & ! OfxupoÔt!Tfdpoe!Mbx!pg!Npujpo/!" # ! ( OfxupoÔt!Uijse!Mbx!pg!Npujpo/!" # , ! - . ! # " / ! Uif! Qbsbmmfmphsbn! Mbx/! ) . ( ! Qsjodjqmf!pg!Usbotnjttjcjmjuz!pg!Gpsdf/!" " ! .1!crf! ,°º»ɏ»¯¬ɏ3)ɏ¼µ°»ºɏ¶ɏ·¯Àº°ª¨³ɏ¸¼¨µ»°»°¬ºɏ¼º¬«ɏ°µɏ´¬ª¯¨µ°ªºȍɏ " 0 & TJ!vojut' " ! # j 7' " ! " & ' $ & % ! .1!crg! $¬ķµ¬ɏ«°´¬µº°¶µ¨³ɏ¶¹´¼³¨ɏ¶ɏ¨ɏ¸¼¨µ»°»Àɏ¨µ«ɏº»¨»¬ɏ»¯¬ɏ·¹°µª°·³¬ɏ¶ɏ¯¶´¶®¬µ¬°»Àɏ¶ɏ«°´¬µº°¶µºȍɏ # $ $ $ $ $ $ 0 ! .1!crh! 5º¬ɏ»¯¬ɏ¹°®¯»ɏ·¹¶ª¬«¼¹¬ɏ»¶ɏº¶³½¬ɏ·¹¶©³¬´ºɏ°µɏ¬µ®°µ¬¬¹°µ®ɏ´¬ª¯¨µ°ªºȍ ## > # $ : # 2 " ># $ E # ! +/2146#06!(14/7.#' � # 5 \MP!2/4^ ŵżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº � ,5 5 G GM \MP!2/4^ R7 ! 5*146 #059'4!37'56+105 ! 2/! Xibu!bsf!uif!uxp!csbodift!pg! ! = ! ! ! ! 3/! ! ! 4/! ! @!Ipx!bsf!uifz!ejggfsfou!gspn!fbdi!puifs@! & ' Q # ) &' \MP!2/2^ # Xibu!jt!nfbou!cz!b!sjhje!cpez@! " # Dbo!zpv!obnf!b!qiztjdbm!rvboujuz!xijdi!jt!ejnfotjpomftt!boe!zfu!ibt!b!voju@! l ( \MP!2/2^ \MP!2/6^ -';!6'4/5 .1!crc .1!crd .1!cre Z .1!crf 4 " .1!crg = = " ; ! !! 4'8+'9!37'56+105 ! 2/! : g " # g \MP!2/2^ ! 3/! , # \MP!2/4^ " ! 4/! ! 5/! = 1# ! 6/! * 3 \MP!2/5^ 1 $ 7/! = ## : $ # ! 8/! : 3 ; # # # ># # # ! :/! ># # # g \MP!2/3^ \MP!2/2^ g ! 9/! g \MP!2/2^ \MP!2/6^ \MP!2/6^ : g \MP!2/4^ ɏ ŵŽ '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ ! 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS 1 F ! 2/! : $ g \MP!2/5^ & ' & ' & ' & ' ! 3/! f $ \MP!2/5^ @ & ' & ' A A <B & ' A <J & ' <@ A # ! 4/! & ' & ' ! 5/! 9 \MP!2/6^ & ' & ' 6 ) \MP!2/5^ & ' & ' # & ' & ' $ ! 6/! 7 & ' \MP!2/6^ <7 . & ' ! 7/! : . # & ' & ' 7 # & ' $ 3 5 ,6 @D ! 9/! & ' !? ! 7 ;b 5b ' g \MP!2/5^ 5 ,6 5 " 6 6 7 \MP!2/6^ & ' ?@ # 51 & ' & ' 6 & ' ?D D $ # # & ' & ' 7 \MP!2/6^ # ># 7 5 ,6 <7 g & ' & ' ! 8/! : ! :/! & ' $ # # & ' l & ' # . < & ' JB ' # 1 \MP!2/6^ 5b 5 <b & ' & ' 5 <b 5 <b 5 <b 5b $! (ILL $LANKS!3UESTIONS ' F 2/ ( ppppppppp ppppppppp 3/ " # \MP!2/2^ pppppppp \MP!2/5^ ŶŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº %! /ATCH %OLUMNS!3UESTIONS F ! ! 2/! Dpmvno!J! &' & ' & ' & ' Dpmvno!JJ! &4' A<@ &h' A< &R' A 7 & ' AB \MP!2/5^ !! 3/ Dpmvno!J! &' & ' = & ' Q & ' Q Dpmvno!JJ! &4' &h' &R' & ' \MP!2/2^ ! 4/ Dpmvno!J! &' ( & ' & ' . & ' Dpmvno!JJ! &4' , 7 &h' &R' 6 & ' 67 # ! \MP!2/5^ &! 5TATEMENT %ONFIRMATION!3UESTIONS 1 ! F ! 2/! &"' Q # &""' Q # ) # &' " & ' "" \MP!2/2^ & ' " & ' ! "" " "" #NSWERS!TO!1BJECTIVE!3UESTIONS !)B*! Nvmujqmf.Dipjdf!Rvftujpot ! 2/! ! 3/! ! 4/! ! 5/! ! 6/! 7/! ! 8/! ! )C*! Gjmm.Cmbolt!Rvftujpot 2/ 3/ )D*! Nbudi.Dpmvnot!Rvftujpot ! 2/! & '< &R' & '< &4' & '< & ' & ' < &h' ! 4/! & '< & ' & '< &4' & ' <&R' & '< &h' )E*! Tubufnfou.DpoÝsnbujpo!Rvftujpot ! 2/ & ' 3/! & ' < &h' & ' <&4' & ' < & ' & ' <&R' 9/! ! :/! ! ɏ Ŷŵ '¬µ¬¹¨³ɏ0¹°µª°·³¬ºɏ ! 24#%6+%'!241$.'/5! !B 6 ! 2/! ? ! 3/! ! 6 E ! SBot/! ! B ¥ A! 6 ! 5/! # A $ \MP!2/6^ ! \MP!2/6^ T ## # SBot/!! % ! 4/! " = ! JA 6 ># A T A # SBot/! A ,T \MP!2/6^ " SBot/!JA ¥ A<! ,6 T \MP!2/6^ ŶŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº #¯¨·»¬¹ 3 Gpsdf!Tztufnt!boe!Sftvmubout .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ ! ɏ ɏ ɏ ɏ ɏ ɏ ɏ ɏ ɏ ,°º»ɏ»¯¬ɏ»¯¹¬¬ɏ·¨¹¨´¬»¬¹ºɏµ¬¬«¬«ɏ»¶ɏª¶´·³¬»¬³Àɏ«¬ºª¹°©¬ɏ¨ɏ¶¹ª¬ȍɏ 2¬·¹¬º¬µ»ɏ¨ɏ¶¹ª¬ɏ®¹¨·¯°ª¨³³Àȍ $°º»°µ®¼°º¯ɏ©¬»¾¬¬µɏ«°Ĺ¬¹¬µ»ɏ²°µ«ºɏ¶ɏ½¬ª»¶¹ºɏșķ¿¬«Ȏɏº³°«°µ®ɏ¨µ«ɏ¹¬¬ɏ½¬ª»¶¹ºȚȍ $¬ķµ¬ɏº¶´¬ɏº·¬ª°ķªɏ½¬ª»¶¹ºɏș¼µ°»ɏ½¬ª»¶¹Ȏɏµ¼³³ɏ½¬ª»¶¹Ȏɏ¬¸¼¨³ɏ½¬ª»¶¹ºȎɏ¬¸¼°½¨³¬µ»ɏ½¬ª»¶¹ºȎɏµ¬®¨Ɋ »°½¬ɏ½¬ª»¶¹Țȍɏ .1!drgɏ #¨»¬®¶¹°Á¬ɏºÀº»¬´ºɏ¶ɏ¶¹ª¬ºȍɏ .1!drhɏ $¬»¬¹´°µ¬ɏ»¯¬ɏ¨µ®³¬ɏ©¬»¾¬¬µɏ»¾¶ɏ½¬ª»¶¹ºɏª¶¹¹¬ª»³ÀȎɏ¨µ«ɏª³¨ºº°Àɏ¨ɏ·¨°¹ɏ¶ɏ½¬ª»¶¹ºɏ«¬·¬µ«°µ®ɏ¶µɏ »¯¬ɏ¨µ®³¬ɏ©¬»¾¬¬µɏ»¯¬´ȍ .1!driɏ #¨³ª¼³¨»¬ɏ»¯¬ɏº¼´ɏ¶ɏ»¾¶ɏș¶¹ɏ´¶¹¬Țɏ½¬ª»¶¹ºɏ®¹¨·¯°ª¨³³Àɏ¨µ«ɏ¨µ¨³À»°ª¨³³Àȍ .1!drjɏ 2¬º¶³½¬ɏ¨ɏ®°½¬µɏ½¬ª»¶¹ɏ¨³¶µ®ɏ¨µÀɏ»¾¶ɏº·¬ª°ķ¬«ɏ«°¹¬ª»°¶µºȍ .1!drkɏ #¨³ª¼³¨»¬ɏ»¯¬ɏº¼´ɏ¶ɏ½¬ª»¶¹ºɏ©Àɏ¼º°µ®ɏ»¯¬°¹ɏ¹¬ª»¨µ®¼³¨¹ɏª¶´·¶µ¬µ»ºȍɏ .1!drclɏ #¨³ª¼³¨»¬ɏ»¯¬ɏȟºª¨³¨¹ɏ·¹¶«¼ª»Ƞɏ¨µ«ɏȟ½¬ª»¶¹ɏ·¹¶«¼ª»Ƞɏ¶ɏ»¾¶ɏ½¬ª»¶¹ºȍ .1!drcɏ .1!drdɏ .1!dreɏ .1!drfɏ .1!drc 3/2! �! DPODFQU!PG!GPSDF Tubujdt!efbmt!xjui!uif!dpoejujpo!pg!frvjmjcsjvn!pg!tubujd!cpejft!bdufe!vqpo!cz! /! Uif!gpsdf!nbz!cf!efÝofe!bt!bo!bdujpo!uibu!dibohft!ps!ufoet!up!dibohf!uif!tubuf!pg! sftu!ps!npujpo!pg!b!cpez!up!xijdi!ju!jt!bqqmjfe/!B!tjnqmf!qvti!ps!qvmm!uibu!xf!fyfsu! vqpo!b!cpez!vtjoh!pvs!iboet!jt!b!gbnjmjbs!fybnqmf!pg!gpsdf/!Tjodf!uif! pg!b!gpsdf! efqfoet!po!jut!nbhojuvef!bt!xfmm!bt!po!jut!ejsfdujpo-!uif!gpsdf!jt!b! /! Jo!nboz!tjuvbujpot-!xf!ubml!pg!qsfttvsf+!jotufbe!pg! /!Gps!fybnqmf-!xbufs!Ýmmfe!jo!b!ubol!fyfsut! qsfttvsf!po!jut!tjeft!boe!cpuupn/! ,°º»ɏ»¯¬ɏ»¯¹¬¬ɏ ·¨¹¨´¬»¬¹ºɏµ¬¬«¬«ɏ»¶ɏ ª¶´·³¬»¬³Àɏ«¬ºª¹°©¬ɏ¨ɏ ¶¹ª¬ȍ 3/2/2! Qvmm!pg!Hsbwjuz! Uif!qvmm!pg!hsbwjuz!jt!pof!pg!uif!nptu!dpnnpo!gpsdft!xf!tibmm!efbm!xjui!xijmf!tuvezjoh!nfdibojdt/!Dpotjefs! b!cbmm!ibohjoh!gspn!b!tvqqpsu!cz!b!tusjoh!BC!)Gjh/!3/2 */!Cfdbvtf!pg!uif!hsbwjubujpobm!qvmm!pg!uif!fbsui-!uif!cbmm! ! +!Qsfttvsf!jt!efÝofe!bt!uif!gpsdf!qfs!voju!bsfb/! ɏ Ŷŷ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ qvmmt!uif!tusjoh!xjui!b!gpsdf!X!frvbm!up!jut!xfjhiu!)Gjh/!3/2 */! Uijt!gpsdf!bdut!wfsujdbmmz!epxoxbse!boe!jt!bqqmjfe!up!uif!tusjoh! bu! uif! qpjou! C/!Uijt! xbz-! xf! ibwf! dpnqmfufmz! eftdsjcfe! )ps! tqfdjÝfe*!uif!gpsdf!fyfsufe!cz!uif!cbmm!po!uif!tusjoh/!Gps!dpnqmfuf! eftdsjqujpo!pg!b!gpsdf-!xf!offe!up!tubuf! ;!)2*!jut! nbhojuvef-!)3*!jut!ejsfdujpo-!boe!)4*!jut!qpjou!pg!bqqmjdbujpo/! �! 9ORTHY!OF!0OTE Jo!Ýhvsft!ps!ejbhsbnt-!b!wfdups! tvdi!bt!gpsdf!jt!jefoujÝfe!cz!jut! nbhojuvef! jg! jut! ejsfdujpo! jt! pcwjpvt/ A A S B B W (a) W (b) (c) Qpjou! pg! Bqqmjdbujpo! pg! Gpsdf! Ju! jt! uif! qpjou! bu! xijdi! uif! fyfsufe! gpsdf! dbo! cf! bttvnfe! up! cf! dpodfousbufe/!Jo!bduvbm!qsbdujdf-!b!gpsdf!ibt!b!Ýojuf!bsfb!)ipxtpfwfs!tnbmm!ju!nbz!cf*!pwfs!xijdi!jut!bdujpo!jt! ejtusjcvufe/!Gps!fybnqmf-!jo!Gjh/!3/2 -!uif!gpsdf! !fyfsufe!cz!uif!cbmm!vqpo!uif!tusjoh!jt!ejtusjcvufe!pwfs!uif! foujsf!bsfb!pg!dsptt!tfdujpo!pg!uif!tusjoh/!Ipxfwfs-!bt!uif!tusjoh!jt!uijo-!uijt!gpsdf!dbo!cf!dpotjefsfe!bdujoh!bu! b!qpjou/ Tjnjmbsmz-!uif!hsbwjubujpobm!gpsdf!fyfsufe!po!uif!cbmm!jt!ejtusjcvufe!uispvhipvu!jut!wpmvnf/!Ipxfwfs-!gps! frvjmjcsjvn!dpoejujpot-!uif!foujsf!hsbwjuz!gpsdf!nbz!cf!bttvnfe!up!cf!bdujoh!bu!b!tjohmf!qpjou/!Uijt!qpjou!jt! lopxo!bt!uif!dfousf!pg!hsbwjuz!pg!uif!cpez!)Gjh/!3/2 */!Up!lffq!uif!cbmm!jo!frvjmjcsjvn-!uif!tusjoh!efwfmpqt!bo! vqxbse!ufotjmf!gpsdf! / Xifo!b!gpsdf!bdut!pwfs!b!wfsz!tnbmm!bsfb!dpnqbsfe!xjui!uif!puifs!ejnfotjpot!pg!uif!cpez-!ju!nbz!cf! sfhbsefe!bt!b!dpodfousbufe!gpsdf!ps!b!qpjou!mpbe!xjui!ofhmjhjcmf!mptt!pg!bddvsbdz/!B!ejtusjcvufe!gpsdf!dbo!bdu! pwfs!bo! !bt!jo!dbtf!pg!nfdibojdbm!dpoubdu<!pwfs!b! !bt!uif!xfjhiu!pg!b!cpez<!ps!pwfs!b! !bt!uif! xfjhiu!pg!b!tvtqfoefe!dbcmf/! Ejsfdujpo!pg!Gpsdf! Ju!jt!b!ejsfdujpo!)joejdbufe!cz!bo!bsspx*!bmpoh!b!tusbjhiu!mjof!qbttjoh!uispvhi!uif!qpjou! pg!bqqmjdbujpo!pg!uif!gpsdf/!Uijt!mjof!jt!pg!joÝojuf!mfohui!boe!jt!dbmmfe!uif!mjof!pg!bdujpo!pg!uif!gpsdf/ 3/3! .1!drd 2¬·¹¬º¬µ»ɏ¨ɏ¶¹ª¬ɏ ®¹¨·¯°ª¨³³Àȍ �! SFQSFTFOUBUJPO!PG!GPSDF! B!gpsdf!jt!b!wfdups!rvboujuz/!Ju!jt!sfqsftfoufe!cz! mfuufs-!tvdi!bt!b!gpsdf! /!Jut! nbhojuvef!jt!efopufe!cz!uif!tbnf!mfuufs!qsjoufe!jo! /!Gps!jotubodf-!uif!nbhojuvef! pg!uif!gpsdf! !jt!qsjoufe!bt! /!Jo!Gjh/!3/2-! !sfqsftfout!uif!nbhojuvef!pg!uif!xfjhiu! !pg!uif!cpez-!xijdi!bdut!wfsujdbmmz!epxoxbse/ ŶŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Hsbqijdbm! Sfqsftfoubujpo! Hsbqijdbmmz-! b! gpsdf! jt! sfqsftfoufe! cz! b! tfhnfou! pg! tusbjhiu! mjof-! dbmmfe! uif! /!Uif!mfohui!pg!uif!tfhnfou!sfqsftfout-!up!b!tvjubcmf!tdbmf-! uif! !pg!uif!gpsdf/!Uif! !pg!uif!gpsdf!jt!joejdbufe! cz!qvuujoh!bo!bsspxifbe!bu!pof!foe!pg!uif!tfhnfou/!Fjuifs!uif! cfhjoojoh!)ps!ubjm*!ps!uif!foe!)ps!ifbe*!pg!uif!bsspx!nbz!cf!vtfe! up!joejdbuf!uif!qpjou!pg!bqqmjdbujpo!pg!uif!gpsdf/ .1!dre $°º»°µ®¼°º¯ɏ©¬»¾¬¬µɏ «°Ĺ¬¹¬µ»ɏ²°µ«ºɏ¶ɏ ½¬ª»¶¹ºɏșķ¿¬«Ȏɏº³°«°µ®ɏ ¨µ«ɏ¹¬¬ɏ½¬ª»¶¹ºȚȍ 3/4! �! 9ORTHY!OF!0OTE �� �! LJOET!PG!WFDUPST! Efqfoejoh!po!uif!tjuvbujpo-!b!wfdups!dbo!cf!pof!pg!uif!gpmmpxjoh!uisff!ljoet/ )2*!Cpvoe!ps!Gjyfe!Wfdups! Ju!jt!b!wfdups!gps!xijdi!b!vojrvf!qpjou!pg!bqqmjdbujpo! ibt!up!cf!tqfdjÝfe/!Gps!fybnqmf-!jg!b!gpsdf!jt!bqqmjfe!po!b!efgpsnbcmf!cpez-!uif! sfbdujpo!gpsdft!boe!uif!efgpsnbujpot!qspevdfe!xjuijo!uif!cpez!efqfoe!po!uif!qpjou! pg!bqqmjdbujpo!pg!uif!gpsdf-!bt!xfmm!bt!po!jut!nbhojuvef!boe!po!jut!mjof!pg!bdujpo/ )3*!Tmjejoh!ps!Usbotnjttjcmf!Wfdups Tvdi!b!wfdups!nbz!cf!bqqmjfe!bu!boz!qpjou!bmpoh!jut! /! Cz!epjoh!tp-!uif!fyufsobm!fggfdut!ep!opu!dibohf/!Gps!fybnqmf-!xifo!bo!fyufsobm!gpsdf!bdut!po!b!sjhje!cpez-!jut! fggfdu!sfnbjot!uif!tbnf!jg!uif!gpsdf!jt!bqqmjfe!bu!boz!qpjou!bmpoh!jut!mjof!pg!bdujpo/!Ifodf-!ju!jt!b!tmjejoh!wfdups/ )4*! Gsff! Wfdups! Ju! nbz! cf! npwfe! bozxifsf! jo! tqbdf! qspwjefe! ju! nbjoubjot! uif! tbnf! ejsfdujpo! boe! nbhojuvef/!Gps!fybnqmf-!jg!b!cpez!ibt!sfdujmjofbs!npujpo!uifo!uif!ejtqmbdfnfou!pg!boz!qpjou!nbz!cf!ublfo!bt! b!wfdups/!Uijt!wfdups!eftdsjcft!frvbmmz!xfmm!uif!nbhojuvef!boe!ejsfdujpo!pg!ejtqmbdfnfou!pg!fwfsz!qpjou!pg!uif! cpez/!Uifsfgpsf-!xf!nbz!sfqsftfou!uif! !pg!tvdi!b!cpez!bt!b! / .1!drf $¬ķµ¬ɏº¶´¬ɏº·¬ª°ķªɏ ½¬ª»¶¹ºɏș¼µ°»ɏ½¬ª»¶¹Ȏɏ µ¼³³ɏ½¬ª»¶¹Ȏɏ¬¸¼¨³ɏ ½¬ª»¶¹ºȎɏ¬¸¼°½¨³¬µ»ɏ ½¬ª»¶¹ºȎɏµ¬®¨»°½¬ɏ ½¬ª»¶¹Țȍ 3/5! �! TPNF!TQFDJGJD!WFDUPST! Voju!Wfdups Ju!jt!b!wfdups!pg!voju!mfohui/!Ju!nbz!cf!diptfo!jo!boz!ejsfdujpo!xjui! boz!tfotf/!Gps!fybnqmf-!uif!voju!wfdups!bmpoh!uif!wfdups! jt!hjwfo!bt 1 !∫! = Jo!qbsujdvmbs-!uif!voju!wfdupst!bmpoh!uif!uisff!byft!pg!Dbsuftjbo!)ps!sfdubohvmbs*! dppsejobuf!tztufn!bsf!hjwfo!bt ∫!voju!wfdups!bmpoh! byjt! ∫!voju!wfdups!bmpoh! byjt! ∫!voju!wfdups!bmpoh! byjt Ovmm!ps![fsp!Wfdups Ju!jt!b!wfdups!ibwjoh!{fsp!nbhojuvef/!Ju!dbo!ibwf!boz!ejsfdujpo/!B!{fsp!wfdups!jt! pcubjofe!xifo!b!wfdups!jt!tvcusbdufe!gspn!jutfmg-!j/f/-! !Ï! !>! /! Frvbm!Wfdupst Frvjwbmfou!Wfdupst Ofhbujwf!Wfdups ɏ ŶŹ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ 3/6! .1!drg �! TZTUFN!PG!GPSDFT! #¨»¬®¶¹°Á¬ɏºÀº»¬´ºɏ¶ɏ ¶¹ª¬ºȍ Force Systems Non-Coplanar (Space) Coplanar (Plane) 1. 2. 3. 4. Collinear. Concurrent. Parallel. Non-concurrent non-parallel. 1. Concurrent. 2. Parallel. 3. Non-concurrent non-parallel. ! 3/6/2! Dibsbdufsjtujdt!pg!Gpsdf!Tztufnt !" )2*!Dpqmbobs!Gpsdft y y F2 F3 F3 F1 F2 F1 F4 x z x z (a) Collinear forces (b) Concurrent forces y y F1 F3 F4 F2 F4 F5 F1 F2 F3 x z x z (c) Parallel forces (d) Non-concurrent forces ! )3*!Opo.Dpqmbobs!Gpsdft #" Ŷźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! " $ )4*!Dpmmjofbs!Gpsdft! $ )5*! Dpodvssfou! Gpsdft ! " # " % )6*!Opo.Dpodvssfou!Gpsdft ! " # " & )7*! Qbsbmmfm! Gpsdft ! " # " % )8*!Opo.Qbsbmmfm!Gpsdft ! " # " ' y y F3 F5 F1 F4 F5 F1 F2 F3 F2 x x z F4 z (a) Concurrent forces (b) Parallel forces y F6 F1 F4 F2 F3 z F5 x (c) Non-concurrent non-parallel forces " .1!drh $¬»¬¹´°µ¬ɏ»¯¬ɏ¨µ®³¬ɏ ©¬»¾¬¬µɏ»¾¶ɏ½¬ª»¶¹ºɏ ª¶¹¹¬ª»³ÀȎɏ¨µ«ɏª³¨ºº°Àɏ ¨ɏ·¨°¹ɏ¶ɏ½¬ª»¶¹ºɏ «¬·¬µ«°µ®ɏ¶µɏ»¯¬ɏ ¨µ®³¬ɏ©¬»¾¬¬µɏ»¯¬´ȍ 3/7! �! BOHMF!CFUXFFO!UXP!WFDUPST! ( ) ) * +, f - xspohmz " # * ɏ ŶŻ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ )2*!Tlfx!Wfdupst ) )3*!Qbsbmmfm!Wfdupst ./ )4*!Boujqbsbmmfm!Wfdupst 02./ )5*!Psuiphpobm!Wfdupst 3./ 3/8! �! BEEJUJPO!PG!WFDUPST! .1!dri #¨³ª¼³¨»¬ɏ»¯¬ɏº¼´ɏ¶ɏ »¾¶ɏș¶¹ɏ´¶¹¬Țɏ½¬ª»¶¹ºɏ ®¹¨·¯°ª¨³³Àɏ¨µ«ɏ ¨µ¨³À»°ª¨³³Àȍ Sftvmubou!Gpsdf ' 4 sftvmubou! gpsdf 3/8/2! ! Dpnqptjujpo!pg!Gpsdft dpnqptjujpo!pg!gpsdft-!ps!dpnqpvoejoh! pg!gpsdft Xf!tibmm!Ýstu!dpotjefs!uif!nfuipet!pg!Ýoejoh!uif!sftvmubou!pg!uxp!gpsdft/!Mbufs-!xf!tibmm!fyufoe! uiftf!nfuipet!gps!b!tztufn!pg!gpsdft/! Uifsf!bsf!uxp!xbzt!pg!beejoh!uxp!wfdupst;!)2*!Hsbqijdbm-!boe!)3*!Bobmzujdbm/! )2*!Hsbqijdbm!Nfuipe! Hsbqijdbmmz-!xf!dbo!Ýoe!uif!sftvmubou!pg!uxp!wfdupst!cz!fjuifs!qbsbmmfmphsbn! mbx!ps!usjbohmf!mbx ! )j*!Qbsbmmfmphsbn!Mbx! Ju!tubuft!uibu!uif!sftvmubou! !pg!uxp!dpqmbobs!wfdupst! !boe! jt!uif!ejbhpobm!pg! uif!qbsbmmfmphsbn!gps!xijdi! !boe! !bsf!uif!bekbdfou!tjeft/!Bmm!uisff!wfdupst! -! !boe! !bsf!dpodvssfou!)j/f/-! qbtt!uispvhi!uif!tbnf!qpjou*-!bt!tipxo!jo!Gjh/!3/6/!Uif!beejujpo!pg!wfdupst! !boe! cz!uif!qbsbmmfmphsbn!mbx! sfrvjsft!uibu ! ! ! 2/! Wfdupst! !boe! bsf!qmbdfe!uphfuifs!up!qpjou!bxbz!gspn!)bt!jo!Gjh/!3/6 *!ps!up!qpjou!upxbset!)bt!jo! Gjh/!3/6 *!uif!qpjou!P/ 3/! B!qbsbmmfmphsbn!jt!nbef!xjui! !boe! bt!bekbdfou!tjeft/! 4/! Uif!sftvmubou! !jt!hjwfo!cz!uif!ejbhpobm!qbttjoh!uispvhi!uif!qpjou!P/ C A Q A Q O C R a P A a R (a) –Q C P B B (b) a O O Q R B P R¢ E D (c) Ŷżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Gps!tvcusbdujoh!uif!wfdups! !gspn!uif!wfdups! -!xf!bee!uif!wfdups! !up!uif!ofhbujwf! pg!uif!wfdups! - bt!tipxo!jo!Gjh/!3/6 /!Uibu!jt-! !Ï! !,!)Ï �/!Uivt-!uif!ejbhpobm!PE!pg!uif! qbsbmmfmphsbn!PFEC!hjwft!uif!sftvmubou! �/ !uibu wfdups! OD = AB /!Uivt-!xf!Ýoe!uibu!uif!ejbhpobm!PD! pg!uif!qbsbmmfmphsbn!PBDC!hjwft!uif!beejujpo! ! < boe!uif!ejbhpobm!BC!hjwft!uif!tvcusbdujpo! " / Tvcusbdujpo!pg!Wfdupst )jj*!Usjbohmf!Mbx!! Ju!jt!b!dpspmmbsz!pg!uif!qbsbmmfmphsbn!mbx/!Jo!Gjh/!3/6 -!uif!tjef!CD!jt!frvbm!boe!qbsbmmfm!up! uif!tjef!PB/!Ifodf-!CD!bmtp!sfqsftfout!uif!wfdups! /!Tfqbsbujoh!uif!usjbohmf!PCD!gspn!uif!qbsbmmfmphsbn!pg! Gjh/!3/6 -!xf!hfu!b!usjbohmf!tipxo!jo!Gjh/!3/7 /!Ifsf-!uif!ubjm!pg!uif!wfdups! jt!qvu!bu!uif!ifbe!pg!uif!wfdups! /! Uif!sftvmubou! jt!uifo!esbxo!gspn!uif!ubjm!pg! !up!uif!ifbe!pg! /!Ifsf-!wfdupst! !boe! bsf!qmbdfe!pof!bgufs! uif!puifs!jo!uif!tbnf!tfotf!up!nblf!uxp!tjeft!pg!uif!usjbohmf<!uif!uijse!tjef!esbxo!gspn!uif!ubjm!pg! !up!uif! ifbe!pg! !hjwft!uif!sftvmubou! / Uivt-!xf!hfu! !,! !>! / Bmufsobujwfmz-!xf!dpvme!tfqbsbuf!pvu!uif!usjbohmf!DBP!gspn!uif!qbsbmmfmphsbn!pg!Gjh/!3/6 !up!hfu!uif! usjbohmf!pg!Gjh/!3/7 /!Uif!tjef!DB!sfqsftfout!uif!wfdups! / Uijt!usjbohmf!tipxt!uibu! !,! !>! /! Uijt!bmtp!tipxt!uibu!wfdups!beejujpo!jt!dpnnvubujwf-!j/f/-! !,! !,! /! Tvcusbdujpo!pg!Wfdupst Gps!tvcusbdujoh!uif!wfdups! !gspn!uif!wfdups! -!xf!bee!uif!wfdups! !up!uif!ofhbujwf! pg!uif!wfdups! -!bt!tipxo!jo!Gjh/!3/7 /!Uibu!jt-! !Ï! !,!)Ï �/! C C R f O P A Q P O O B –Q Q Q q R¢ R C P B D (b) Q + P = R (a) P + Q = R (c) P – Q = R $ # )jjj*!Qpmzhpo!Mbx! Up!bee!npsf!uibo!uxp!wfdupst-!uif!qbsbmmfmphsbn!mbx!dbo!cf!vtfe!cz!beejoh!uxp!wfdupst! bu!b!ujnf!boe!uifo!dpoujovjoh!uif!qspdftt/!Gjhvsf!3/8 !tipxt!uif!qspdftt!pg!beejoh!gpvs!wfdupst! - - ! y C R S R2 D Rf B Rf R2 Q Q R R1 R1 A P O x P O S (a) By parallelogram law $ (b) By polygon law ɏ ŶŽ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ boe! /!Gjstu-!cz!esbxjoh!uif!qbsbmmfmphsbn-!xf!bee!wfdupst! !boe! up!hfu!uifjs!sftvmubou! /!Ofyu-!xf!bee! uijt!sftvmubou! !boe!uif!wfdups! !up!hfu!uif!sftvmubou! /!Gjobmmz-!xf!bee! !boe! !up!hfu!uif!Ýobm!sftvmubou! g/!Uif!xipmf!qspdftt!jt!rvjuf!dvncfstpnf/! Jotufbe-!xf!dbo!vtf!uif!qpmzhpo!mbx!up!bee!uif!gpvs!wfdupst! - - !boe! -!bt!tipxo!jo!Gjh/!3/8 Uif! qpmzhpo!mbx!jt!kvtu!bo!fyufotjpo!pg!uif!usjbohmf!mbx/!Xf!Ýstu!esbx!uif!wfdups! OA up!sfqsftfou!uif!wfdups! -! lffqjoh!jut!psjfoubujpo!boe!nbhojuvef!up!uif!tdbmf/ Gspn!B-!xf!dpotusvdu!uif!wfdups! AB !up!sfqsftfou!uif! wfdups! /!Tbnf!xbz-!xf!esbx!wfdupst! boe! up!sfbdi!uif!foe!E!pg!uif!mbtu!wfdups/!Uif!Ýobm!sftvmubou! g-! esbxo!gspn!uif!cfhjoojoh!pg!uif!Ýstu!wfdups!up!uif!foe!pg!uif!mbtu!wfdups-!jt!uif! pg!uif!qpmzhpo! PBCDE/!Uivt-!vtjoh!qpmzhpo!mbx!jotufbe!pg!qbsbmmfmphsbn!mbx!up!bee!npsf!uibo!uxp!wfdupst!jt!tjnqmfs!boe! npsf!ejsfdu/ Jg!uif!foe!pg!uif!mbtu!wfdups!dpjodjeft!xjui!uif!cfhjoojoh!pg!uif!Ýstu-!uif!sftvmubou! !jt!{fsp-!boe!uif!tztufn! pg!gpsdft!jt!jo!frvjmjcsjvn/ )3*!Bobmzujdbm!Nfuipe! Uif!hsbqijdbm!nfuipet!tpnfujnft!cfdpnf!jodpowfojfou!boe!ufejpvt/!Jotufbe-! xf!dbo!vtf!uif!bobmzujdbm!nfuipe!up!hfu!bddvsbuf!sftvmut!cz!kvtu!nbljoh!tjnqmf!dbmdvmbujpot/! Gjhvsf!3/9 !tipxt!uxp!gpsdft! !boe! jodmjofe!bu!bo!bohmf!#!boe!bdujoh!bu!b!dpnnpo!qpjou!P/!Xf!dbo! dpotusvdu!uif!qbsbmmfmphsbn!PBDC!up!Ýoe!uif!sftvmubou! !hjwfo!cz!uif!ejbhpobm!PD/!Uif!sftvmubou! !nblft! bo!bohmf!a!xjui!uif!wfdups! -!boe!bo!bohmf!b!xjui!uif!wfdups! /!Gspn!uif!qpjou!D-!mfu!vt!espq!b!qfsqfoejdvmbs! DN!po!uif!mjof!pg!bdujpo!pg!uif!wfdups! / Q B Q C R B Q B¢ b O O a q P A q q b a P A O¢ M C R C¢ q M A¢ P (a) (b) % Uif!nbhojuvef!pg!uif!sftvmubou!gpsdf! !dbo!cf!gpvoe!cz!bqqmzjoh!Qzuibhpsbt! Nbhojuvef!pg!uif!Sftvmubou uifpsfn!up!uif!DPND! ! ! ! ! ! ! ! ! ps! fi! PD3! >!PN3!,!ND3!>!)PB!,!BN*3!,!ND3!>!)PB!,!BD!◊!dpt!q*3!,!)BD!◊!tjo!q*3 ! >!)PB3!,!BD3!/!dpt3!q!,!3!◊!PB!◊!BD!◊!dpt!q*!,!)BD3!◊!tjo 3!q* ! >!)%3!,!& 3!◊!dpt3!q!,!3!◊ %!◊!&!◊ dpt!q*!,!)&3!◊!tjo3!q* ! >!%3!,!&3!)dpt3!q!,!tjo3!q*!,!3%&!dpt!q '3! >!%3!,!&3!,!3%&!dpt!q '! >! P 2 + Q 2 + 2 PQ cos q Psjfoubujpo!pg!uif!Sftvmubou ! " a ŷŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº CM CM AC sin q = = OM OA + AM OA + AC cos q Q sin q a# P + Q cos q a# $ Tpnf!Dpspmmbsjft % % ' " # # ()" % " # # !()" % " () # " " *$ & " ' # P 2 + Q 2 + 2 PQ cos q = P 2 + Q 2 + 2 PQ = P + Q ' " !() # , " " *$ " ' # P 2 + Q 2 + 2 PQ cos q = P 2 + Q 2 - 2 PQ = P - Q ' *$ " # # -()" " % -() # (" " " P 2 + Q 2 + 2 PQ cos q = P 2 + Q 2 '# ' $ " % #" " % *$ " ' # P 2 + Q 2 + 2 PQ cos q = F 2 + F 2 + 2 F 2 cos q # ' 2 $ 2 (1 + cos q ) = 4 " 2 cos 2 (q /2) # % q3 " ()" " *$ '# P 2 + Q 2 + 2 PQ cos q = F 2 + F 2 + 2 F 2 ¥ (-0.5) # % () # , ( 5" " Dpnnfout!po!Qbsbmmfmphsbn!Mbx! " % " ! " ¢ ¢ ¢ ; ¢9¢ ¢:¢ ¢ " % " ;< < " ! ' 9 -" :" ; > % ? ' " " $ " $ 9 % < : : " " ; % ' " ; " % CD @ " % ɏ ŷŵ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ P A S1 R2 R1 R C D R1 R2 S2 B & 'XAMPLE!drc Q ' $¬»¬¹´°µ¬ɏ»¯¬ɏ´¨®µ°»¼«¬ɏ¨µ«ɏ«°¹¬ª»°¶µɏ¶ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ»¾¶ɏ¶¹ª¬ºɏ¶ɏŵŴŴɏ.ɏ¨µ«ɏ ŵŹŴɏ.ɏ¨ª»°µ®ɏ¨»ɏ¨µɏ¨µ®³¬ɏ¶ɏŸŹǸȍɏ ()* $+ 5OLUTION! B % & % # (( @" & # 5( @" q # E5) " ' # P 2 + Q 2 + 2 PQ cos q = 1002 + 1502 + 2 ◊ 100 ◊ 150 cos 45∞ = 232 N a (( @ % Q sin q 150 sin 45∞ a# = = 0.515 P + Q cos q 100 + 150 cos 45∞ \ , a# 'XAMPLE!drd (5 5# $ ' 4¾¶ɏ¼µ¬¸¼¨³ɏ¶¹ª¬ºɏ¨ª»ɏ¨»ɏ¨µɏ¨µ®³¬ɏ¶ɏŵŶŴǸȍɏ)ɏ»¯¬ɏ©°®®¬¹ɏ¶¹ª¬ɏ°ºɏżŴɏ.ɏ¨µ«ɏ»¯¬°¹ɏ ¹¬º¼³»¨µ»ɏ°ºɏ·¬¹·¬µ«°ª¼³¨¹ɏ»¶ɏ»¯¬ɏº´¨³³¬¹ɏ¶µ¬Ȏɏķµ«ɏ»¯¬ɏº´¨³³¬¹ɏ¶¹ª¬ȍɏ ()* $+ 5OLUTION! F & # !( @ % % *$ Q sin q 80 sin 120∞ -() # P + Q cos q % + 80 cos 120∞ % G !( ¥ ,( 5 # ( fi % # a# fi 3/9! .1!drj �! SFTPMVUJPO!PG!B!GPSDF! % 2¬º¶³½¬ɏ¨ɏ®°½¬µɏ ½¬ª»¶¹ɏ¨³¶µ®ɏ¨µÀɏ»¾¶ɏ º·¬ª°ķ¬«ɏ«°¹¬ª»°¶µºȍ % > 9 H % % ; I % " " % 9 % ; I % " Myth " B!wfdups!dbo! ibwf!pomz!uxp! dpnqpofout/ Fact! " ŷŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! " ! # # $%! & # $ # # # E F P C D A B $ ' ! , -, ., /, 0 # # # ! ( ! # Myth # Fact! # $ # # ) ! # ( ! wfdups!dpnqpofout ) # ! % #%! # tdbmbs!dpnqpofout * !% +% * # # + % # # # q # # Uif!dpnqpofout! pg!b!wfdups!dboopu! ibwf!b!nbhojuvef! uibu!jt!hsfbufs!uibo! uibu!pg!uif!wfdups! jutfmg/ * ! ! # / # q !% +% ! , +% ,% #% # # # # ! # # ! z y C Pz A Py P P j O q i x Px Px A P j i Pxy ' # # # ) !/ y F (! ) # Py B E x (b) In three-dimensional space (a) In a plane # Dbsuftjbo ) / # k O -# # ( ) # % $ # ! ! ( # ! # ɏ # $3 ( $3 % 6 ! # %7 # % ) ! 3 ) ( % # # ! # ! ! # # ! ! # ! + !%!% # ( # Fact! # # # $% Myth ! # ( * ! # # ) 9 ŷŷ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ , , #% Uif!dpnqpofou!pg! b!wfdups! !bmpoh!b! ejsfdujpo!nbljoh! bo!bohmf!q!xjui!ju! jt!B dpt!q * +% ,% ,% tdbmbs!dpnqpofout 'XAMPLE!dre 4¶ɏ´¨°µ»¨°µɏ¨µɏ¬³¬ª»¹°ªɏ·¶³¬ɏ!"ɏ¼·¹°®¯»Ȏɏ¨ɏ®¼Àɏ¾°¹¬ɏ!#ɏ°ºɏ»°¬«ɏ»¶ɏ°»Ȏɏ¨ºɏº¯¶¾µɏ°µɏ &°®ȍɏŶȍŵŶ¨ȍɏ4¯¬ɏ®¼Àɏ¾°¹¬ɏ´¨²¬ºɏ¨µɏ¨µ®³¬ɏ¶ɏźŴǸɏ»¶ɏ»¯¬ɏ¯¶¹°Á¶µ»¨³ɏ¨µ«ɏ¬¿¬¹»ºɏ¨ɏ¶¹ª¬ɏ ¶ɏŶŴɏ².ɏ¶µɏ»¯¬ɏ·¶³¬ȍɏ&°µ«ɏ»¯¬ɏ¯¶¹°Á¶µ»¨³ɏ¨µ«ɏ½¬¹»°ª¨³ɏª¶´·¶µ¬µ»ºɏ¶ɏ»¯°ºɏ¶¹ª¬ȍɏ ()* %+ FH A 60° F = 20 kN F Guy wire C 60° FV B (b) Resolution of force F (a) Electric pole ( 5OLUTION ) ) # 9 < + + 'XAMPLE!drf : ;+ : ;+ : ;+ : ;+ $ ) (¨ (Ø !ɏ©³¶ª²ɏ¶ɏ¾¬°®¯»ɏ7ɏǛɏŶŴŴɏ.ɏ°ºɏ¹¬º»°µ®ɏ¶µɏ¨µɏ°µª³°µ¬«ɏ·³¨µ¬ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŵŷ¨ȍɏ $¬»¬¹´°µ¬ɏ »¯¬ɏ ª¶´·¶µ¬µ»ºɏ ¶ɏ »¯¬ɏ ¾¬°®¯»ɏ 7ɏ »¨µ®¬µ»°¨³ɏ »¶ɏ ¨µ«ɏ µ¶¹´¨³ɏ »¶ɏ »¯¬ɏ °µª³°µ¬«ɏ·³¨µ¬ȍɏ ()* %+ ŷŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº n y 20° t 20° x O H W = 200 N 20° 20° V A (b) Vector diagram W (a) Weight on a plane ) > 5OLUTION ; ? & $ # ) ) 6 ! ! ! $9 + $ ! $< + $ 3/: ! .1!drk #¨³ª¼³¨»¬ɏ»¯¬ɏº¼´ɏ ¶ɏ½¬ª»¶¹ºɏ©Àɏ¼º°µ®ɏ »¯¬°¹ɏ¹¬ª»¨µ®¼³¨¹ɏ ª¶´·¶µ¬µ»ºȍ - 6 ;+ ;+ B ¥ -@ + #% ¥ A@ + %% , ## # ( # !- # -+* ,* # # + ,-C.+( , , (* , * +( ,* C! ,( ,* C! # .+! ,! ! C (! , ! # ( ! # # # gpsn! # qbsu # .! Dpnqmfy.Ovncfs!Nfuipe! 3 * ; # ## # > ; � ! VTJOH! SFDUBOHVMBS! DPNQPOFOUT! UP! BEE WFDUPST! % 3/:/2! ( > ! ;+ ;+ + ,-C. ! # # ) qpmbs!gpsn , (D + 7 # �! 9ORTHY!OF!0OTE ! # # # sfdubohvmbs! ! + –q (E ! dpnqmfy!ovncfst # ) # jnbhjobsz!qbsu ) ! # sfbm! 6 # ! # ( . 1* gy.&& 4 ## ) # > # 7 ## ! ɏ ŷŹ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ + , + –q 9 ( + - (D (E ! ( ## # # !ɏºÀº»¬´ɏ¶ɏ¶¹ª¬ºɏ°ºɏ¨ª»°µ®ɏ¶µɏ¨ɏ¹¬ª»¨µ®¼³¨¹ɏ·³¨»¬Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŵŸ¨ȍɏ$¬»¬¹´°µ¬ɏ »¯¬ɏ´¨®µ°»¼«¬ɏ¨µ«ɏ«°¹¬ª»°¶µɏ¶ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶¹ª¬ȍɏ ()* &+ 'XAMPLE!drg y 100 N A B 50 N y FD FB 40 N 50 N 10 N x 86.6° FC 70 N FA 100 N 3m 40 N R = 170.3 N C D 5m x 170 N 70 N (c) (b) (a) 5OLUTION! $ %!&& ' * $ * $ %)& ' $ % !&& * (& % )& % "& $ !& % !)& # ' + , a, a$ + , + 170 $ !) fi 10 + a$ %! !) $ /3 34 5 q $ 63&4 % a $ 63&4 % /3 34 $ $ ' Bmufsobujwfmz , 5 $ & % !&& , 5, 8 !" # (10) 2 + (- 170) 2 = 170.3 N '$ #, * $ (& ' !" # $ %"& ' $ (& ! & $ & % )& , , $ !)& 6– %/3 34 ' $ $ – $ ' 5 5 $ %"& ! & , 5 + ŷźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº &°µ«ɏ»¯¬ɏ´¨®µ°»¼«¬ɏ¨µ«ɏ«°¹¬ª»°¶µɏ¶ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ»¯¬ɏª¶·³¨µ¨¹ɏ¶¹ª¬ºɏ0Ȏɏ1Ȏɏ2ɏ ¨µ«ɏ3ɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŻ¨Ȏɏ©Àɏ¼º°µ®ɏ¹¬ª»¨µ®¼³¨¹ɏª¶´·¶µ¬µ»ºȍɏ!ºº¼´¬ɏŵɏ«°½ɏǛɏŵɏ.ȍɏɏ ()* &+ 'XAMPLE!drh 5OLUTION , \ , 9 $ $ $ $ 5 !(# , " * # ': $ * ) # ': $ %6 * 3 # ': * * * " * #* * ) # * % 6 * 3 # * %3 % " # " * % 6 % 3# * * ) * 3 % "# $ %6 * !! # ' , $ %3 % " # ' y + 5 R = 11.4 N + a$ Rf y Rf x , 11 $ 6 3) = 3 %! fi a$ a 6 3)# $ )" )4 + 11 N q = 105.3° x 3N 5 q $ !/&4 % a $ !/&4 % )" )4 $ ' , ' $ (- 3) 2 + 112 $ Bmufsobujwfmz $ "* 8 # ': $ , 5, – ' ) * ) # ': , 5 $ %6 * 3 # ': , 5 $ %3 % " # ' , + , $ 'XAMPLE!dri &°µ«ɏ »¯¬ɏ ´¨®µ°»¼«¬ɏ ¨µ«ɏ «°¹¬ª»°¶µɏ ¶ɏ ¨ɏ º°µ®³¬ɏ ¶¹ª¬ɏ »¯¨»ɏ ª¨µɏ ¹¬·³¨ª¬ɏ »¯¬ ¶³³¶¾°µ®ɏ¶¹ª¬ºɏ¨ª»°µ®ɏ¶µɏ¨ɏ·¨¹»°ª³¬Ȏɏ¾°»¯¶¼»ɏª¯¨µ®°µ®ɏ»¯¬ɏ¨ª»°¶µɏ¶ɏ¶¹ª¬ºȍ ɏ ș°Țɏ !ɏ¶¹ª¬ɏ¶ɏŶŴɏ.ɏ°µª³°µ¬«ɏ¨»ɏŷŴǸɏ»¶¾¨¹«ºɏµ¶¹»¯ɏ¶ɏ¬¨º»ȍ ɏ ș°°Țɏ !ɏ¶¹ª¬ɏ¶ɏŶŹɏ.ɏ»¶¾¨¹«ºɏµ¶¹»¯ȍ ɏ ș°°°Țɏ !ɏ¶¹ª¬ɏ¶ɏŷŴɏ.ɏ»¶¾¨¹«ºɏµ¶¹»¯Ɋ¾¬º»ȍ ɏ ș°½Țɏ !ɏ¶¹ª¬ɏ¶ɏŷŹɏ.ɏ°µª³°µ¬«ɏ¨»ɏŸŴǸɏ»¶¾¨¹«ºɏº¶¼»¯ɏ¶ɏ¾¬º»ȍɏ 5OLUTION + ()* , !3 < &+ , , ! 6 " ! $> $ & 6&4 $ !) 6 ' $&' $ % >? $ %6& "(4 $ % ! ' $ % >? $ %6( "&4 $ % 3 / ' $ !) 6 * !& # ' $ & * ( #' ! 6 " 6 $ % ! $> $ & 6&4 $ !& ' $ (' $ > $ 6& "(4 $ ! ' $ %> $ %6( "&4 $ % ( ' * ! #' " $ % 3/ % ( #' ɏ ŷŻ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ North D 30 N F3 25 N F2 20 N B F1 45° 30° C West E O 40° F4 East A F 35 N South # $ ! * * 6 * " $ !) 6 * !& # * & * ( # * % ! $ %6& ) * 66 ) # ' @ * ! # #* % 3/ % (# , (- 30.7) 2 + (33.7) 2 $ '$ a, + a$ , # 5 33.7 $ ! &A)) fi 30.7 + a $ ") )4 + q $ !/&4 % a $ !/&4 % ") )4 $ ' !3 Bmufsobujwfmz ! $ !) 6 * !& # ': , 5 , B $ & * ( # ': #– .1!drcl #¨³ª¼³¨»¬ɏ»¯¬ɏȟºª¨³¨¹ɏ ·¹¶«¼ª»Ƞɏ¨µ«ɏȟ½¬ª»¶¹ɏ ·¹¶«¼ª»Ƞɏ¶ɏ»¾¶ɏ ½¬ª»¶¹ºȍ , , 9 , 5 6$ % ! + * ! �! DPODFQU!PG!QSPEVDU! B + , , " $ % 3/% , (#' ' 3/21! + # ': + ' , , , 5 , )2*!Qspevdu!pg!b!Ovncfs!cz!b!Tdbmbs C , D , 5 , "(,, )3*!Qspevdu!pg!b!Tdbmbs!cz!b!Tdbmbs B , , + @ + 5 , 6& # 9 , , , & ,E ( ŷżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº )4*! Qspevdu! pg! b! Ovncfs! cz! b! Wfdups , : ( $ A / ,E # , B , , & 9:; , , , 5 , )5*!Qspevdu!pg!b!Tdbmbs!cz!b!Wfdups B , , @ + , , 6 ,E # 9:; )6*! Qspevdu! pg! Uxp! Wfdupst! , @ +G Htdbmbs !epu!qspevduI! @ , , # 3/21/2! , 5 , + , + 9 + F + 9 Hwfdups! !dsptt!qspevduI J , # ) # + + + Tdbmbs!ps!Epu!Qspevdu + ! - ◊- ! a - �! 9ORTHY!OF!0OTE * a * ) $ a ! # % !" $ $ $ &' * a ; +, - , xpsl * ◊; * a - $ / +, ¥ a $$ $$ - a 1 $ &' % 4 $ ; sa s co F F a s O s F cos a $ a ; $ ; * ¥ s a F cos a (b) (a) $ F a (c) + ; a * 4 $ % $$ &' ɏ ŷŽ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ 5 $ Myth $ * Fact! $ $ % * Voju! pg! uif! Qspevdu Epu!qspevdu!pg! uxp!wfdupst!jt! bmxbzt!qptjujwf &' $ 4 * $ $$ * $ * 6 $ 6 ¥ 6 $ !9 :" $ * a Tqfdjbm!Dbtft! ; ◊ 1$ ◊ 3/21/3! * ><= < ◊ $ ◊ \ a <$ - * ?* * ? * ◊- 1$ $ a <= ◊ & ? * a &$ a ><= 8 <= 5 ? Ax + Ay fi ? ◊- < * < @ $ * < a @ a < ><= * @ Wfdups!ps!Dsptt!Qspevdu $ , - % &A $ . $ $ - $ - * . ¥- q * B $ C* $ 9 - % . , &A $ Area = AB sin q C B O - en q O B q A A (a) (b) % C 1$ , $ - ŸŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº $ ) ¥-π-¥ 1 * ; ¥ Tqfdjbm!Dbtft * 1$ * q ¥ <$ < q 6 4 ¥ - D- ¥ q ¥ <= ¥ < < * $ * $ !npnfou = $ $ = 8 G = / $ $ , >; ? @< $ ! $ , a < # @ # < <= &A<= @ $ E A 9 < . ; A ) BC A ) BC <= * < @ Fybnqmf! pg! Dsptt! Qspevdu , ><= ¥ $ ¥$ q &$ D < F E" * $ $$ ¥< 8 = 4 $$ , , H9 4 :I 4 4 <9? b +c -a bc A B a b c = = sin a sin b sin g c b a a b g C #&&+6+10#.!51.8'&!':#/2.'5 'XAMPLE!drj 2¬º¶³½¬ɏ»¯¬ɏŵŶŴɊ.ɏ¶¹ª¬ɏ°µ»¶ɏ¨ɏº¬»ɏ¶ɏª¶´·¶µ¬µ»ºɏ¨³¶µ®ɏ»¯¬ɏº³¶»Ȏɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŵŽ¨Ȏɏ ¨µ«ɏ°µɏ½¬¹»°ª¨³ɏ«°¹¬ª»°¶µȍ ()* %+ 120 N 20° F = 120 N Q 20° 25° O (a) Spring action in an inclined slot a = 45° q = 65° 25° P (b) Force diagram & ɏ Ÿŵ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ 5OLUTION q a % - & - %& &%# ! " % - & - " .'%%& ! ' '"" Q sin 65∞ '%# ! P + Q cos 65∞ % ! " '.1& % 7 ! , ! )* + , %! 'XAMPLE!drk ! 0.906 Q P + 0.423 Q + , &' & ! ' '"" fi 8 * ; "# ! % %# - & "# fi ; "# ! % + , %# - & "# fi ' "' ! " "&% . ! " ' <% - & + , $¹¨¾ɏ»¯¬ɏ¿Ɋɏ¨µ«ɏÀɊª¶´·¶µ¬µ»ºɏ¶ɏ¬¨ª¯ɏ¶ɏ»¯¬ɏ¶¹ª¬ºɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŶŴȎɏ¨µ«Ȏɏ¯¬µª¬Ȏɏ «¬»¬¹´°µ¬ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ¨³³ɏ»¯¬ɏ¶¹ª¬ºȍɏ ()* &+ ; ( . ?8 ! 402 + 1002 ! "< < ?B ! 802 + 602 ! "" > ; 50 !& % 111.8 40 ! $+ " , ¥ !" $% 107.7 80 ! $+'"", ¥ !$ 100 ! -+ ; 1; 1 ,¥ 100 ! %& # 111.8 100 !& $ ! -+ " , ¥ 107.7 60 !$ ! $+'"", ¥ 100 ! -+ 1 ( ' ! ' ! + , &.& ?@ ! 502 + 1002 ! \ &!& * > 5OLUTION , )* + , )* + , % ! " '.1 ¥ 1 &. ! Bmufsobujwfmz * : - + +, +" '.1&, - & - +" .'%,+" '.1&,& ! ' '"" = q ! "# $ %# ! &%# )* + , a ! &%# $ "# ! '%# ( - - 1 1 ! ' . $ 1< . $ 1 " ! $ &1 ( ! . & - ' < $ '" ! '' 1 ( ' ! Rx2 + Ry2 = (- 263) 2 + (44.3) 2 = 266.7 N ,¥ ŸŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ' $ ! Rx 44.3 ! 263 %&# ' ' = Ry $ a! H * q ! ."# $ a ! ."# $ %&# ! $ B 40 cm 50 cm I - H ' A y F1 F2 100 cm 90 N 212 N 102 N P O 400 N 40° 30° 60 cm x F3 C 80 cm 'XAMPLE!drcl Q 4¯¹¬¬ɏ¶¹ª¬ºɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŶŵɏ·¹¶«¼ª¬ɏ¨ɏ¹¬º¼³»¨µ»ɏ¶ɏŶŴɏ.ɏ¨ª»°µ®ɏ¼·¾¨¹«ɏ¨³¶µ®ɏ »¯¬ɏÀɊ¨¿°ºȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ´¨®µ°»¼«¬ºɏ¶ɏ0ɏ¨µ«ɏ1ȍɏ ɏ ()* &+ "( 5OLUTION ' !" H ' ! "( @ * ' !% ' !% = 'XAMPLE!drcc 1"# $ " 1"# - " fi fi '"# ! " '"# $ & ! " % ! $& # & ! $$ # 4¯¹¬¬ɏ¶¹ª¬ºɏ&ŵȎɏ&Ŷɏ¨µ«ɏ&ŷɏ¨ª»°µ®ɏ¶µɏ»¯¬ɏ·¶°µ»ɏ!ɏ¶ɏ»¯¬ɏ©¹¨ª²¬»ɏ¨¹¬ɏº·¬ª°ķ¬«ɏ°µɏ»¯¹¬¬ɏ «°Ĺ¬¹¬µ»ɏ¾¨Àºɏ°µɏ&°®ȍɏŶȍŶŶ¨ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ¿ɏ¨µ«ɏÀɏºª¨³¨¹ɏª¶´·¶µ¬µ»ºɏ¶ɏ»¯¬ɏ»¯¹¬¬ɏ ¶¹ª¬ºȍ ()* y F2 = 200 N A 3 F1 = 300 N 32° 4 A x 0.2 m F1 = 300 N F1y (b) (a) F3 = 400 N F1x a 0.2 m F2 = 200 N F3 = 400 N B 0.1 m F3x A 32° F2y F3y 0.1 m B F2x (c) (d) %+ ɏ Ÿŷ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ ' 5OLUTION �! 9ORTHY!OF!0OTE 1 # ! 1"" ¥ 1 # ! 1"" ¥ ! ! - 1 #! 1 #! & * " 1 " q " ( ") Ê 4ˆ q ! $ "" ¥ Á ˜ ! $ # Ë 5¯ !$ )" * . "* " ") " /" " Ê 3ˆ q ! "" ¥ Á ˜ ! Ë 5¯ ! / 1 ( 1 ! 1 !$ a > ' Ê 0.1 ˆ ÁË ˜ ! & &# 0.2 ¯ $ a ! > " a ! '"" ¥ 1 & &# ! $& a ! $ '"" ¥ 1 & &# ! $ $$ 'XAMPLE!drcd 4¯¬ɏª¨©³¬Ɋº»¨Àºɏ!"ɏ¨µ«ɏ!$ɏ¯¬³·ɏº¼··¶¹»ɏ»¯¬ɏ·¶³¬ɏ!#Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŶŷ¨ȍɏ4¯¬ɏ »¬µº°¶µºɏ°µɏ!"ɏ¨µ«ɏ!$ɏ¨¹¬ɏ²µ¶¾µɏ»¶ɏ©¬ɏŹŴŴɏ.ɏ¨µ«ɏŵźŴɏ.Ȏɏ¹¬º·¬ª»°½¬³Àȍɏ $¬»¬¹´°µ¬ɏ¨µ¨³À»°ª¨³³Àɏ»¯¬ɏ´¨®µ°»¼«¬ɏ¨µ«ɏ«°¹¬ª»°¶µɏ¶ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ»¯¬ɏ¶¹ª¬ºɏ¬¿¬¹»¬«ɏ©Àɏ»¯¬ɏª¨©³¬Ɋ º»¨Àºȍ ()* &+ ɏ A A a b T2 y T1 5m 246° 5m x 66° C B B D 3m 4m D C 3m 4m (b) (a) R (c) 5OLUTION a ' ' " ( S$ S$ 5 4 b $ $ " a#$ a $ " b b 5 ! 3 $$ " $$ ( " * ' Rx2 + Ry2 = (-230) 2 + (-527) 2 # %$ " ! %$ ! $ $& ¨ '& Ø ( ") ŸŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ( ( f * '1 $ )" * ( q Bmufsobujwfmz* ) " / / @ 8 )" %% ( " 6$ # f /" # a $$– 6$ # " / * b & ! %$– @ " * /( " * ! " " / ( / " " & * ( /" * ' – ' – %$ 9 $ – 9 #' 'XAMPLE!drce 4¯¬ɏŹŴɊ.ɏ¶¹ª¬ɏ°ºɏ»¶ɏ©¬ɏ¹¬º¶³½¬«ɏ°µ»¶ɏª¶´·¶µ¬µ»ºɏ¨³¶µ®ɏ³°µ¬ºɏ¨Ɋ¨¢¨µ«ɏ©Ɋ©¢Ȏɏ¨ºɏº¯¶¾µɏ °µɏ &°®ȍɏ ŶȍŶŸ¨ȍɏ ș¨Țɏ )ɏ »¯¬ɏ ª¶´·¶µ¬µ»ɏ ¨³¶µ®ɏ ©Ɋ©¢ɏ °ºɏ ¹¬¸¼°¹¬«ɏ »¶ɏ ©¬ɏ ŷŴɗ.Ȏɏ ¼º°µ®ɏ »¹°®¶µ¶´¬»¹ÀȎɏ«¬»¬¹´°µ¬ɏ»¯¬ɏ¨µ®³¬ɏaȍɏș©Țɏ7¯¨»ɏ°ºɏ»¯¬ɏª¶¹¹¬º·¶µ«°µ®ɏ½¨³¼¬ɏ¶ɏ»¯¬ɏª¶´·¶µ¬µ»ɏ¨³¶µ®ɏ¨Ɋ¨¢ȓ ()* %+ F = 50 N 50 N a a b a 40° Faa¢ b a¢ 40° b¢ Fbb¢ = 30 N (b) (a) 5OLUTION : 8 " . ¢ # ¢* ( * " ¢ ") * 30 50 = $ 6 ' $ fi a sin a sin 40∞ )" ") 9 * a # b # 9$ 6$ fi b 6$ 9$ # ' *( ") * 50 50 sin 117.3∞ aa¢ = #& fi ¢ sin b sin 40∞ sin 40∞ ' " 9 ɏ ŸŹ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ 'XAMPLE!drcf 4¾¶ɏ¶¹ª¬ºɏ¬¸¼¨³ɏ»¶ɏŶ0ɏ¨µ«ɏ0ɏ¹¬º·¬ª»°½¬³Àɏ¨ª»ɏ¶µɏ¨ɏ·¨¹»°ª³¬ȍɏ)ɏ»¯¬ɏķ¹º»ɏ©¬ɏ«¶¼©³¬«ɏ ¨µ«ɏ»¯¬ɏº¬ª¶µ«ɏ°µª¹¬¨º¬«ɏ©ÀɏŵŶɏ.Ȏɏ¨µ«ɏ»¯¬ɏ«°¹¬ª»°¶µɏ¶ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ°ºɏ¼µ¨³»¬¹¬«Ȏɏ ķµ«ɏ»¯¬ɏ½¨³¼¬ɏ¶ɏ0ȍ ()* 5OLUTION -) q % )" a &* % sin q ( % + 12) sin q = 2 % + % cos q 4 % + ( % + 12) cos q fi fi 9% # % " q # )" % Q sin q P + Q cos q a \ ( $+ " q % sin q ( % + 12) sin q = 2 + cos q 4 % + ( % + 12) cos q fi %#% " q# 9# 9 fi % " q 'XAMPLE!drcg !ºɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŶŹ¨Ȏɏ»¯¬ɏª¨©³¬ɏ!"ɏ·¹¬½¬µ»ºɏ»¯¬ɏ©¨¹ɏ/!ɏ¹¶´ɏ¹¶»¨»°µ®ɏ¨µ»°ª³¶ª²¾°º¬ɏ ¨©¶¼»ɏ»¯¬ɏ·°½¶»ɏ/ȍɏ)ɏ»¯¬ɏª¨©³¬ɏ»¬µº°¶µɏ°ºɏŵŴŴŴɏ.Ȏɏ«¬»¬¹´°µ¬ɏ»¯¬ɏµɊɏ¨µ«ɏ»Ɋª¶´·¶µ¬µ»ºɏ ¶ɏ»¯°ºɏ¶¹ª¬ɏ¨ª»°µ®ɏ¶µɏ»¯¬ɏ·¶°µ»ɏ!ɏ¶ɏ»¯¬ɏ©¨¹ȍ ()* $+ t t n n A A a 2.5 m T 2.5 m 60° B O 60° b O 2m 2m (a) 5OLUTION . * // " ") (b) * " $ " @.;>* OB AO = sin a sin b fi fi fi a a a B fi %$ %$ .; < a .> 2 2.5 = sin a sin (60∞ - a ) a fi " %$ % 9 " /" ") " $ $ a $$$ % 9 $ $$$ " % 9 $ $ " a a $ %&# a fi a %$ " a $ 9! " %$ a "? Ÿźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!drch 4¯¬ɏ¼µº»¹¬»ª¯¬«ɏ³¬µ®»¯ɏ¶ɏŵŸɏª´ɏ¶ɏ»¯¬ɏ¹¼©©¬¹ɏ©¨µ«ɏ°µɏ¨ɏº°´·³¬ɏª¨»¨·¼³»ɏ°ºɏº»¹¬»ª¯¬«ɏ »¶ɏ¨ɏ³¬µ®»¯ɏ¶ɏŶŸɏª´Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŶź¨ȍɏ)ɏ»¯¬ɏ¬µ»°¹¬ɏ¹¼©©¬¹ɏ¹¬¸¼°¹¬ºɏ¨ɏ¶¹ª¬ɏ¶ɏ Ŷɏ.ɏ·¬¹ɏª¬µ»°´¬»¹¬ɏ¶ɏ¬³¶µ®¨»°¶µȎɏ¾¯¨»ɏ¶¹ª¬ɏ´¼º»ɏ»¯¬ɏ©¨µ«ɏ¬¿¬¹»ɏ¶µɏ»¯¬ɏ¹°®¯»ɏ¯¨µ«ɏ¾¯¬µɏ»¯¬ɏº»¶µ¬ɏ°ºɏ ¨©¶¼»ɏ»¶ɏ©¬ɏȡķ¹¬«Ȣȓ ()* $+ 4.5 cm 24 cm 24 cm q q 4.5 cm (b) 9 cm T = 69.6 N q q T = 69.6 N R (a) (c) . " ) )" /( # 5OLUTION "/ ") D/ (4.52 + 242 ) - 14 = 34.8 cm " : ") 8 /( " % " " " ") ( ( $ &1 96 %! % & " /" ( ( /( " %! % & . q % 4.5 q $% 24 ( ' ") " )" $ / " % * ( "( "( * )" )" ' )" $ " AB ' 69.62 + 69.62 + 2 ¥ 69.6 ¥ 69.6 ¥ cos (2 ¥ 10.62∞) = 136.8 N ' ¥ Bmufsobujwfmz 'XAMPLE!drci #% &°®¼¹¬ɏŶȍŶŻ¨ɏº¯¶¾ºɏ»¾¶ɏ½¬ª»¶¹ºɏ0ɏ¨µ«ɏ1ȍɏș¨Țɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ´¨®µ°»¼«¬ɏ2ɏ¶ɏ»¯¬ɏ ½¬ª»¶¹ɏº¼´ɏ2ɏǛɏ0ɏǖɏ1ȍɏș©Țɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ¨µ®³¬ɏaɏ©¬»¾¬¬µɏ2ɏ¨µ«ɏ»¯¬ɏ·¶º°»°½¬ɏ¿Ɋ¨¿°ºȍɏ șªȚɏ7¹°»¬ɏ2ɏ¨ºɏ¨ɏ½¬ª»¶¹ɏ°µɏ»¬¹´ºɏ¶ɏ»¯¬ɏ¼µ°»ɏ½¬ª»¶¹ºɏ°ɏ¨µ«ɏ±ɏ¨µ«ɏ»¯¬µɏ¾¹°»¬ɏ¨ɏ¼µ°»ɏ½¬ª»¶¹ɏ¨³¶µ®ɏ»¯¬ɏ½¬ª»¶¹ɏ º¼´ɏ2ȍɏș«Țɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ´¨®µ°»¼«¬ɏ3ɏ¶ɏ»¯¬ɏ½¬ª»¶¹ɏ«°Ĺ¬¹¬µª¬ɏ3ɏǛɏ0ɏɌɏ1ȍ ()* $+ ɏ ŸŻ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ y y y S P = 4 units P = 4 units P j i 75° a 45° x 30° R 105° –Q x x b Q Q = 3 units Q = 3 units (a) (b) (c) $ 5OLUTION ! " # % & $ q % + $& ' % *& , ' / " / b \ 7 " b P sin q 4 sin 75∞ = = 0.957 Q + P cos q 3 + 4 cos 75∞ a b:% $% * " a' ' 7 7 " " " " a :% fi q // : b &* $% * H ! $#' / " && ¥ %* ' R (5.43i + 1.328 j) = ' 5.59 : ' : 7 , ; : *& & 7 " %* H &$ ' // " / , P 2 + Q 2 + 2 PQ cos q = 42 + 32 + 2 ¥ 4 ¥ 3 ¥ cos 75∞ = 5.59 units ' 7 * " ! % ?A ; $# , * 7 P 2 + Q 2 + 2 PQ cos q = 42 + 32 + 2 ¥ 4 ¥ 3 ¥ cos 105∞ = 4.33 units , < Bmufsobujwfmz + " - , 7 7 7 A 7 a " / : / > $–$& %–:% " ' $–$& ' %–:% &– / / ' & ?A ; , " < a / " $–$& :%–:% / % ' $ %% " < < < ? @A $#' ?A ; 'j H # $#' ! % ?A ; , < $ %%–; ?A ; % ?A ; < , < Ÿżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!drcj 2¬º¶³½¬ɏ»¯¬ɏ¶¹ª¬ɏ&Ȏɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŶż¨Ȏɏ°µ»¶ɏ¨ɏª¶´·¶µ¬µ»ɏ·¬¹·¬µ«°ª¼³¨¹ɏ»¶ɏ!"ɏ ¨µ«ɏ¨ɏª¶´·¶µ¬µ»ɏ·¨¹¨³³¬³ɏ»¶ɏ"#ȍ ()* %+ D F F N Q 3 4 C B A q 25° 25° A g P M q C a P M B B (a) q b b a D Q F g (b) (c) % 5OLUTION B % & " ; + , % $ a : a E q " %H$ / % CD CFG? - - % ;* : & fi & @I " 3 Q sin 65∞ Q ¥ 0.906 = = 4 P + Q cos 65∞ P + Q ¥ 0.423 " % ' & ' %& *;& & ' & ' & % BmufsobujwfmzJ b g / b q *;&& & & ;& ## G ? " *;&& @I *;& ¥ CFG " G K - ; :q ; : & g &L ; : a'b ; % E,, P Q F = = sin g sin a sin b fi EC / / , *;&& @I fi , " Q sin q P + Q cos q a / , q " fi , % sin 28.13∞ sin 115∞ G! & sin 36.87∞ sin 115∞ ## G ; ɏ ŸŽ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ 'XAMPLE!drck !ɏ¯¶¶²ɏ°ºɏ»¶ɏ©¬ɏ¹¬´¶½¬«ɏ¹¶´ɏ»¯¬ɏ»°´©¬¹ɏ©Àɏ¨··³À°µ®ɏ¨ɏ¶¹ª¬ɏ¨³¶µ®ɏ°»ºɏ¯¶¹°Á¶µ»¨³ɏ ¨¿°ºȍɏ"¬ª¨¼º¬ɏ¶ɏ»¯¬ɏ®°¹«¬¹ɏ!ɏ»¯¨»ɏ·¹¬½¬µ»ºɏ«°¹¬ª»ɏ¨ªª¬ººȎɏ»¾¶ɏ¶¹ª¬ºȎɏ¶µ¬ɏ¶ɏŸŴŴɏ.ɏ ¨µ«ɏ»¯¬ɏ¶»¯¬¹ɏ0Ȏɏ¨¹¬ɏ¨··³°¬«ɏ©Àɏª¨©³¬ºɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŶŽȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ´¨®µ°»¼«¬ɏ¶ɏ0ɏµ¬ª¬ºº¨¹Àɏ »¶ɏ¬µº¼¹¬ɏ¨ɏ¹¬º¼³»¨µ»ɏ4ɏ«°¹¬ª»¬«ɏ¨³¶µ®ɏ»¯¬ɏ¯¶¶²ȍɏ!³º¶Ȏɏķµ«ɏ»¯¬ɏ´¨®µ°»¼«¬ɏ¶ɏ4ȍ ()* $, %+ 5OLUTION 8 16 a % & ' @ \ 12 16 b ! $ ∫% a $ " $ $ " #$! ( fi b ) ' 400 sin 36.87∞ sin 26.56∞ % !* & " #$! #$ % A T1 y a b 20 m 16 cm T2 P B 8 cm a b A x 10 m 12 cm C 25 m 400 N 20 m & 'XAMPLE!drdl !ºɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŷŴȎɏ»¾¶ɏ®¼Àɏª¨©³¬ºɏ!"ɏ¨µ«ɏ!#ɏ¨¹¬ɏ¨Œ¨ª¯¬«ɏ»¶ɏ»¯¬ɏ»¶·ɏ¶ɏ¨ɏ »¹¨µº´°ºº°¶µɏ»¶¾¬¹ȍɏ4¯¬ɏ»¬µº°¶µɏ4Ŷɏ°µɏª¨©³¬ɏ!#ɏ°ºɏŵŶɏ².ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ»¬µº°¶µɏ4ŵɏ °µɏ»¯¬ɏª¨©³¬ɏ!"ɏµ¬ª¬ºº¨¹Àɏ»¶ɏ¬µº¼¹¬ɏ¨ɏ¹¬º¼³»¨µ»ɏ2ɏ¶ɏ»¯¬ɏ»¾¶ɏ»¬µº°¶µºɏ«°¹¬ª»¬«ɏ«¶¾µ¾¨¹«ɏ¨»ɏ»¯¬ɏ ·¶°µ»ɏ!ȍɏ!³º¶Ȏɏ«¬»¬¹´°µ¬ɏ»¯¬ɏ´¨®µ°»¼«¬ɏ2ɏ¶ɏ»¯°ºɏ«¶¾µ¾¨¹«ɏ¶¹ª¬ȍ ()* $+ 5OLUTION + & , a % a , Ê 25 ˆ ÁË ˜¯ 20 b " ! % Ê 20 ˆ ÁË ˜ 20 + 10 ¯ b & ) ( " "" $! -' ) ' ' ∫ $ a*$ b fi $ $2 sin b 12 ¥ sin 33.7∞ = sin a sin 51.34∞ % ( & ŹŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ' & & / 'v2 + 'h2 = 'v2 + 0 ' # " ! " ! a $ '/ "" $! b $ ": ;Ø< 57//#4; E : J K ?< ?A <; A A F C G HI .1!drcɏ ,°º»ɏ »¯¬ɏ »¯¹¬¬ɏ ·¨¹¨´¬»¬¹ºɏ µ¬¬«¬«ɏ »¶ɏ ª¶´·³¬»¬³Àɏ «¬ºª¹°©¬ɏ¨ɏ¶¹ª¬ȍ % ; < ( ( & '; < ' ' 011 > ;"< ( 2 ) 1 1345 (( .1!drdɏ 2¬·¹¬º¬µ»ɏ¨ɏ¶¹ª¬ɏ®¹¨·¯°ª¨³³Àȍ - ( ' ( ( / .1!dreɏ $°º»°µ®¼°º¯ɏ©¬»¾¬¬µɏ«°Ĺ¬¹¬µ»ɏ²°µ«ºɏ¶ɏ½¬ª»¶¹ºɏșķ¿¬«Ȏɏº³°«°µ®ɏ¨µ«ɏ¹¬¬ɏ½¬ª»¶¹ºȚȍ - cpvoe ( & ?& ( (( - gsff!wfdups Ýyfe!wfdups - tmjejoh! !usbotnjttjcmf!wfdups / ( ( / (( & .1!drfɏ $¬ķµ¬ɏº¶´¬ɏº·¬ª°ķªɏ½¬ª»¶¹ºɏș¼µ°»ɏ½¬ª»¶¹Ȏɏµ¼³³ɏ½¬ª»¶¹Ȏɏ¬¸¼¨³ɏ½¬ª»¶¹ºȎɏ¬¸¼°½¨³¬µ»ɏ½¬ª»¶¹ºȎɏµ¬®¨»°½¬ɏ ½¬ª»¶¹Țȍ - voju! wfdups & wfdupst / frvjwbmfou!wfdupst - ovmm! ! {fsp! wfdups / & ) & ' & ' ( / & - frvbm! ' .1!drgɏ #¨»¬®¶¹°Á¬ɏºÀº»¬´ºɏ¶ɏ¶¹ª¬ºȍɏ @ opo dpqmbobs!gpsdft B ( C ' ( ( ' ' ' ' dpqmbobs! gpsdftA ' ' .1!drhɏ $¬»¬¹´°µ¬ɏ»¯¬ɏ¨µ®³¬ɏ©¬»¾¬¬µɏ»¾¶ɏ½¬ª»¶¹ºɏª¶¹¹¬ª»³Àɏ¨µ«ɏª³¨ºº°Àɏ¨ɏ·¨°¹ɏ¶ɏ½¬ª»¶¹ºɏ«¬·¬µ«°µ®ɏ¶µɏ »¯¬ɏ¨µ®³¬ɏ©¬»¾¬¬µɏ»¯¬´ȍ / ( - ( ( / / ( # !; ' D !' ( & tlfx!wfdupst / (( <' psuiphpobm!wfdupst qbsbmmfm!wfdupst! ! @ boujqbsbmmfm!wfdupst @ .1!driɏ #¨³ª¼³¨»¬ɏ»¯¬ɏº¼´ɏ¶ɏ»¾¶ɏș¶¹ɏ´¶¹¬Țɏ½¬ª»¶¹ºɏ®¹¨·¯°ª¨³³Àɏ¨µ«ɏ¨µ¨³À»°ª¨³³Àȍ ( , qbsbmmfmphsbn!mbx & ( & & / dpnqptjujpo ( dpnqpvoejoh ɏ Źŵ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ .1!drjɏ 2¬º¶³½¬ɏ¨ɏ®°½¬µɏ½¬ª»¶¹ɏ¨³¶µ®ɏ¨µÀɏ»¾¶ɏº·¬ª°ķ¬«ɏ«°¹¬ª»°¶µºȍ ( ( @ / / G& / ( & ( sftpmvujpo! & .1!drkɏ #¨³ª¼³¨»¬ɏ»¯¬ɏº¼´ɏ¶ɏ½¬ª»¶¹ºɏ©Àɏ¼º°µ®ɏ»¯¬°¹ɏ¹¬ª»¨µ®¼³¨¹ɏª¶´·¶µ¬µ»ºȍɏ ( / >;<, ( ( ( ( & & ; <, ' A & ( ; ' <A ; < ( & : & & , & .1!drclɑ#¨³ª¼³¨»¬ɏ»¯¬ɏȟºª¨³¨¹ɏ·¹¶«¼ª»Ƞɏ¨µ«ɏȟ½¬ª»¶¹ɏ·¹¶«¼ª»Ƞɏ¶ɏ»¾¶ɏ½¬ª»¶¹ºȍ epu ; qspevdu @ tdbmbs< qspevdu / & ( / ?& ( ( & ! & ( / ( & ( & & / / , / / / ' & dsptt!; & wfdups< +/2146#06!(14/7.#' � & a a ()* $+ & Q sin q P + Q cos q ( / � @ ' '% ( / % ()* $+ ()* %+ ' % *% * J &, 2 P + Q + 2 PQ cos q ' � % & 2 tdbmbs!dpnqpofout ! �! Tdbmbs! !epu!qspevdu . ◊- ! �! !Wfdups! !dsptt!qspevdu . ¥- q q * q * ! ()* + ()* + - ! ! 5*146 #059'4!37'56+105 L <; A < ; J , AB 1; J L< A L " # . A J 9 " $ A ? < < J < A;9 ;; O < KJ LL ! K LL < M? A K % A ; < L ujfe ; A O < A O P J <P LL A ; AK KL L <; ? KA KP J M? < ?9 ()* + ()* + ()* + ŹŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº . A O < A O P ()* & , J ; J 9 Q 9?9 A?9 L A P < < A ? < + $ $ 9L A A ; A # A qsfttvsf! ; SA ; gpsdf!qfs!voju!bsfb, ; qsfttvsf " ' % $ . A J < ;? A B < ; A P " ( $ $$ $ $ $ )" % 1 ◊ %&, BJ ; J A B A A P * O BJ J O < A ;L A ; BA ()* %+ < M? A KP ()* + ()* $+ ()* %+ -';!6'4/5 .1!drc ' .1!dre .1!drg - / / / , ' + .1!drj .1!drh .1!dri ,! / $ ' $ ' .1!drcl , 8 6 / $ ! 4'8+'9!37'56+105 9 : $; < , ()* > ? , $ @ ? A $ # , ; $ $ A % 9 : ! $ < $ $ $ $ $ 9 < $ & A , ; : + ()* + ()* $+ ()* $+ ()* + ()* %+ ()* $+ ()* + ()* $+ ()* $+ ()* $ $+ % $ ɏ Źŷ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ ! 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS ! B # $ $ ! ()* + ()* $+ ()* $+ ()* $+ $ % & # 2 2 P + Q + 2 PQ sin q P + Q + 2 PQ cos q P 2 + Q 2 - 2 PQ sin q . P 2 + Q 2 - 2 PQ cos q 2 # - 2 CD ) FGH CE $ . IGH CDGH - "- GH . 6*.! EGH % !!- $ J)H q & a ' & a Q sin q P + Q cos q a Q cos q P + Q sin q 7 a P sin q Q + P cos q a Q cos q Q + P cos q % # $ $ ()* % % % ' ()* $+ + $ $ $ $ $ % # K $ : K ()* + ()* + $ $ % & $ $ ()* K + ŹŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº # $ $ $ ()* $+ ()* %+ $ $ $ $ - D EC aLb aMb aLb aMb aLb aMb y y F F aLb aLb M b a a x $ x - D ED IGH M a pMa ()* IGH L a pMa pMa pMa M %+ pMa pMa M M $! (ILL $LANKS!3UESTIONS ) B $ NNNNNNNNNNN O ()* ! NNNNNNNNN ()* %+ + %! /ATCH %OLUMNS!3UESTIONS 8 B . ?9A 1 / . ?9A 11 ' + ()* + $ $$ / / / . ?9A 1 " O A% A% P + 6 + , + $ $ $$ . ?9A 11 ' Q P 6 , Q ()* $ $ $ K $ + ɏ ŹŹ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ &! 5TATEMENT %ONFIRMATION!3UESTIONS ! B # Q ## > $ $ : ! % $ # ## # # + ()* $+ FGH S A; TG " DC TUHV ()* $+ ## # $ ()* ## % $ % $ FGH ## $ q qRD # ## # ## # ## #NSWERS!TO!1BJECTIVE!3UESTIONS H =? L T.J ? ; A; # H- T- A ; ? ; $ % & A; $$ H. = JT. ?9A; 6 P H/ ? ; 6 , A; 6 ' 9 A T. AS<9 A ! 6 6 ? ; 6 , 6 ' 6 P 6 6 A; 24#%6+%'!241$.'/5 9 $ )G " - CEG " CCG " - CEG " FGH 9 $ CG !" $ EG " CDR) S A; DGG " EG )HV ()* $+ M- 9 $ $ S A; FGHV DUG " EDGH $ C) !" ! $ ()* $+ $ S A; EDU " DITHV ()* &+ - D EE 9 S A; DG !" MDC DHV $ ()* $+ Źźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 200 N 10 kN 40° 25° 50° 200 N 15 kN # Q$ - DGG " $ D EJ 9 $ $ Q - % 9 $ DGG " S A; ET) UU " DGHV D E) $ y (12, 10) 100 N @ Q &+ - D EF S A; UJF J " CT FUHV &+ - D ET 9 $ $ $ S A; ' )GG " ' MUF) T "V ()* %+ 200 N 400 N 45° 45° (2, 2) &+ ()* (14, 4) 60° ()* S A; CUG " ) GTHV ()* 100 N 500 N A x # & - $ $ $ Q $ $ Q F 5 y 2 y 400 N 400 N x 300 N 45° 45° 500 N A $ x % ɏ ŹŻ &¶¹ª¬ɏ3Àº»¬´ºɏ¨µ«ɏ2¬º¼³»¨µ»ºɏ $ CDG " 9 $ $ - D EU ! S A; JU " CDI D "V ()* %+ $ # - D EI JGG " $ S A; )EF U L ET) U "V ()* $+ T 70° y 300 N A 30° x a P T 30° 15° Q P & Q C)G " $ ! / $ S A; ! " $ - D JC O - % % $ & D)G " $ ETC ) " CE JHV ()* ETC ) " CE JHW a $ % K 9 D JG # % - $ $ S A; )F JJHW % % S A; % ! E)I E "V %RD CDGHW ()* C)CHV $+ CUG #, &+ ()* #+ B DF–CGH " EI–CCJH " FE–CUEH " )T–DFCH " S A; F) " CITHV ()* &+ # # - D JD DGG " 9 K $ CGG " z y . $ . S A; CTE D " FGHV ()* - $ 200 N &+ 25 N B 20 N C 40 N 50 N A 30° y O a 100 N $ Q P x x - D JE )G " 9 $ ! $ $ $ S A; FU TJ " JE EHV ()* &+ Źżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! % a $ ? K JGH $ - $ & CG " K a S A; % & # # $ & , D JJ $ ' # D) D " U CJH $ K $ ! C) )F "V ()* &+ ()* % &+ $ S A; CED I "V ()* $+ W & ' z 30° 50 N F1 F3 100 N 100 N O C y 60 N F2 45° a 50° x B A # C D ! E ! $ Q CGG " $ $ $ D J) - $ - C X $ QX Q/ - D JF # TG T " $ a Q/ S A; TF UT " U) DDHV ()* QX $ 9 E CFGG " D JT Q $ D F = 1600 N $+ b % @ 60° a S A; DCU) F " CI)I F "W UGG " JCJ "V ()* &+ 45° O $ ɏ ŹŽ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ 4 #¯¨·»¬¹ Npnfout!boe!Dpvqmft .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ ! ɏ ɏ ɏ ɏ ɏ ɏ ɏ .1!ercɏ .1!erdɏ .1!ereɏ .1!erfɏ .1!ergɏ .1!erhɏ .1!eriɏ .1!erjɏ 4/2! $¬ķµ¬ɏ´¶´¬µ»ɏ¶ɏ¨ɏ¶¹ª¬ɏ¨©¶¼»ɏ¨ɏ·¶°µ»ɏ°µɏ½¬ª»¶¹ɏ¶¹´ȍ 2¬·¹¬º¬µ»ɏ®¹¨·¯°ª¨³³Àɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ¨ɏ¶¹ª¬Ȏɏ¨µ«ɏº»¨»¬ɏ°»ºɏº°®µɏª¶µ½¬µ»°¶µȍ $¬ºª¹°©¬Ȏɏ·¹¶½¬Ȏɏ¨µ«ɏ¨··³Àɏ6¨¹°®µ¶µȠºɏ»¯¬¶¹¬´ȍ $¬»¬¹´°µ¬ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ·¨¹¨³³¬³ɏ¶¹ª¬ºȎɏ©¶»¯ɏ®¹¨·¯°ª¨³³Àɏ¨µ«ɏ¨µ¨³À»°ª¨³³Àȍ $¬ķµ¬ɏª¶¼·³¬ɏ¨µ«ɏª¶¼·³¬ɏ´¶´¬µ»ȍ 2¬º¶³½¬ɏ¨ɏ¶¹ª¬ɏ°µ»¶ɏ¨ɏ¶¹ª¬Ɋª¶¼·³¬ɏºÀº»¬´ȍɏ 2¬«¼ª¬ɏ¨ɏ¶¹ª¬Ɋª¶¼·³¬ɏºÀº»¬´ɏ»¶ɏ¨ɏº°µ®³¬ɏ¶¹ª¬ȍ $¬»¬¹´°µ¬ɏ»¯¬ɏ¬¸¼°½¨³¬µ»ɏ¶ɏ¨ɏºÀº»¬´ɏ¶ɏª¶·³¨µ¨¹ɏµ¶µɊª¶µª¼¹¹¬µ»ɏ¶¹ª¬ºȍ �! JOUSPEVDUJPO! Jo!uif!qsfwjpvt!dibqufs-!xf!ejtdvttfe!tztufnt!pg! /!Uif!fggfdu!pg!tvdi!gpsdft!bdujoh! po!b!cpez!jt!fyqfsjfodfe!bmpoh!uifjs!mjof!pg!bdujpo!ps!bu!uif!qpjou!pg!uifjs!joufstfdujpo/!Jo!uijt!dibqufs-!xf!tibmm! ejtdvtt!tztufnt!pg!dpqmbobs!opo.dpodvssfou!gpsdft/!Uisff!tvdi!tztufnt!bsf!tipxo!jo!Gjh/!4/2/! F1 F3 F1 A F B P O F2 F2 C F3 D F4 (a) R1 R2 (b) F (c) Gjh/!4/2! Jo!Gjh/!4/2 -!gpvs!gpsdft! 2-! 3-! 4!boe! 5!bsf!bdujoh!po!uif!cpez!bu!qpjout!B-!C-!D!boe!E-!sftqfdujwfmz/! Gpsdft! 2!boe! 4!joufstfdu!bu!uif!qpjou!P-!xifsfbt! 3!boe! 5!joufstfdu!bu!Q/!Jo!beejujpo!up!b!usbotmbupsz!fggfdu-! uiftf!gpsdft!bmtp!ibwf!b!spubujpobm!fggfdu!po!uif!cpez/!Gps!fybnqmf-! 2!ufoet!up!spubuf!uif!cpez! ! )DX*!xijmf! 4!ufoet!up!spubuf!uif!cpez! !)DDX*/ źŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Gjhvsf!4/2 !tipxt!b!cfbn!tvqqpsufe!bu!jut!foet/!Uif!gpsdft! 2-! 3!boe! 4!bsf!uif!bqqmjfe!gpsdft!po!uif! cfbn-!boe! 2!boe! 3!bsf!uif!sfbdujpo!gpsdft!efwfmpqfe!bu!uif!tvqqpsut/!Uif!cfbn!jt!jo!frvjmjcsjvn/!Xf!dbo! Ýoe!uif!wfdups!tvn!pg!uif!bqqmjfe!gpsdft/!Cvu-!ju!jt!opu!wfsz!bqqbsfou!bu!xibu!qpjou!uif!sftvmubou!pg!uiftf! qbsbmmfm!gpsdft!jt!bdujoh/ Gjhvsf!4/2 !tipxt!uxp!qbsbmmfm!gpsdft!ibwjoh!frvbm!nbhojuveft!cvu!pqqptjuf!ejsfdujpot/!Uif!tvn!pg!uiftf! gpsdft!jt!{fsp<!ifodf-!uifz!ep!opu!qspevdf!b!usbotmbujpobm!fggfdu!po!uif!cpez/!Ipxfwfs-!uifz!ep!qspevdf!b! spubujpobm!fggfdu/! 4/3! �! NPNFOU!PG!B!GPSDF! .1!erc B!gpsdf!bdujoh!po!b!cpez!ibt!uxp!ljoet!pg!fggfdut/!Jo!beejujpo!up!uif!ufoefodz!up!npwf! uif!cpez!jo!uif!ejsfdujpo!pg!jut!bqqmjdbujpo-!uif!gpsdf!dbvtft!ps!ufoet!up!dbvtf!spubujpobm! $¬ķµ¬ɏ´¶´¬µ»ɏ¶ɏ¨ɏ npujpo!pg!uif!cpez!bcpvu!bo!byjt/!Uif!byjt!nbz!cf!boz!mjof!xijdi!ofjuifs!joufstfdut! ¶¹ª¬ɏ¨©¶¼»ɏ¨ɏ·¶°µ»ɏ°µɏ ops!jt!qbsbmmfm!up!uif!mjof!pg!bdujpo!pg!uif!gpsdf/!Uijt! !ps! !fggfdu!pg!uif! ½¬ª»¶¹ɏ¶¹´ȍ gpsdf!jt!lopxo!bt!uif!npnfou!)N*!pg! �! 9ORTHY!OF!0OTE uif!gpsdf/!Npnfou!jt!bmtp!dbmmfe!upsrvf! )t*-!jg!ju!dbvtft!uxjtujoh!pg!uif!cpez Uif! ejsfdujpo! pg! upsrvf! jt! bmpoh! uif! byjt! pg! uif! cpez/! Jg! B!dpnnpo!fybnqmf!uibu!fyqmbjot!uif!dpodfqu!pg!npnfou! uif!npnfou!bdut!jo!b!ejsfdujpo! jt! b! qjqf! xsfodi-! tipxo! jo! Gjh/! 4/3 /! Uif! gpsdf! ! bqqmjfe! usbotwfstf! up! uif! byjt! pg! uif! qfsqfoejdvmbs! up! uif! xsfodi! ibt! b! ufoefodz! up! spubuf! uif! cpez-! ju! jt! ufsnfe! cfoejoh! qjqf!dmpdlxjtf!bcpvu!jut!wfsujdbm!byjt/!Uif!nbhojuvef!pg!uijt! npnfou!)CN*/ ufoefodz!efqfoet!po!cpui!uif!nbhojuvef! pg!uif!gpsdf!boe!uif! fggfdujwf!mfohui! !pg!uif!xsfodi/!Uif!nbhojuvef!pg!uif!npnfou! jt!efÝofe!bt M > Fd ! ! )4/2* Uif!npnfou!jt!b!wfdups!N!qfsqfoejdvmbs!up!uif!qmbof!dpoubjojoh! !boe! /!Jut!tfotf!pg!ejsfdujpo!jt!hjwfo!cz! uif!sjhiu.iboe!svmf!tipxo!jo!Gjh/!4/3 /!Uif!npnfou!N!pg!uif!gpsdf!G!bcpvu!uif!byjt!jt!sfqsftfoufe!bt!b!wfdups+! qpjoujoh!jo!uif!ejsfdujpo!pg!uivnc-!xjui!uif!Ýohfst!dvsmfe!jo!uif!ejsfdujpo!pg!spubujpobm!ufoefodz/!Uif!npnfou! N!pcfzt!bmm!uif!svmft!pg!wfdups!dpncjobujpo-!boe!mjlf!b!gpsdf!ju!nbz!bmtp!cf!dpotjefsfe!b!tmjejoh!wfdups/!Jut!TJ! vojut!bsf!ofxupo nfusf!)On*/ 4/3/2! Npnfou!pg!Dpqmbobs!Gpsdft! Xifo!efbmjoh!xjui!dpqmbobs!gpsdft-!ju!jt!dvtupnbsz!up!tqfbl!pg!npnfou! /!Cz!uijt!xf!nfbo!uif! npnfou!bcpvu!bo!byjt!opsnbm!up!uif!qmbof!boe!qbttjoh!uispvhi!uif!qpjou/!Gps!fybnqmf-!dpotjefs!b!qmbobs!cpez! tipxo!jo!Gjh/!4/3 /!Gpsdf!G!jt!bdujoh!bu!uif!qpjou!B!jo!jut!qmbof/!Uif!ejsfdujpo!pg!npnfou!N!pg!uijt!gpsdf!bcpvu! uif!qpjou!Q!jt!bmpoh!uif!byjt!P.P!)qbttjoh!uispvhi!uif!qpjou!Q!boe!qfsqfoejdvmbs!up!uif!qmbof*!boe!jut!tfotf!jt! vqxbse!bt!hjwfo!cz!uif!sjhiu.iboe!svmf/! Gjhvsf!4/3 !tipxt!uif!upq!wjfx!pg!uif!qmbobs!cpez/!Uif!byjt!P.P!jt!sfqsftfoufe!cz!uif!qpjou!Q/!Ju!tvgÝdft! up!sfqsftfou!uif!npnfou!NQ!pg!uif!gpsdf!G!bcpvu!uif!qpjou!Q!cz!b!dvswfe!bsspx!bspvoe!uif!qpjou!Q-!xiptf! ejsfdujpo!)ifsf-!dpvoufsdmpdlxjtf*!sfqsftfout!uif!tfotf!pg!npnfou!wfdups!NQ/!Ju!bhbjo!tvgÝdft!up!xsjuf! !ofbs!uif!dvswfe!bsspx-!xijdi!sfqsftfout!uif!nbhojuvef!pg!uif!npnfou!NQ/!Bt!tipxo-! jt!uif! Q!>! qfsqfoejdvmbs!ejtubodf!pg!uif!mjof!pg!bdujpo!pg!uif!gpsdf!G!gspn!uif!qpjou!Q/!Uif!qpjou!Q!bcpvu!xijdi!uif! npnfou!jt!dpotjefsfe!jt!dbmmfe!npnfou!dfousf-!boe!ejtubodf! !jt!dbmmfe!uif!npnfou!bsn/ ! +!B!epvcmf!bsspx!jt!opsnbmmz!vtfe!up!sfqsftfou!npnfou!wfdups!N!up!ejggfsfoujbuf!ju!gspn!uif!gpsdf!wfdups!G/! ɏ źŵ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ O Right hand MP F M A d (b) O d a r P F F MP = Fd P d (a) (c) Gjh/!4/3! 4/3/3! Npnfou!bt!b!Dsptt!Qspevdu Uif!npnfou!NQ!pg!uif!gpsdf!G!nbz!cf!sfqsftfoufe!jo!wfdups!gpsn!cz!uif!dsptt qspevdu!fyqsfttjpo! NQ! >!s!¥!G! )4/3* xifsf!s!jt!uif!qptjujpo!wfdups!gspn!uif!npnfou!dfousf!Q!up! !qpjou!po!uif!mjof!pg!bdujpo!pg!uif!gpsdf!G-!bt! tipxo!jo!Gjh/!4/3 /!Jg!a!jt!uif!bohmf!cfuxffo!G!boe!s-!uif!nbhojuvef! Q!pg!uif!npnfou!NQ!jt!hjwfo!bt! ! )4/4* Q!>! !¥ !¥!tjo!a! >! !¥!) !tjo!a*!>! Opuf!uibu!uif!npnfou!bsn! !>! !tjo!a!epft!opu!efqfoe!po!uif!dipjdf!pg!uif!qpjou!ublfo!po!uif!mjof!pg!bdujpo! pg!gpsdf/! .1!erd 2¬·¹¬º¬µ»ɏ®¹¨·¯°ª¨³³Àɏ ´¶´¬µ»ɏ¶ɏ¨ɏ¶¹ª¬Ȏɏ ¨µ«ɏº»¨»¬ɏ°»ºɏº°®µɏ ª¶µ½¬µ»°¶µȍ 4/4! �! HSBQIJDBM!SFQSFTFOUBUJPO!BOE!TJHO! DPOWFOUJPO!PG!NPNFOU!PG!B!GPSDF 4/4/2! Tjho!Dpowfoujpo! ! Sfqsftfoujoh!npnfout!pg!dpqmbobs!gpsdft!bcpvu!b!qpjou!cz!dvswfe!bsspxt!qfsnjut!vt! up!usfbu!uif!npnfou!wfdups!NQ!bt!bmhfcsbjd!tdbmbs!xjui! !boe! !tjhot/! Uif!npnfou!pg!boz!dpqmbobs!gpsdf!bcpvu!uif!qpjou!Q!jt!bmpoh!uif!byjt!P.P!)Gjh/!4/3 *<! boe!ju!nbz!cf!ejsfdufe!fjuifs! ps! /!Bt!dbo!cf!tffo!gspn!Gjh/!4/3 -!uif!vqxbse!ejsfdujpo!jt! nbslfe!cz!b!dpvoufsdmpdlxjtf!dvswfe!bsspx-!tjodf!uijt!npnfou!ufoet!up!dbvtf!dpvoufsdmpdlxjtf!spubujpo!pg! uif!cpez/! Jg!pvs!ejtdvttjpo!sfnbjot!dpoÝofe!up!uif!npnfout!pg!gpsdft!jo!b!qmbof-!ju!jt!fopvhi!up!bttjho! !boe! !tjhot!up!uif!npnfou-!kvtu!bt!xf!ep!gps!uif!gpsdft!xifo!uifz!bsf!bmm!qbsbmmfm-!mjlf!)ublfo!qptjujwf*!ps! vomjlf!)ublfo!ofhbujwf*/!Uivt-!uif!vtf!pg!b!dvswfe!bsspx!jt!b!dpowfojfou!xbz!up!sfqsftfou!npnfout!jo!uxp. ejnfotjpobm!bobmztjt/! źŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Jo!uijt!cppl-!xf!tibmm!gpmmpx!uif!tjho!dpowfoujpo+-!up!ublf! !)DDX*!npnfou!bt! boe! !)DX* npnfou!bt! <!bmuipvhi!uif!pqqptjuf!dpowfoujpo!xpslt!frvbmmz!xfmm/! 4/4/3! ! Hsbqijdbm!Joufsqsfubujpo!pg!Npnfou Mfu!Q!cf!uif!qpjou!bcpvu!xijdi!uif!npnfou!pg!uif!gpsdf! !)sfqsftfoufe! cz!bsspx!BC!jo!Gjh/!4/4*!jt!up!cf!efufsnjofe/!Gspn!uif!qpjou!Q-!xf!espq! b!qfsqfoejdvmbs!QO!po!uif!mjof!tfhnfou!BC-!boe!kpjo!Q!xjui!qpjout!B! boe!C/!Uifo-!uif!npnfou!pg!gpsdf! !bcpvu!Q!jt!hjwfo!bt! Q!>! !¥! !>!BC!¥!QO Ipxfwfs-!opuf!uibu!BC!¥!QO!jt!bmtp!frvbm!up! ! DQBC/! .1!ere $¬ºª¹°©¬Ȏɏ·¹¶½¬Ȏɏ¨µ«ɏ ¨··³Àɏ6¨¹°®µ¶µȠºɏ »¯¬¶¹¬´ȍ 4/5! P MP d A N F B Gjh/!4/4! �! WBSJHOPOÜT!UIFPSFN! Bmtp!lopxo!bt!Qsjodjqmf!pg!Npnfout-! ju! tubuft! uibu! �! &O!YOU!-NOW~ Uif!npnfou!pg!b!gpsdf!bcpvu!b! qpjou!jt!frvbm!up!uxjdf!uif!bsfb! pg! uif! usjbohmf! xiptf! cbtf! jt! uif! mjof! tfhnfou! sfqsftfoujoh! uif!gpsdf!boe!uif!wfsufy!jt!uif! qpjou!bcpvu!xijdi!uif!npnfou! jt!ublfo/ Qsppg/!Uif!uifpsfn!xjmm!cf!qspwfe!cz!ubljoh!bo!fybnqmf!pg!b! tztufn!pg!uxp!dpqmbobs!gpsdft! 2!boe! 3-!xiptf!sftvmubou!jt! -!bt! tipxo!jo!Gjh/!4/5 /!Mfu!vt!ublf!uif!qpjou!P!bt!uif!npnfou!dfousf/! Uif!npnfou!bsnt!gps!gpsdft! 2-! 3!boe!sftvmubou! !bsf! 2-! 3! boe! -!sftqfdujwfmz/!Uiftf!bsf!uif!mfohuit!pg!uif!qfsqfoejdvmbst! esbxo! gspn! P! po! uif! mjoft! pg! bdujpo! pg! uiftf! gpsdft/!Bt! qfs! uifpsfn-!xf!bsf!up!qspwf!uibu !>! 2 2!,! 3 3 y O d 2 O d2 D D F2 q d1 d F2 R q2 B A C A F1 (a) Gjh/!4/5! ! ! R B q1 C q (b) " d F1 x # +!Uifsf!bsf!uxp!sfbtpot!gps!dipptjoh!uijt!dpowfoujpo/! -!ju!nbudift!uif!tjho!dpowfoujpo!gps!bohmft/!Uif! ! sfbtpo!cfdpnft!pcwjpvt!xifo!xf!sfbmj{f!uibu!uif!npnfou!pg!b!gpsdf!jt!bt!nvdi!b!wfdups!rvboujuz!bt!uif!gpsdf!jutfmg/! Jo!gbdu-!uif!npnfou!N!pg!b!gpsdf!G!jt!hjwfo!cz!uif!dsptt.qspevdu!hjwfo!jo!Fr/!)4/3*/ ɏ źŷ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ Mfu!vt!dipptf!uif!mjof!BP!bt!uif! byjt/!Uif!$.byjt!jt!uifo!uif!mjof!bu!sjhiu!bohmft!up!uif!mjof!BP-!bt!tipxo! jo!Gjh/!4/5 /!Mfu!uif!bohmf!cfuxffo! !boe!$.byjt!cf!q/!Uifo-!gspn!hfpnfusz-!uif!bohmf!cfuxffo!uif!uxp!mjoft-! pof!qfsqfoejdvmbs!up! !boe!uif!puifs!qfsqfoejdvmbs!up!$ byjt-!xjmm!bmtp!cf!q/!Uibu!jt-!– BPC!>!q/!Uifsfgpsf-! gspn!DPBC-!xf!ibwf! )* ! >! !¥!PB!dpt!q!>!PB!¥!) !dpt!q*!>!PB!¥! $! xifsf-! $!jt!uif!dpnqpofou!pg! !bmpoh!$.byjt/! Mfu! 2$!boe! 3$!cf!uif!dpnqpofout!pg! 2 boe! 3!bmpoh!uif!$.byjt-!sftqfdujwfmz/!Mfu!q2!boe!q3!cf!uif!bohmft! nbef!cz! 2 boe! 3!xjui!$.byjt-!sftqfdujwfmz!)Gjh/!4/5 */!Uifo-!xf!bmtp!ibwf!–BPD!>!q2!boe!–BPE!>!q3/! Gspn!DPBD-!xf!ibwf! ) * 2 2! >! 2!¥!PB!dpt!q2!>!PB!¥!) 2!dpt!q2*!>!PB!¥! 2$! Boe!gspn!D PBE3 3! >! 3!¥!PB!dpt!q3!>!PB!¥!) 3!dpt!q3*!>!PB!¥! 3$! ) * Beejoh!Frt/!) *!boe!) *-! 2 2! ,! 3 3!>!PB!¥! 2$!,!PB!¥! 3$!>!PB!¥!) 2$!,! 3$*!>!PB!¥! $ )j * Gjobmmz-!dpnqbsjoh!Frt/!) *!boe!) *-!xf!hfu 2 2!,! 3 3! >! Uijt!jt!xibu!xbt!up!cf!qspwfe/ Uif!bcpwf!qsppg!dbo!cf!fyufoefe!up!uif!tztufnt!pg!uisff!ps!npsf!gpsdft/! 'XAMPLE!erc &°®¼¹¬ɏŷȍŹɏº¯¶¾ºɏ¨ɏŴȍŽɊ´ɏ¾°«¬ɏ«¶¶¹ɏ/!ɏ¯°µ®¬«ɏ¨»ɏ/ȍɏ&°µ«ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ»¯¬ɏŵŶɊ.ɏ ¶¹ª¬ɏ ¨··³°¬«ɏ ¨»ɏ »¯¬ɏ ¬«®¬ɏ !ɏ ¶ɏ »¯¬ɏ «¶¶¹ɏ ¨©¶¼»ɏ »¯¬ɏ ¯°µ®¬ɏ /Ȏɏ °ɏɏ ș¨Țɏ»¯¬ɏ¶¹ª¬ɏ°ºɏ¨··³°¬«ɏµ¶¹´¨³ɏ»¶ɏ»¯¬ɏ«¶¶¹ɏ¨ºɏ°µɏ&°®ȍɏŷȍŹ¨Ȏɏ¨µ«ɏș©Țɏ»¯¬ɏ¶¹ª¬ɏ°ºɏ¨··³°¬«ɏ¨»ɏźŴǸɏ»¶ɏ»¯¬ɏ«¶¶¹ɏ ¨ºɏ°µɏ&°®ȍɏŷȍŹ©ȍ \MP!4/2-!MP!4/4^ 0.9 O m 12 N A 12 N 60° O 0.9 m (a) Gjh/!4/6! % 1/:.n A (b) PB P 5OLUTION! Hjwfo;! !>!23!O-!PB!>! !>!1/:!n/ ! ) *! Uif!npnfou!pg!23.O!gpsdf!bcpvu!P!>! !>!Ï23!¥!1/:!>!Ï21/9!On )ofhbujwf!tjho-!bt!uif!uvsojoh!fggfdu!jt!dmpdlxjtf* źŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! ) *! Ifsf-!bt!uif!gpsdf!jt!opu!bqqmjfe!opsnbm!up!uif!epps-!uif!1/:.n!ejtubodf!jt!opu!uif!npnfou!bsn/!Uifsf! bsf!uxp!xbzt!pg!tpmwjoh!uijt!qspcmfn/!Fjuifs!xf!Ýoe!uif!qfsqfoejdvmbs!ejtubodf!gspn!P!up!uif!mjof!pg! bdujpo!pg!uif!gpsdf!bt!jo!Gjh/!4/7 -!ps!xf!bqqmz!WbsjhopoÔt!uifpsfn!bt!jo!Gjh/!4/7 / 12 N 12 N 12 sin 60° 60° O O A 0.9 m 0.9 m A 60° 12 cos 60° (b) B (a) Gjh/!4/7! ! ! �! 9ORTHY!OF!0OTE ;! Gspn!Gjh/!4/7 -! ! >!)gpsdf*!¥!)qfsqfoejdvmbs!ejtubodf!PC* ! >!Ï )23*!)PB!tjo!71¡*!>!Ï:/46!On ;! Jo! Gjh/! 4/7 -! xf! ibwf! sftpmwfe! uif! 23.O!gpsdf!bmpoh!uif!$ byjt!boe! byjt/!Uif!$ dpnqpofou-! 23!dpt!71¡!O-!qbttft!uispvhi!uif!qpjou!P-!boe!ifodf-!jut! npnfou!bsn!jt!{fsp!sftvmujoh!jo!{fsp!npnfou/!Pomz!uif! dpnqpofou-! 23! tjo! 71¡! O-! dpousjcvuft! up! uif! npnfou/! Uivt! >!) .dpnqpofou*!¥!)npnfou!bsn*! ! >!Ï )23!tjo!71¡*)PB*!>!Ï:/46!On 'XAMPLE!erd !)2*! ! Jo! dbtf! pg! tmboujoh! gpsdf-! cpui!nfuipet!hjwf!uif!tbnf! sftvmu/ !)3*! ! Uif! uvsojoh! fggfdu! )ps! uif! npnfou*! pg! uif! gpsdf! sfevdft-!jg!ju!jt!bqqmjfe!bu!bo! bohmf/ !ɏ©¨¹ɏ!"ɏ°ºɏº¼··¶¹»¬«ɏ¨»ɏ°»ºɏ¬µ«ɏ!Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŷȍŻȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ´¶´¬µ»ɏ ¨©¶¼»ɏ»¯¬ɏ·¶°µ»ɏ!ɏ¶ɏ»¯¬ɏŵŴŴŴɊ.ɏ¶¹ª¬ɏ¨ª»°µ®ɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ"ȍɏ ɏ \MP!4/4^ F = 1000 N B 60° y = 30 cm A x = 40 cm Gjh/!4/8 5OLUTION! Sftpmwjoh!uif!gpsdf! !joup!jut!$ !boe! ! dpnqpofout-!boe!uifo!bqqmzjoh!WbsjhopoÔt!uifpsfn-!xf!hfu! uif!npnfou!pg!uif!gpsdf!bcpvu!uif!qpjou!B!)ubljoh!DDX!npnfout!bt!qptjujwf*!bt $!>!Ï )2111!dpt!71¡*!¥!1/4!,!)2111!tjo!71¡*!¥!1/5!>!,2:7/5!On B!>! $ !,! Uif!qptjujwf!tjho!joejdbuft!uibu!uif!npnfou! B!jt!DDX/ ɏ źŹ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ 'XAMPLE!ere $¬»¬¹´°µ¬ɏ»¯¬ɏÀɊ°µ»¬¹ª¬·»ɏ¶ɏ»¯¬ɏŹŴŴŴɊ.ɏ¶¹ª¬ɏ¨ª»°µ®ɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ#ɏ°µɏ&°®ȍɏŷȍż¨Ȏɏ°ɏ °»ºɏ´¶´¬µ»ɏ¨©¶¼»ɏ/ɏ°ºɏżŴŴŴɏ.´ȍɏ \MP!4/4^ F = 5000 N C q 3 y F y C 4 B y Fy B F y Fx x O q 4 3 x O (b) (a) Gjh/!4/9 5OLUTION! Vtjoh!uif!usbotnjttjcjmjuz!mbx-!xf!dbo!tijgu!uif!qpjou!pg!bqqmjdbujpo!pg!uif!gpsdf! !up!uif!qpjou!C! bmpoh!jut!mjof!pg!bdujpo!xjuipvu!bmufsjoh!jut!fggfdu-!bt!tipxo!jo!Gjh/!4/9 /!Gspn!Gjh/!4/8 -!xf!ibwf!dpt!q!>!506! boe!tjo!q!>!406/!Uifsfgpsf-!uif!$ !boe! dpnqpofout!pg!uif!gpsdf! !bsf!hjwfo!bt $! >! ! boe! !dpt!q!>!6111!¥!)506*!>!5111!O ! >! !tjo!q!>!6111!¥!)406*!>!4111!O Ifodf-!vtjoh!WbsjhopoÔt!uifpsfn-!jg!uif!dppsejobuft!pg!uif!qpjou!C!bsf!)$-! *-!uif!npnfou!pg!gpsdf! !bcpvu! uif!qpjou!P!jt!hjwfo!bt P! >! $ !,! $!>!Ï5111!¥! !,!4111!¥!1!>!Ï5111 ps! Ï9111! >!Ï5111 ! fi! !>!3!n 'XAMPLE!erf !µɏżŴŴɊ.ɏ¶¹ª¬ɏ°ºɏ¨··³°¬«ɏ»¶ɏ¨ɏŷɊ´ɏ¯°®¯ɏ·¶³¬ɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ0Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŷȍŽ¨ȍɏ #¨³ª¼³¨»¬ɏ»¯¬ɏ´¨®µ°»¼«¬ɏ¶ɏ´¶´¬µ»ɏ¶ɏ»¯°ºɏ¶¹ª¬ɏ¨©¶¼»ɏ»¯¬ɏ©¨º¬ɏ·¶°µ»ɏ/ɏ©Àɏ¶¼¹ɏ «°Ĺ¬¹¬µ»ɏ´¬»¯¶«ºȍɏ \MP!4/4^ 1.5 m 1.5 m P 800 N 3m 1.5 m P Fx = 800 cos 40° P 40° 40° 3m 800 N 40° d O O (a) A (c) Fx y 40° P x F dy B Fx O Fy = 800 sin 40° O (b) Fy 3m dx (d ) Fy Gjh/!4/: źźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 5OLUTION! Hjwfo;! !>!911!O-!q!>!51¡/! Xifsfwfs!offefe-!xf!dbo!sfqmbdf!uif!hjwfo!gpsdf!cz!jut!sfdubohvmbs!dpnqpofout!>! !tjo!q!>!911!tjo!51¡!>!625/3!O $!>! !dpt!q!>!911!dpt!51¡!>!723/9!O! boe! !J;!Bt!tipxo!jo!Gjh/!4/: -!uif!npnfou!bsn!gps!uif!911.O!gpsdf! >!4!dpt!51¡!,!2/6!tjo!51¡!>!4/37!n \! ! !>!911!¥!4/37!>!3721!On!)DX* P >! ! JJ;!Bt!tipxo!jo!Gjh/!4/: -!sfqmbdjoh!uif!gpsdf!cz!jut!sfdubohvmbs!dpnqpofout!boe!uifo!bqqmzjoh! WbsjhopoÔt!uifpsfnP!>! $ !,! $!>!723/9!¥!4!,!625/3!¥!2/6!>!3721!On!)DX* JJJ;!Vtjoh!uif!qsjodjqmf!pg!usbotnjttjcjmjuz-!xf!dbo!tmjef!uif!911.O!gpsdf!bmpoh!jut!mjof!pg!bdujpo!up!uif! qpjou!B-!bt!tipxo!jo!Gjh/!4/: /!Uijt!xjmm!fmjnjobuf!uif!npnfou!pg!uif!dpnqpofou! !bt!ju!qbttft!uispvhi!uif! npnfou!dfousf!P/!UivtP!>! $ !>!723/9!¥!)4!,!2/6!ubo!51¡*!>!3721!On!)DX* !JW;!Bt!tipxo!jo!Gjh/!4/: -!xf!dbo!tmjef!uif!911.O!gpsdf!up!uif!qpjou!C!tp!uibu!uif!npnfou!pg!uif! dpnqpofou! $!jt!fmjnjobufe/!UivtP!>! $!>!625/3!¥!)2/6!,!4!dpu!51¡*!>!3721!On!)DX* .1!erf 4/6! �! SFTVMUBOU!PG!QBSBMMFM!GPSDFT! Qbsbmmfm!gpsdft!ibwf!uifjs!mjoft!pg!bdujpo!qbsbmmfm!up!fbdi!puifs/!Jg!bmm!pg!uifn!bdu!jo!uif! tbnf!ejsfdujpo-!uifz!bsf!dbmmfe!mjlf!qbsbmmfm!gpsdft/!Jg!tpnf!pg!uifn!bsf!jo!pqqptjuf! ejsfdujpo-!uifz!bsf!dbmmfe!vomjlf!qbsbmmfm!gpsdft!)bt!jo!Gjh/!4/21 */ Bt!uif!mjoft!pg!bdujpo!pg!bmm!uif!qbsbmmfm!gpsdft!bsf!qbsbmmfm!up!fbdi!puifs-!ju!jt! ! up!Ýoe!uif!nbhojuvef!pg!uifjs!sftvmubou/!Kvtu!ublf!pof!ejsfdujpo!bt!qptjujwf!boe!uif! pqqptjuf!ejsfdujpo!bt!ofhbujwf-!boe!Ýoe!uif!bmhfcsbjd!tvn!pg!uifjs!nbhojuveft/! Ipxfwfs-!ju!jt!b!cju!usjdlz!up!mpdbuf!uif!qptjujpo!pg!uif!sftvmubou/!Uijt!dbo!cf!epof!cz!tjnqmz! $¬»¬¹´°µ¬ɏ»¯¬ɏ ¹¬º¼³»¨µ»ɏ¶ɏ·¨¹¨³³¬³ɏ ¶¹ª¬ºȎɏ©¶»¯ɏ®¹¨·¯°ª¨³³Àɏ ¨µ«ɏ¨µ¨³À»°ª¨³³Àȍ /! )b*!Uxp!Mjlf!Qbsbmmfm!Gpsdft! Uif!sftvmubou! !>! 2!,! 3/!Bt!tipxo!jo!Gjh/!4/21 -!uif!mjof!pg!bdujpo!pg!uif! sftvmubou! !nvtu!mjf!jo!cfuxffo!uif!mjoft!pg!bdujpo!pg 2!boe! 3-!up!cbmbodf!uif!npnfout!bcpvu!uif!qpjou!D/! )c*!Uxp!Vomjlf!Qbsbmmfm!Gpsdft! Uif!sftvmubou! !>! 3!Ï! 2!)jg! 3!ibt!mbshfs!nbhojuvef!uibo! 2*/!Bt!tipxo! jo!Gjh/!4/21 -!uif!mjof!pg!bdujpo!pg!uif!sftvmubou! !nvtu!mjf!pvutjef!uif!mjoft!pg!bdujpo!pg up!mbshfs!gpsdf! 3-!up!cbmbodf!uif!npnfout!bcpvu!uif!qpjou!D/! Uivt-!gps!cpui!uif!dbtft-!xf!nvtu!ibwf ! DDX!npnfou!>!DX!npnfou ps! 2!¥! ! >! 3!¥! a F2 fi! ! = b F1 2!boe! 3!boe!dmptfs! )4/5* ɏ źŻ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ Opuf!uibu!uif!ejtubodft! !boe! !up!uif!mjoft!pg!bdujpo!pg! 2!boe! 3-!sftqfdujwfmz-!bsf!jowfstfmz!qspqpsujpobm! up!uif!nbhojuveft!pg!uif!gpsdft/ a a C b b F2 F1 F1 C R = F2 – F1 F2 a F2 = b F1 R = F1 + F2 (a) Like parallel forces (b) Unlike parallel forces Gjh/!4/21! & ' ( Uivt-!xf!dpodmvef!uibu-!gps!uif!sftvmubou! !pg!uxp!qbsbmmfm!gpsdft! 2!boe! 3! ¥! !jt!jo!uif!ejsfdujpo!pg!uif!mbshfs!gpsdf! ¥! uif!mjof!pg!bdujpo!pg! !jt!dmptfs!up!uif!mbshfs!gpsdf! ¥! !jt!cfuxffo! 2!boe! 3!jg!uiftf!gpsdft!bsf!jo!uif!tbnf!ejsfdujpo-!boe ! ¥! !jt!pvutjef! 2!boe! 3!jg!uiftf!gpsdft!ibwf!pqqptjuf!ejsfdujpot/ 'XAMPLE!erg 4¾¶ɏ³°²¬ɏ·¨¹¨³³¬³ɏ¶¹ª¬ºɏ¶ɏŹŴŴɏ.ɏ¨µ«ɏŵŴŴŴɏ.ɏ¨ª»ɏ¨»ɏ»¯¬ɏ»¾¶ɏ¬µ«ºɏ¶ɏ¨ɏŷȍźɊ´ɏ³¶µ®ɏ ¹¶«Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŷȍŵŵ¨ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ´¨®µ°»¼«¬ɏ¶ɏ»¯¬°¹ɏ¹¬º¼³»¨µ»ɏ¨µ«ɏ»¯¬ɏ ·¶°µ»ɏ¶ɏ°»ºɏ¨··³°ª¨»°¶µɏ¨³¶µ®ɏ»¯¬ɏ¹¶«ȍɏ \MP!4/5^ x A C A B 3.6 m B 3.6 m 500 N 500 N 1000 N 1000 N R (a) (b) Gjh/!4/22 5OLUTION 2611!O $ %& ! ' ¥ ($#) * $+ $ fi $ 3600 1500 3/5!n " # $# # źżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!erh 4¾¶ɏ¼µ³°²¬ɏ·¨¹¨³³¬³ɏ¶¹ª¬ºɏ¶ɏŹŴɏ.ɏ¨µ«ɏŶŴŴɏ.ɏ¨ª»ɏ¨»ɏ»¯¬ɏ»¾¶ɏ¬µ«ºɏ¶ɏ¨ɏŵȍŹɗ´ɏ³¶µ®ɏ©¨¹ɏ !"Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŷȍŵŶ¨ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ´¨®µ°»¼«¬ɏ¨µ«ɏ»¯¬ɏ³¶ª¨»°¶µɏ¶ɏ»¯¬°¹ɏ ¹¬º¼³»¨µ»ȍɏ \MP!4/4-!MP!4/5^ 50 N 50 N B A x A 1.5 m B C R 150 N C¢ 1.5 m 0.5m R 150 N 200 N 200 N (a) (b) Gjh/!4/23 5OLUTION! , ' - * ( 261!O # # $ #, ' ' ' $ " # $# - # , & ' ! * $ *- ¥ # . / ' ¥ $ * *- $ " # $# - # , Difdl4 ! . ¥ ' / * ¥( # ' # + ¥ # ¢ fi $ + ! #, 3!n # 2 ¢ ' ¥ # - # 'XAMPLE!eri $¬»¬¹´°µ¬ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ»¯¬ɏ·¨¹¨³³¬³ɏ¶¹ª¬ºɏº¯¶¾µɏ°µɏ&°®ȍɏŷȍŵŷȍɏ \MP!4/5^ 30 N 5N 8m 6m 5m O 20 N 40 N Gjh/!4/24 5OLUTION! ! *, " # $# $ $ *8 #7 ( Ï36!O #+ - 9 ' :# ; ' ' ɏ źŽ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ : # ' : S : , qmbdfe!up!uif!sjhiu!pg!P ' (- ¥ )+ ' :' #, ($ ¥ + ( ¥ <+ * (8 ¥ $+ & *$) 9 # , ' SM O 360 Nm = 25 N R ' 9 $ 9 ' Ï471!On ' ( S +# ! : 25/5!n S : ' ' = # .1!erg $¬ķµ¬ɏª¶¼·³¬ɏ¨µ«ɏ ª¶¼·³¬ɏ´¶´¬µ»ȍ 4/7/2! 4/7! �! DPVQMF! ! dpvqmf # :' ; #> ? #> ' npnfou D# Npnfou!pg!b!Dpvqmf ! " # $# 8# , A ! F 2# , ' pg!uif!dpvqmf# , d !bsn! F B Gjh/!4/25! % ) * ($# + Tjho!Dpowfoujpo! ! ( @+ A ( @+ 4/7/3! ! 2/ Joufsftujoh!Qspqfsujft!pg!Dpvqmf " # $# #, # ! ' ' ! * * ! - * ( -+ * d ' - * F F d1 A d2 d3 F d5 C d6 d4 d d B F F (a) F (b) Gjh/!4/26! ! (c) ' #, ŻŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 9 ? 2 $ Myth 8 " # $# ' 2 #, * * 2 $ * ( 8 $ * Uif!nbhojuvef! pg!uif!npnfou!pg! b!dpvqmf!efqfoet! po!uif!ejtubodf! pg!uif!qpjou!)gspn! uif!dfousf!pg!uif! dpvqmf*!bcpvu! xijdi!uif!npnfou! jt!efufsnjofe/ 8+ * 9 ) " # $# ' * * * , ! ) #, * (* Fact! )+ , ' ' # ' " # $# ) # > 3/ , # " # $# #, F1 F d F2 F d2 d1 F2 F1 (a) (b) (c) Gjh/!4/27! ! ! 4/! B ( " # $# ) #, - -! #> #, ' ' C ' " # $# D C C C C –2F –F d –F & # D d/2 F –2F 2F d/2 d/2 d 2F F Gjh/!4/28! ! 2 ' & + # ɏ Żŵ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ 4/7/4! ! 2/! ! 3/! ! 4/! ! 5/! Dibsbdufsjtujdt!pg!b!Dpvqmf , ' ' ; # , ' & ! ' ' ' ' # ! ' ' ; ' # A ' ' ' & ' # ! 6/! , (# # E E E E 4/7/5! , , , , + ' # # ' # ' # Dpvqmf!Npnfou , Myth ' #> ' npnfouF dpvqmf! , # , Fact! B!Ódpvqmf!npnfouÔ! boe!b!Ónpnfou!pg!b! gpsdfÔ!bsf!tbnf/ $ ' $ ' ' # " # $# <# , or or (a) Clockwise (CW) (b) Counterclockwise (CCW) Gjh/!4/29! 'XAMPLE!erj !ɏª¶¼·³¬ɏ¶ɏ´¶´¬µ»ɏǖźŴɏ.´ɏ¨ª»ºɏ°µɏ»¯¬ɏ·³¨µ¬ɏ¶ɏ·¨·¬¹ȍɏ)µ«°ª¨»¬ɏ»¯°ºɏª¶¼·³¬ɏ¾°»¯ɏ ș¨ȚɏŵŶŴɊ.ɏ¶¹ª¬Ȏɏ¨µ«ɏș©ȚɏŷŴɊ.ɏ¶¹ª¬ȍɏ \MP!4/6^ 5OLUTION C 60 = F 120 C 60 = F 30 1/6!n 3!n ! "# % $ $ & $ $ ŻŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº C2 10 N 5m 3m 120 N 30 N 0.5 m 2m 30 N 120 N (a) 10 N (b) ! Gjh/!4/2:! 'XAMPLE!erk 10 N 2 m 10 N C1 Gjh/!4/31 #¶´©°µ¬ɏ ª¶¼·³¬ɏ #ɏŵɏ Ǜɏ ǖ ŶŴɗ.´ɏ ¾°»¯ɏ #Ŷɏ Ǜɏ ɌŹŴɗ.´Ȏɏ ©¶»¯ɏ °µɏ »¯¬ɏ º¨´¬ɏ ·³¨µ¬Ȏ ș¨Țɏ®¹¨·¯°ª¨³³ÀȎɏ¨µ«ɏș©Țɏ¨µ¨³À»°ª¨³³Àȍɏ \MP!4/6^ 5OLUTION! $ "( ) C1 20 = F 10 " * C2 50 = F 10 * + $ $ "(,) -41!On ) " 4/8! .1!erh ! 2¬º¶³½¬ɏ¨ɏ¶¹ª¬ɏ°µ»¶ɏ¨ɏ ¶¹ª¬Ɋª¶¼·³¬ɏºÀº»¬´ȍ . * ! ! *( .*( - +( Ï41!On �! USBOTMBUJPO!PG!B!GPSDF!UP!B! QBSBMMFM!QPTJUJPO! $ $ $ / $ 4 ) $ 5 ! *" F F F F C = Fd d B A d A F (a) B B A (b) (c) Gjh/!4/32 $ / ' $ $ 5 $ / ! *" $ ɏ Żŷ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ ) 4 5 Fact! Myth 7 4 ) !; Boz!gpsdf!tztufn-! op!nbuufs!ipx! dpnqmfy-!dbo!cf! sfevdfe!up!b!tjohmf! gpsdf!bmpoh!boz! mjof!pg!bdujpo/ $ / 5 ! *" gpsdf $ < dpvqmf!tztufn ) ) b!gpsdf!joup!b!dpvqmf,gpsdf!tztufn9 4/9! .1!eri ! 2¬«¼ª¬ɏ¨ɏ¶¹ª¬Ɋª¶¼·³¬ɏ ºÀº»¬´ɏ»¶ɏ¨ɏº°µ®³¬ɏ ¶¹ª¬ȍ $ 8sftpmwjoh! �! SFEVDJOH!B!GPSDF.DPVQMF!TZTUFN!UP! B!TJOHMF!GPSDF! ! ** ! , ! 4 " ! ** " d1 Q P Q Q d2 A P B (a) Q A B Q (b) (c) Gjh/!4/33! , * / ! " $ ! ** ) ! ** $ , $ * 'XAMPLE!ercl $ C Pd1 = Q Q , * ! ** , ! ** $ !: !ɏ¶¹ª¬ɏ¶ɏŶŴɏ.ɏ°ºɏ¨ª»°µ®ɏ½¬¹»°ª¨³³Àɏ¼·¾¨¹«ɏ¨»ɏ»¯¬ɏ¶¹°®°µȍɏ7¯°³¬ɏ´¨°µ»¨°µ°µ®ɏ¹°®°«Ɋ ©¶«Àɏ¬¸¼°³°©¹°¼´Ȏɏ»¹¨µº¬¹ɏ»¯°ºɏ¶¹ª¬ɏ»¶ɏș¨Țɏ¨ɏ·¶°µ»ɏŷɊ´ɏ¨¾¨Àɏ¨³¶µ®ɏ»¯¬ɏ·¶º°»°½¬ɏ ¿Ɋ¨¿°ºȎɏ¨µ«ɏș©Țɏ¨ɏ·¶°µ»ɏŵȍŹɏ´ɏ¨¾¨Àɏ¨³¶µ®ɏ»¯¬ɏµ¬®¨»°½¬ɏ¿Ɋ¨¿°ºȍɏ \MP!4/7^ ŻŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 5OLUTION! 4 ! ! *! *( ) 4 ) 4 ! > ! *! :( ) 4 / ," ,* ,* *( ! �! 9ORTHY!OF!0OTE / ( 5 "+ % " > ," ' / -*( ¥ ! Ï71!On *( ) ! *( ) dmpdlxjtf ! *! ," > #$ $ ) ,* ! *! *( ) ,* $ * ! & # *( ¥ " + 41!On *( ) ! / *( ) dpvoufsdmpdlxjtf ," 20 N 20 N 60 Nm 20 N Q1 B Q1 A A 1 2 3m !( ) 20 N Q1 P O & & " 3 Q2 20 N x O 1 2 3m (a) 20 N Q2 –1 O 1.5 m 20 N 3 x ! *! (b) 1 x 20 N 30 Nm Q1 B 1 –1 O x 1.5 m (c) (d ) Gjh/!4/34 , Opuf! ' $ ! *! / $ $ 'XAMPLE!ercc 2¬·³¨ª¬ɏ¨ɏª¶¼·³¬ɏ¶ɏɌŶŴŴɏ.´ɏ´¶´¬µ»ɏ¨µ«ɏ¨ɏ½¬¹»°ª¨³ɏ¶¹ª¬ɏ¶ɏŹŴɏ.Ȏɏ¨ª»°µ®ɏ¨»ɏ»¯¬ɏ ¶¹°®°µȎɏ©Àɏ¨ɏº°µ®³¬ɏ¶¹ª¬ȍɏ7¯¬¹¬ɏ«¶¬ºɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶¹ª¬ɏ¨ª»ȓɏ \MP!4/8^ y y 50 N 200 Nm 50 N O 50 N Q2 x O Q1 4m x 50 N (a) (b) Gjh/!4/35 ! 5OLUTION! " #$ ' C 200 ' = F 50 % & & ɏ ŻŹ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ ! # ,+ #$ " , " 4/:! .1!erj ! $¬»¬¹´°µ¬ɏ»¯¬ɏ ¬¸¼°½¨³¬µ»ɏ¶ɏ¨ɏºÀº»¬´ɏ ¶ɏª¶·³¨µ¨¹ɏµ¶µɊ ª¶µª¼¹¹¬µ»ɏ¶¹ª¬ºȍ $ ! 5!n!up!uif!mfgu!pg!uif!psjhjo 61.O �! SFTVMUBOU!PG!QMBOBS!OPO.DPODVSSFOU! GPSDF!TZTUFN! , $ $ & -& # % " & / & y & y F1 F2 O 1 y R F1 x . $ F2 O O x SMo qx x SMo F3 (a) (b) (c) y y R d B O x O A F3 (d) x SMo (e) Gjh/!4/36! , # & $ $& 3& 3 ! # +& , & " +& $ % " $ +& ! & # $ # # & S " $& & ' ( SFx ) 2 + ( SFy ) 2 6+ SFy SFx 3 / S $ S " 4 $ q$ ' 3 3 $ q$ S & # $ # " " $ & # " 7 Żźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº , S & / fi 3 ' & " ' & 9 S ' 4/:/2! 3 ' & SM 3 R ' & S 3 #$ # " #$ 8 $ - $ S % 3& 1 Joufsdfqu!pg!uif!Sftvmubou!po!y.!boe!z .Byft ! $ - $ - # " #$ 3 : , ;# " $ : 'S # $'S $ 3 < " ,& - & ! , @% $ 3 'S / # $ # ; 8 $ " > ? & " 'S \ 9 3, ' $& SM 3 Ry $ ¥ ¥ 3, ' S A $ + ;& 3 fi SM 3 Rx 3; ' 'XAMPLE!ercd > ¥ 3; A $ 3 SM 3 Ry ' " 'S \ fi 3 ¥ ' ? 'S & @% 8 " 3 SM 3 Rx ++ $¬»¬¹´°µ¬ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ»¯¬ɏª¶·³¨µ¨¹ɏµ¶µɊª¶µª¼¹¹¬µ»ɏ¶¹ª¬ɏºÀº»¬´ɏº¯¶¾µɏ°µɏ &°®ȍɏŷȍŶź¨ȍɏ \MP!4/9^ y y 90° 90° 50 N 50 N 4m 90° O 5m 4m x 50 N R 29.3 N 45° 100 N 50 N O 2.42 m 90° x 5m 45° 100 N (a) (b) Gjh/!4/37 5OLUTION! ( $ " S $ ' 6+ B'6 - & 4 C S ' 6+ B'6 4 ɏ ŻŻ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ ' (-20.7) 2 + (-20.7) 2 ' 3:/4!O \ SFy 6+ q$ ' SFx 6+ ' -20.7 ' 56¡ -20.7 ! & # % . #$ D 3& S 3 \ ' ' ¥ 6 ¥ ' SM 3 50 Nm ' ' 3/53!n 20.7 N Rx ! & & & # # " & E ! #&&+6+10#.!51.8'&!':#/2.'5 'XAMPLE!erce 5OLUTION! F " G $¬»¬¹´°µ¬ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ»¯¬ɏŵŴŴɊ.ɏ¶¹ª¬ɏ°µɏ&°®ȍɏŷȍŶŻ¨ɏ©Àɏ6¨¹°®µ¶µȠºɏ»¯¬¶¹¬´ɏ ș¨Țɏ¨©¶¼»ɏ»¯¬ɏ·¶°µ»ɏ/Ȏɏ¨µ«ɏș©Țɏ¨©¶¼»ɏ»¯¬ɏ·¶°µ»ɏ#ȍɏ \MP!4/4^ '+ H , 4 # # $& ! . $ - & & y (cm) . . y (cm) C (0, 5) C (0, 5) 3 cm B (8, 2) B (8, 2) 9 cm x (cm) O Fy F = 100 N A (–3, –4) O F = 100 N q A (–3, –4) (a) Fx (b) Gjh/!4/38 x (cm) q Żżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 6+ q' \ ' ' $ , $ > , $ > Ê 2 - (-4) ˆ ÁË 8 - (-3) ˜¯ ' 7 EB q'+ q'+ ? ' 3 $ & A 6 # $ ? ' 7 EB ' 74 7 7 EB ' 4 8 ' 74 7 ¥ 6 4 8 ¥ ' 318/6!Onn # & A 6 $ $ ' 74 7 ¥ A 3& 6 48¥ & ' 757/6!Onn! 'XAMPLE!ercf 4¯¬ɏº¸¼¨¹¬ɏ!"#$ɏ°µɏ&°®ȍɏŷȍŶżɏ¯¨ºɏº°«¬ºɏ¶ɏŵɏ´ȍɏ&°½¬ɏ¶¹ª¬ºɏ0Ȏɏ1ȎɏŵŴŴɊ.ȎɏŶŴŴɊ.ɏ¨µ«ɏ ŵŴŴɊ.ɏ¨¹¬ɏ¨ª»°µ®ɏ¨³¶µ®ɏ»¯¬ɏº°«¬ºɏ¨µ«ɏ«°¨®¶µ¨³ɏ¶ɏ»¯¬ɏº¸¼¨¹¬Ȏɏ¨ºɏº¯¶¾µɏ°µɏ»¯¬ɏķ®¼¹¬ȍɏ $¬»¬¹´°µ¬ɏ»¯¬ɏ½¨³¼¬ºɏ¶ɏ0ɏ¨µ«ɏ1Ȏɏ°ɏ»¯¬ɏºÀº»¬´ɏ¶ɏ¶¹ª¬ºɏ¹¬«¼ª¬ºɏ»¶ɏ¨ɏª¶¼·³¬ȍɏ!³º¶Ȏɏķµ«ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ »¯¬ɏ¹¬º¼³»°µ®ɏª¶¼·³¬ȍɏ \MP!4/9^ 5OLUTION P D $ S S $ ! "! #$% " ! fi ! 3:/4!O & "! #$% " , fi , 23:/4!O ' * ' -. C 100 N 1m + Q 200 N B A 100 N , 1m /0 Gjh/!4/39 - ¥ !0 1 .! ¥ !0 .& .& ' 'XAMPLE!ercg ¥ !0 1 .&5 6 ¥ !0 DDX 33:/4!On $¬»¬¹´°µ¬ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ»¯¬ɏ·¨¹¨³³¬³ɏ¶¹ª¬ɏºÀº»¬´ɏº¯¶¾µɏ°µɏ&°®ȍɏŷȍŶŽ¨ȍɏ \MP!4/5^ 400 N 200 N O 2m 3m 100 N 4m 2m 200 N 300 N (a) (b) Gjh/!4/3: 5OLUTION - 7 "! 1& "& C = 300 Nm 1# "6 ɏ ' S ' < ŻŽ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ 1.! : 9 : ¥ 0 1 .& ¥ &0 " .& "6 9 ¥ $0 1 .# : ! ¥ 50 " .6 ¥ !!0 9 ; "411!On 6 &5 'XAMPLE!erch 2¬·³¨ª¬ɏ»¯¬ɏ¯¶¹°Á¶µ»¨³ɏ¶¹ª¬ɏ¶ɏźŴŴɏ.ɏ¨ª»°µ®ɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ0ɏ¶ɏ»¯¬ɏ¯¨µ«Ɋ©¹¨²¬ɏ³¬½¬¹ɏ º¯¶¾µɏ°µɏ&°®ȍɏŷȍŷŴɏ©Àɏ¨µɏ¬¸¼°½¨³¬µ»ɏºÀº»¬´ɏª¶µº°º»°µ®ɏ¶ɏ¨ɏ¶¹ª¬ɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ/ɏ¨µ«ɏ ¨ɏª¶¼·³¬ȍɏɏ \MP!4/7^ 600 N 600 N P P 600 N P P fi 300 mm fi O O O 60° 600 N (a) ! 600 N (b) Gjh/!4/41! 156 Nm (c) Gjh/!4/42 5OLUTION ' < O 600 N + < 6 6! > ¥ .6 9 * > < 9 : 6 6! = * 6 6! = ' < > 6 6! > %0 !$$ 5 ? * 9 267!On 711 O : 'XAMPLE!erci 267 On 4¯¬ɏŵŴɊ².ɏ¶¹ª¬ɏ&ɏ°ºɏ¨··³°¬«ɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ0ɏ¶ɏ¨ɏ·³¨µ¨¹ɏ©¶«Àɏº¯¶¾µɏ°µɏ&°®ȍɏŷȍŷŶ¨ȍɏ ș¨Țɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ·¶°µ»ºɏ¶µɏ»¯¬ɏ¿Ɋɏ¨µ«ɏÀɊ¨¿¬ºɏ¨©¶¼»ɏ¾¯°ª¯ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ»¯¬ɏ¶¹ª¬ɏ &ɏ°ºɏÁ¬¹¶ȍɏ'°½¬µɏ»¯¨»ɏqɏǛɏŷŹǸȍɏș©Țɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ»¯¬ɏ¶¹ª¬ɏ&ɏ¨©¶¼»ɏ»¯¬ɏ·¶°µ»ɏ/ȍ \MP!4/4^ y (m) P (– 4, 6) P(–4, 6) y (m) Fx A F = 10 kN O O Fy q x (m) (a) q x (m) F = 10 kN (b) Gjh/!4/43 f B żŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 5OLUTION! @ ! ,9 q 6$% A - .< 6 6& 0 ' ! ! q q $ 6$% B !5 ,9 6$% $ C# ,9 $ . 0 ' $1 .!B % " q0 " f ' * 7 > :- OA OB ' . 0 - G ; ' q " C " C$ 1 ? .E# >0 fi :D OA 3.2 # $C = tan q 0.7 D .5/68-!10 n .1 !4/30 n H " : 1 $ - fi 6& F:-D " C."#0 1 6& < q D * G! ' $ " B !5 ¥ 6 & 1 $ C# ¥ "&> !B ,9 : 37/29!lOn ./=0 'XAMPLE!ercj 4¾¶ɏ´¬µɏª¨¹¹Àɏ¨ɏŶŹŴɊ.ɏ©¶¿ɏ¶ɏŶȍŸɏ´ɏ³¬µ®»¯ɏ¨µ«ɏŴȍżɏ´ɏ¯¬°®¯»ɏ¼·ɏ¨ɏ¹¨´·ɏ°µª³°µ¬«ɏ¨»ɏ ŷŴǸɏ»¶ɏ»¯¬ɏ¯¶¹°Á¶µ»¨³Ȏɏ©Àɏ¯¶³«°µ®ɏ»¯¬ɏ¹¶µ»ɏ¨µ«ɏ©¨ª²ɏ¬«®¬ºɏ¶ɏ°»ºɏ©¶Œ¶´ȍɏ$¬»¬¹´°µ¬ɏ »¯¬ɏ¾¬°®¯»ɏº¼··¶¹»¬«ɏ©Àɏ¬¨ª¯ɏ´¨µȍɏ \MP!4/5^ 6 66 I ! D @ < 5OLUTION! - , I J C K 2.4 m -D < ; \ -K 2.4 2 -J -K " JK !& L @K -K " @K # M 30° Q 250 N 6 % P 5C &$ .0 - S A Gjh/!4/44 ', < 6 % 0.8 2 K * !1, B D !&" #¥ M 0.8 m G - "&$ ¥ .-J fi &$ ¥ -J , ¥ -D N* . 0 ! &$ " ! ! 25:!O fi , 6 %0 1 , ¥ .-D 6 %0 250 ¥ AK 250 ¥ 0.97 = 212!O AB 2.4 ɏ żŵ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ 'XAMPLE!erck !µɏżŴŴɊ.ɏ¶¹ª¬ɏ0ɏ°ºɏ¨··³°¬«ɏ»¶ɏ»¯¬ɏ¾¬³«¬«ɏº³¬µ«¬¹ɏ©¨¹ɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ"ɏ´¨²°µ®ɏ¨µɏ ¨µ®³¬ɏΪɏǛɏŶŴǸɏ¾°»¯ɏ»¯¬ɏ½¬¹»°ª¨³Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŶȍŷŸ¨ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ¬¸¼°½¨³¬µ»ɏ ¶¹ª¬Ɋª¶¼·³¬ɏºÀº»¬´ɏ¨ª»°µ®ɏ¶µɏ»¯¬ɏ¾¬³«ɏș¨Țɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ!Ȏɏ¨µ«ɏș©Țɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ/ȍɏ&¶¹ɏ¾¯¨»ɏ½¨³¼¬ɏ¶ɏ ¨µ®³¬ɏΪɏ¾¶¼³«ɏ»¯¬ɏ¹¬º¼³»ºɏ¶ɏ»¯¬ɏ·¨¹»ºɏș¨Țɏ¨µ«ɏș©Țɏ©¬ɏº¨´¬ȓɏ \MP!4/7^ 800 N q 800 N q N P d 800 N Q1 P 1 400 mm A A B B d2 M N d1 800 N q P A B 400 mm 400 mm 700 mm 700 mm 700 mm Q2 800 N 800 N Q1 O O O Q2 (a) (b) 800 N (c) Gjh/!4/45 5OLUTION . 0 I * -9 ! ! ! \ ,! < . 0 I - 911!O < 6 6# < ,! * : !1 \ < ,! ,& * B 9 6 6# < ! ,& , -D q # & % 6C$ 5 B ¥ 6C$ 5 6 C ! 9 411/8 On ./=0 ! < ! ,! & B : ! ,& ,& B ! 9 , 6C$ 5 1 :q 6C$ 5 1 C & % >!$ 6 ¥ >!$ 6 #5& &$! 9 5:3/4!On ./=0 911!O < ! -D q 1 :- q -D q fi q 1% ps 291% 4¯¹¬¬ɏ¶¹ª¬ºɏ¶ɏ´¨®µ°»¼«¬ºɏŶ0Ȏɏŷ0ɏ¨µ«ɏŸ0ɏ¨ª»ɏ¨³¶µ®ɏ»¯¬ɏ»¯¹¬¬ɏº°«¬ºɏ¶ɏ¨µɏ¬¸¼°³¨»¬¹¨³ɏ »¹°¨µ®³¬ɏ¶ɏŵŴŴɏ´´ɏº°«¬Ȏɏ»¨²¬µɏ°µɏ¶¹«¬¹Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŷȍŷŹ¨ȍɏ&°µ«ɏ»¯¬ɏ´¨®µ°»¼«¬Ȏɏ «°¹¬ª»°¶µɏ¨µ«ɏ»¯¬ɏ³¶ª¨»°¶µɏ¶ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶¹ª¬ȍɏ \MP!4/9^ 'XAMPLE!erdl żŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº y 3P R = 1.732P 3P 30° C C 173.2 mm N B A B O 2P 100 m 100 m 4P x 2P 4P (a) (b) Gjh/!4/46 5OLUTION! ' , S S $ -D $ > % " #! > % "! $! > % " #! > % " B>>! &! " 6! 1 6! $ $+ + ' Rx& + R y& (-1.5 !) 2 + (-0.866 ! ) 2 2/843 Q $ $ Ry q$ 0.866 ! 1.5 ! Rx 41¡ !" SM % Rx * S 4 ! ¥ 0 + 2 ! ¥ 0 + 3! ¥ ON 1.5 ! 3! ¥ 100 sin 60∞ 1.5 ! + % &$!' + $,- % !7 $!$9 'XAMPLE!erdc # ! $! ! / + ! $¬»¬¹´°µ¬ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ»¯¬ɏ¶¹ª¬ɏºÀº»¬´ɏº¯¶¾µɏ°µɏ&°®ȍɏŷȍŷź¨ȍɏ!ºº¼´¬ɏ»¯¨»ɏ»¯¬ɏ ª¶¶¹«°µ¨»¬ºɏ¶ɏ«°Ĺ¬¹¬µ»ɏ·¶°µ»ºɏ¨¹¬ɏ°µɏ´¬»¹¬ºȍɏ \MP!4/9^ y (25, 25) 90° (–5, 20) 60° 80 N 45° (10, 10) 100 N 63.75° 328 N (35, 15) 120 N 31.52 m 75° 150 N x O (a) O x 15.54 m (b) Gjh/!4/47 ɏ żŷ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ $ 5OLUTION S S $ ,, ,, $ Rx' + R y' \ :,- ; <, :,- ; <, =9- ; ', =9- ', (145.4) 2 + (-294.9) 2 >,- ; 9, >,- 9, &9&9- =9!= ? '>=!> ? 439!O $ -294.9 145.4 Ry q$ Rx ; 74/86¡ * % S ', ,, % :,; 9 ,, , <, =9- '9 ', >,:,- ; , <, =9- '9 ', 9 9, &9>,- $9 9, &9- =9<= ? $ $ @ $ S % fi $ SM O 4584 = 294.9 Ry 26/65!n S % fi SM O 4584 = 145.4 Rx 42/63!n 7 ! $!$: ! $¬»¬¹´°µ¬ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ»¯¬ɏ¶¼¹ɏ¶¹ª¬ºɏ¨µ«ɏ¶µ¬ɏª¶¼·³¬ɏ»¯¨»ɏ¨ª»ºɏ¶µɏ»¯¬ɏ·³¨»¬ɏ º¯¶¾µɏ°µɏ&°®ȍɏŷȍŷŻȍɏ \MP!4/8^ 'XAMPLE!erdd y 5m 2m 60 N 45° 50 N 140 N◊m 2m 80 N 2m O 40 N 30° 1m Gjh/!4/48 $ 5OLUTION $ S S $ :, :, =9- ; <, $,- ; =, ::!<: ? =9- ; 9, ; <, $,$'!=$ ? x żŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Rx' + R y' \ (66.86) 2 + (132.43) 2 259/46!O ; $ Ry q$ 132.43 66.86 Rx 74/3¡ * % S =9- ¥ ' ; ' :, % S =9- ¥ 9 ; ' :, $&&!'< ; =, ? * S S + fi $ 237.28 132.43 2/8:!n $ q$ ! $ .$ SM Ry $&&!'< ? '$&!'< ? @+ $ 9, ¥ 9 %! 57//#4; C + difdl! zpvs!voefstuboejohD!* E FG .1!erc! $¬ķµ¬ɏ ´¶´¬µ»ɏ ¶ɏ ¨ɏ ¶¹ª¬ɏ ¨©¶¼»ɏ ¨ɏ ·¶°µ»ɏ °µɏ ½¬ª»¶¹ɏ ¶¹´ȍ /00 + !A npnfou N 0 $ 0'23 npnfou!dfousf ! @ !A N B 1 @ ! .1!erd! 2¬·¹¬º¬µ»ɏ®¹¨·¯°ª¨³³Àɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ¨ɏ¶¹ª¬Ȏɏ¨µ«ɏº»¨»¬ɏ°»ºɏº°®µɏª¶µ½¬µ»°¶µȍ + !A + dpvoufsdmpdlxjtf ! dmpdlxjtf .1!ere! $¬ºª¹°©¬Ȏɏ·¹¶½¬Ȏɏ¨µ«ɏ¨··³Àɏ6¨¹°®µ¶µȠºɏ»¯¬¶¹¬´ȍ A @ ! .1!erf! $¬»¬¹´°µ¬ɏ»¯¬ɏ¹¬º¼³»¨µ»ɏ¶ɏ·¨¹¨³³¬³ɏ¶¹ª¬ºȎɏ©¶»¯ɏ®¹¨·¯°ª¨³³Àɏ¨µ«ɏ¨µ¨³À»°ª¨³³Àȍ !A + ! + @ ɏ żŹ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ .1!erg! $¬ķµ¬ɏª¶¼·³¬ɏ¨µ«ɏª¶¼·³¬ɏ´¶´¬µ»ȍ @ Dpvqmf A @ @ @ H @ !A ! dpvqmf!npnfou! A ! @ ! .1!erh! 2¬º¶³½¬ɏ¨ɏ¶¹ª¬ɏ°µ»¶ɏ¨ɏ¶¹ª¬Ɋª¶¼·³¬ɏºÀº»¬´ȍ H @ @ ! .1!eri! 2¬«¼ª¬ɏ¨ɏ¶¹ª¬Ɋª¶¼·³¬ɏºÀº»¬´ɏ»¶ɏ¨ɏº°µ®³¬ɏ¶¹ª¬ȍ C B @ ! .1!erj! $¬»¬¹´°µ¬ɏ»¯¬ɏ¬¸¼°½¨³¬µ»ɏ¶ɏ¨ɏºÀº»¬´ɏ¶ɏª¶·³¨µ¨¹ɏµ¶µɊª¶µª¼¹¹¬µ»ɏ¶¹ª¬ºȍ H @ @ ! ! +/2146#06!(14/7.#' ¥ ! � \MP!4/2^ \MP!4/6^ \MP!4/9^ � Dpvqmf!npnfou � 7 @ opo.dpodvssfou!gpsdft ( SFx ) 2 + ( SFy ) 2 q$ SFy SFx S tjohmf!gpsdf $ ! ! ! $ SM R SM Ry SM Rx 5*146 #059'4!37'56+105 2/! Xibu!jt!uif!ejggfsfodf!cfuxffo!b!dpvqmf!boe!b!npnfou@! \MP!4/6^ ! ! ! ! ! ! 3/! Xibu!jt!nfbou!cz!npnfou!dfousf!pg!b!npnfou@! ! " \MP!4/2^ żźɏ ! ! ! ! ! ! %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 4/! Xibu!jt!nfbou!cz!npnfou!bsn!pg!b!npnfou@! \MP!4/2^ ! " 5/! Vtvbmmz-!xijdi!npnfouÐdmpdlxjtf!ps!dpvoufsdmpdlxjtfÐjt!ublfo!bt!qptjujwf@! ! # $ $ \MP!4/3^ ! 6/! Ipx!jt!uif!WbsjhopoÔt!uifpsfn!ifmqgvm!up!vt@! \MP!4/4^ ! % ! " % % & ! ! 7/! Dbo!b!dpvqmf!cf!cbmbodfe!cz!b!tjohmf!gpsdf@! ! ' \MP!4/6^ " -';!6'4/5 .1!erc .1!ere * * * + .1!erg , - ! 4'8+'9!37'56+105 ! 2/! / 0 59 : ! 3/! ; , 0 \MP!4/2^ \MP!4/4^ ! + ! 6/! 59 ! 7/! / , \MP!4/3^ ! 4/! < ! 5/! < : , \MP!4/4^ % \MP!4/5^ 0< \MP!4/6^ ! 8/! 59 = \MP!4/9^ ! 9/! 59 \MP!4/7^ ! :/! ; ! 0 \MP!4/8^ ɏ żŻ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ ! !1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS = ! 2/! > > > > 0 ? ? ? ? \MP!4/9^ ! @@@@@@ ! 3/! ! > ? > ? A ! 4/! 9 \MP!4/3^ > ? B BC ! > ? DF ' G > ? A B BC ! \MP!4/6^ > ? DE ' B 24 N > ? C' d 2 > ? ! F1 F m E d1 8N F F1 A 4m B 24 N (a) (b) Gjh/!4/4: (c) ! Gjh/!4/49 A ! 5/! B BC ! A B BC D ! > ? DE ' ! 6/! * > ? > ? > ? > ? F > ? DF ' > > > > ? ? ? ? G > ? FG ' B > ? ! = \MP!4/7^ $ $ $ $ % $ % $ $ $ $ C=' ! 7/! D \MP!4/6^ A DJ ' C' C' BF ' $ B BH $ I GJ ' BF ' $ $ $ % BF ' C' ! \MP!4/7^ żżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº $! (ILL $LANKS!3UESTIONS ! 2/! * @@@@@@@@@@@@ \MP!4/2^ @@@@@@@@ ! 3/! @@@@@@@@ \MP!4/2^ @@@@@@@@@ @@@@@@@@@ ! 4/! \MP!4/4^ %! /ATCH %OLUMNS!3UESTIONS ! 2/! Dpmvno!J! >? > ? K$ Dpmvno!JJ! > ? >L? > ? > !? \MP!4/5^ > ? ><? \MP!4/5^ \MP!4/6^ ! \MP!4/7^ &!5TATEMENT %ONFIRMATION!3UESTIONS ! 2/! >"? >""? ! ! ! ! >? " > ? "" ! > ? " > !? ! "" " #NSWERS!TO!1BJECTIVE!3UESTIONS )B*! Nvmujqmf.Dipjdf!Rvftujpot! 2/ 3/ 4/ 5/ 6/ 7/ !)C*! Gjmm.Cmbolt!Rvftujpot 2/ )D*! Nbudi.Dpmvnot!Rvftujpot 2/! > ?M ><? > ?M> ? > ? M>L? > !?M > ? )E*! Tubufnfou.DpoÝsnbujpo!Rvftujpot ! 2/ > ? 3/ 4/ "" ! \MP!4/7^ ɏ żŽ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ ! 24#%6+%'!241$.'/5! ! 2/! N FJ ' A B GJ 40 N 80 N y 20 N 60° OBot/!MCE E ' P O 3m D !! 5m 60 N 20 N Gjh/!4/51! ! 3/! < ! Gjh/!4/52! D + ! OBot/!MCE E ' P ! ! 4/! A B GD OBot/!CJ ' ! 0 ! ! 6/! ! 7/! R N I D I Gjh/!4/53 , ! 5/! B B A x A 4m C A 5m 20 N 2m 20 N A B GF / J QR ! OBot/! I I IP \MP!4/5^ J RJJ ' JP OBot/!J G MCJ ' F SFJ ' B ! $ ! :/! FQJ ' ! OBot/! MR C T I ! DF ' ! OBot/!/ !21/! - BJ ' EJU ! ! 22/! SB !23/! A ! MR ME ! MR MG \MP!4/5^ MQC ' P \MP!4/6^ ! DF ' ! HE ' FQJ ' MDBRJ ' P \MP!4/7^ I " > $ BJ ' EJU D EQ SRJ ' SFJ ' MDJ ' ! A OBot/!SEJ ' $ SE ! T SRJ ' OBot/!A P MDC ' ! OBot/! ! 9/! \MP!4/5^ - " BJJ ' D \MP!4/4^ DJ $' F ! OBot/!E $' G $'P \MP!4/5^ I ! 8/! - \MP!4/2^ SCJJ ' MBJJ ' SDJJJ ' MEJJ ' J ! A OBot/!SHJJ ' $ ! 0 ?P \MP!4/7^ P \MP!4/7^ T V J DEQ VC DD P \MP!4/5^ P \MP!4/5^ ŽŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº !24/! A ! !25/! < T ! A ! SB MQ MB SDEJ ' MFFJ ' SCJ ' MDCJ ' DJ J ! OBot/! J SDEJ ' ! A MFJ ' P \MP!4/5^ B GB N ! OBot/ BC ' C BQ P \MP!4/5^ 20 N D C 30 N 20 N 1.5 m 10 N A 5m 3m A 8N 3m 8m B 1.5 m 10 N B 40 N ! Gjh/!4/54! !26/! A A DJ ' FJ ' BJ ' B GG " Gjh/!4/55 GJ ' DR I-N ! OBot/ FC FC ' GRU > $ ? !27/! N B QR P \MP!4/9^ F A B GR % ! OBot/ DDR ' MEQ CU J RF P \MP!4/9^ 100 N 50 N 90° 100 N 280 N 5N 2m 3m 45° 40 N 10 N 3m ! 90 N 15 N 80 N Gjh/!4/56! Gjh/!4/57! Gjh/!4/58 !28/! N ! OBot/ BJ ' > !29/! N F ! OBot/ BQF F ' .$ W !2:/! W< ? F ! X %9 GRJ=' A = ! A ! ME FU B GC ! OBot/!DB R ' ! B GE P \MP!4/5^ A B GQ D RD P \MP!4/9^ >-/?P \MP!4/2^ ɏ Žŵ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ DJJ ' !31/! I A B GH N ! ! OBot/! !>!DJJ '-! - !C ' - = >--/?P \MP!4/7^ 30 mm 450 N 20 mm B 20 mm F 450 N ! ! C ! A Gjh/!4/59! FJ $' !32/! ! ! Gjh/!4/5: ! ! EJ 9 OBot/! !>!FJ $'-! A !DFJJ ' B RJ >--/?P \MP!4/7^ 10 N 30° 20 kN 60 mm A 20° O 20° B 2m 30° 10 N O ! 400 mm Gjh/!4/61! !33/! / $ DJ ' ! N !34/! Gjh/!4/62 9 A 9 E $' ! OBot/ BGEG ' A G $ B RF N 9 ! OBot/ H FE $' B RD >-/?P \MP!4/5^ G G! T >--/? >VB J? >J D C? P \MP!4/4^ ŽŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº y (m) 10° P (2, 3) 300 N 300 mm 3 5 F = 6 kN 30 mm x (m) O ! Gjh/!4/63! Gjh/!4/64 !35/! Dbmdvmbuf!uif!npnfou!pg!uif!411 O!gpsdf!po!uif!iboemf!pg!uif!npolfz!xsfodi!bcpvu!uif!dfousf!pg!uif!cpmu-! tipxo!jo!Gjh/!4/64/! ! \Bot/!98/17!On!)DX*^! \MP!4/2^ ! !36/! Sfevdf!uif!tztufn!pg!gpsdft!bdujoh!po!uif!cfbn!tipxo!jo!Gjh/!4/65!joup!b!gpsdf!bu!B!boe!b!dpvqmf/! ! ! \Bot/!21!O!)vqxbset*-! !>!,411!On^! \MP!4/7^ 40 N 20 N 10 N 2m 2m 40 N 2m 320 mm B A 60 N ! ! Gjh/!4/65! Gjh/!4/66! !37/! B!xsfodi!jo!uif!ipsj{poubm!qptjujpo!jt!mpdlfe!bspvoe!b!qjqf!bu!jut!mfgu!foe-!bt!tipxo!jo!Gjh/!4/66/!B!gpsdf!pg! 51!O!jt!bqqmjfe!bu!uif!sjhiu!foe!bu!bo!fggfdujwf!bsn!pg!431!nn/!Gjoe!uif!frvjwbmfou!pg!uijt!gpsdf!jo!uif!gpsn!pg! b!gpsdf!bdujoh!uispvhi!uif!qjqf!boe!b!dpvqmf/! \Bot/!51!O!)epxoxbset*-!23/9!On!)DX*^! \MP!4/7^ !38/! Uif! uisff! qbsbmmfm! gpsdft! boe! pof! dpvqmf! bdu! po! b! dboujmfwfs! cfbn-! bt! tipxo! jo! Gjh/! 4/67/! Efufsnjof! uif! sftvmubou!pg!uif!uisff!gpsdft!boe!uif!dpvqmf/!! \Bot/!21!O!)epxoxbset*-!71!On!)DDX*-!$ >!Ï!7!n^! \MP!4/7^ y 50 N 20 N 40 N 20 N (0, 6) 150 Nm 1m 1m O 45° (2, 2) (16, –2) Gjh/!4/67! 20° x 10 N 50 N ! (16, 10) 30 N O 1m 30° ! Gjh/!4/68 !39/! Efufsnjof!uif!sftvmubou!pg!uif!opo.dpodvssfou-!opo.qbsbmmfm!tztufn!pg!gpsdft!tipxo!jo!Gjh/!4/68/!Bttvnf!uibu! uif!dppsejobuft!bsf!hjwfo!jo!nfusft/!! \Bot/!75!O-!89/7¡!)tfdpoe!rvbesbou*-!$ * 23/8!n^! \MP!4/9^ ɏ Žŷ -¶´¬µ»ºɏ¨µ«ɏ#¶¼·³¬ºɏ ! !3:/! Uif!gpsdft!jo!uif!cfmut!pg!uif!qvmmfz!tztufn!tipxo!jo!Gjh/!4/69!bsf!fjuifs!wfsujdbm!ps!ipsj{poubm/!Sfevdf!uijt! tztufn!pg!gpsdft!up!b!tjohmf!gpsdf!bu!P!boe!b!dpvqmf/! \Bot/!87/3!O-!77/9¡!)gpvsui!rvbesbou*-! !>!21!On!)DX*^! \MP!4/7^ ! !41/! Sfevdf!uif!tztufn!pg!gpsdft!boe!dpvqmf!tipxo!jo!Gjh/4/6:!up!uif!tjnqmftu!tztufn!vtjoh!qpjou!P/! ! !! \Bot/!5:/6!O-!1/69¼!)gpvsui!rvbesbou*-!$ joufsdfqu!>!Ï3!n^! \MP!4/8^ y 40 N 20 N 3m 2m 40 N 70 N 222 N ◊ m 1m ! x 2m 30 N 4m 10 N ! 45° O 90 N Gjh/!4/69! ! Gjh/!4/6:! !42/! Uif!dpouspm!mfwfs!pg!uif!iboe.csblf!jo!b!wfijdmf!jt!tvckfdufe!up!b!dmpdlxjtf!dpvqmf!pg!91!O!n!fyfsufe!cz!jut!tibgu! bu!uif!qpjou!B!boe!jt!eftjhofe!up!pqfsbuf!xjui!b!qvmm!pg!331!O-!bt!tipxo!jo!Gjh/!4/71/!Jg!uif!sftvmubou!dpvqmf!boe! uif!gpsdf!tztufn!qbttft!uispvhi!uif!qpjou!B-!efufsnjof!uif!ejnfotjpo!$ pg!uif!mfwfs/ ! \Bot/!348/5!nn^! \MP!4/7^ !43/! B! ejf! jt! vtfe! up! dvu! uisfbet! po! b! spe! cz! bqqmzjoh! uxp! 91 O! gpsdft-! bt! tipxo! jo! Gjh/! 4/72/! Efufsnjof! uif! nbhojuvef!pg!uif!frvbm!gpsdft!fyfsufe!po!uif!21 nn!spe!cz!fbdi!pg!uif!gpvs!dvuujoh!tvsgbdft!cfdbvtf!pg!uif! uxp!91 O!gpsdft!bqqmjfe!po!uif!mfwfs!pg!uif!uisfbe dvuufs/! ! \Bot/!2311!O^! \MP!4/6^ 80 N 150 mm 150 220 N mm 150 mm 10 mm x 25° ! Gjh/!4/71! A 80 N Gjh/!4/72! ŽŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº #¯¨·»¬¹ 5 Frvjmjcsjvn!pg!Cpejft .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ ,°º»ɏ»¯¬ɏµ¬ª¬ºº¨¹Àɏ¨µ«ɏº¼ĺª°¬µ»ɏª¶µ«°»°¶µºɏ¶ɏ¬¸¼°³°©¹°¼´ɏ¶¹ɏ¨ɏª¶·³¨µ¨¹ɏ¶¹ª¬ɏºÀº»¬´ȍ ,°º»ɏ»¯¬ɏª¶µ«°»°¶µºɏ¶ɏ¬¸¼°³°©¹°¼´ɏ¶¹ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏª¶·³¨µ¨¹ɏ¶¹ª¬ɏºÀº»¬´ºȍ $¬ºª¹°©¬ɏ»¯¬ɏµ¨»¼¹¬ɏ¶ɏ»¯¹¬¬ɏ»À·¬ºɏ¶ɏ¶¹ª¬ºɏ¨ª»°µ®ɏ¶µɏ¨ɏ©¶«Àȍɏ #¶µº»¹¼ª»ɏ¹¬¬Ɋ©¶«Àɏ«°¨®¹¨´ɏ¶ɏ¨ɏ©¶«Àɏ°µɏ¬¸¼°³°©¹°¼´ɏ¶¹ɏº¶´¬ɏ°´·¶¹»¨µ»ɏª¨º¬ºȍ $°ºª¼ººɏ»¯¬ɏ·¹°µª°·³¬ɏ¶ɏ¬¸¼°³°©¹°¼´ɏ¶¹ɏșŵȚɏ»¾¶Ɋ¶¹ª¬ɏºÀº»¬´ȎɏșŶȚɏ»¯¹¬¬Ɋ¶¹ª¬ɏºÀº»¬´Ȏɏ¨µ«ɏșŷȚɏ ¶¼¹Ɋ¶¹ª¬ɏºÀº»¬´ȍ ɏ .1!frhɏ 2¬ª¶¼µ»Ȏɏ·¹¶½¬ɏ¨µ«ɏ¨··³Àɏ,¨´°Ƞºɏ»¯¬¶¹¬´ȍ ! ɏ ɏ ɏ ɏ .1!frcɏ .1!frdɏ .1!freɏ .1!frfɏ .1!frgɏ .1!frc ,°º»ɏ»¯¬ɏµ¬ª¬ºº¨¹Àɏ¨µ«ɏ º¼ĺª°¬µ»ɏª¶µ«°»°¶µºɏ ¶ɏ¬¸¼°³°©¹°¼´ɏ¶¹ɏ¨ɏ ª¶·³¨µ¨¹ɏ¶¹ª¬ɏºÀº»¬´ȍ 5/2! ! �! OFDFTTBSZ!BOE!TVGGJDJFOU!DPOEJUJPOT!PG FRVJMJCSJVN!GPS!B!DPQMBOBS!GPSDF!TZTUFN!! Tubujdt! efbmt! qsjnbsjmz! xjui! uif! ofdfttbsz! boe! tvggjdjfou! dpoejujpot! bcpvu! uif! !bdujoh!po!b!tusvduvsf!up!nbjoubjo!jut!frvjmjcsjvn/!Jo!qsbdujdbm!xpsme-! bmm!qiztjdbm!cpejft!bsf!uisff.ejnfotjpobm/!Ipxfwfs-!nboz!pg!uifn!dbo!cf!usfbufe!bt! uxp.ejnfotjpobm!jg!uif!fyufsobm!gpsdft!bdujoh!po!uifn!bsf!jo!b!tjohmf!qmbof!ps!dbo!cf! qspkfdufe!poup!b!tjohmf!qmbof/!Ifsf-!xf!tibmm!dpoÝof!pvs!ejtdvttjpo!bcpvu!uif!frvjmjcsjvn!pg!cpejft!tvckfdufe! up! !gpsdf!tztufnt/ Uif!npwfnfou!pg!b!sjhje!cpez!ejggfst!gspn!uibu!pg!b!qbsujdmf!jo!uif!tfotf!uibu!xf!bmtp!ibwf!up!ublf!uif! !pg!uif!cpez!joup!dpotjefsbujpo/!Jo!beejujpo!up!uif! !pg!b!cpez-!ju!nvtu!bmtp!cf!jo! !jg!ju!jt!up!cf!jo!frvjmjcsjvn/ Mfu!vt!dpotjefs!uif!fggfdu!pg!ejggfsfou!uzqf!pg!gpsdft!bdujoh!po!b!sjhje!cpez/!!Jo!Gjh/!5/2 -!uif!cpez!jt!tvc. kfdufe!up!uxp!frvbm!boe!pqqptjuf!gpsdft!pg!nbhojuvef! bdujoh!bmpoh!uif!tbnf!mjof!pg!bdujpo/!Uif!sftvmubou!pg! uiftf!gpsdft!jt!{fsp<!ifodf-!uifsf!jt!op!ufoefodz!pg!npujpo!pg!usbotmbujpo/!!Bmtp-!uif!sftvmubou!npnfou!pg!uif! gpsdft!bcpvu!DN!)Dfousf!pg!Nbtt*!jt!{fsp<!ifodf-!uifsf!jt!op!ufoefodz!pg!spubujpo/!!Uif!cpez!jt!jo! Jo!Gjh/!5/2 -!uif!cpez!jt!tvckfdufe!up!b!tjohmf!gpsdf! bdujoh!bmpoh!uif!mjof!pg!bdujpo!qbttjoh!uispvhi!DN/! Uif!npnfou!pg!uif!gpsdf!bcpvu!DN!jt!{fsp<!ifodf-!uifsf!jt!op!ufoefodz!pg!spubujpo/!!Cvu!uif!gpsdf! !dbvtft!b! ufoefodz!pg! npujpo/! ɏ ŽŹ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ F F CM F CM CM F F (a) (b) (c) (d ) ;) * ) * F CM ) * ) * ) * Jo!Gjh/!5/2 -!uif!cpez!jt!tvckfdufe!up!uxp!frvbm!boe!pqqptjuf!gpsdft!pg!nbhojuvef! -!xjui!uifjs!mjoft!pg! bdujpo!tfqbsbufe!cz!b!ejtubodf/!Uiftf!gpsdft!gpsn!b!dpvqmf/!Uif!sftvmubou!pg!uiftf!gpsdft!jt!{fsp<!ifodf-!uifsf! jt!op!usbotmbupsz npujpo/!Ipxfwfs-!evf!up!uif!npnfou!pg!uif!dpvqmf-!uif!cpez!ibt!b!ufoefodz!up! !bcpvu! jut!DN/ Jo!Gjh/!5/2 -!uif!cpez!jt!tvckfdufe!up!b!tjohmf!gpsdf! bdujoh!bmpoh!uif!mjof!pg!bdujpo!uibu!epft!opu!qbtt! uispvhi!DN/!!Uif!cpez!ibt!b!ufoefodz!pg!cpui! boe / B!cpez!jt!jo! !jg!jut!tubuf!pg!sftu!)ps!pg!vojgpsn!usbotmbupsz!boe!spubsz!npujpo*!epft!opu!dibohf/!! Gps!b!dpqmbobs!gpsdf!tztufn-!uif!ofdfttbsz!boe!tvgÝdjfou!dpoejujpot!pg!frvjmjcsjvn!bsf! R = SF = 0 and C = SM = 0 ! ! )5/2* xifsf-!S jt!uif!wfdups!tvn!pg!bmm!gpsdft!bdujoh!po!uif!cpez-!boe S jt!uif!wfdups!tvn!pg!uif!npnfout!)bcpvu!boz!qpjou*!pg!bmm!uif!gpsdft!bdujoh!po!uif!cpez/ Gps!uif!gpmmpxjoh!uisff!uzqft!pg!dpqmbobs!gpsdf!tztufnt-!jotufbe!pg!uif!bcpwf!wfdups!frvbujpot-!xf!dbo!vtf! !bt!hjwfo!cfmpx/ .1!frd ,°º»ɏ»¯¬ɏª¶µ«°»°¶µºɏ ¶ɏ¬¸¼°³°©¹°¼´ɏ¶¹ɏ «°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ ª¶·³¨µ¨¹ɏ¶¹ª¬ɏºÀº»¬´ºȍ xifsf-!S S 5/3/3! 5/3! �! DPOEJUJPOT!PG!FRVJMJCSJVN!GPS!EJGGFSFOU UZQFT!PG!DPQMBOBS!GPSDF!TZTUFNT 5/3/2! Dpqmbobs!Dpodvssfou!Gpsdf!Tztufn! ! Gps!uijt!gpsdf!tztufn-!uif!frvjmjcsjvn!frvbujpot!)jo!tdbmbs!gpsn*!dbo!cf!xsjuufo!bt! S !>!1! boe! S !>!1! )5/3* jt!uif!bmhfcsbjd!tvn!pg!uif! dpnqpofout!pg!uif!gpsdft-!boe jt!uif!bmhfcsbjd!tvn!pg!uif! dpnqpofout!pg!uif!gpsdft/ Dpqmbobs!Qbsbmmfm!Gpsdf!Tztufn Gps! uijt! gpsdf! tztufn-! uif! frvjmjcsjvn! frvbujpot! )jo!tdbmbs!gpsn*!dbo!cf!xsjuufo!bt S !>!1! boe! S }B!>!1! )5/4* xifsf-!S jt!uif!bmhfcsbjd!tvn!pg!uif!qbsbmmfm!gpsdft-! boe S }B jt!uif!bmhfcsbjd!tvn!pg!uif!npnfout!pg!! uif!gpsdft!bcpvu!boz!qpjou!B!jo!uif!qmbof/ Myth Fact! Uif!frvjmjcsbou!jt!uif!gpsdf!uibu! csjoht!b!tfu!pg!gpsdft!bdujoh!po! b!cpez!jo!frvjmjcsjvn/!Uivt-! uif!frvjmjcsbou!jt!b!gpsdf!frvbm! jo!nbhojuvef!cvu!pqqptjuf!jo! ejsfdujpo!up!uif!sftvmubou/! Žźɏ 5/3/4! %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Dpqmbobs!Opo.qbsbmmfm!Opo.dpodvssfou!Gpsdf!Tztufn! Gps!uijt!gpsdf!tztufn-!uif!frvjmjcsjvn!frvbujpot!)jo!tdbmbs!gpsn*!dbo!cf!xsjuufo!bt S !>!1<! S !>!1! boe! S }B!>!1! xifsf-!S !!!!jt!uif!bmhfcsbjd!tvn!pg!uif! dpnqpofout!pg!uif!gpsdftS !!!!jt!uif!bmhfcsbjd!tvn!pg!uif! dpnqpofout!pg!uif!gpsdft-!boe S }B!jt!uif!bmhfcsbjd!tvn!pg!uif!npnfout!pg!uif!gpsdft!bcpvu!boz!qpjou!B!jo!uif!qmbof/ .1!fre 5/4! )5/5* �! UZQFT!PG!GPSDFT!BDUJOH!PO!B!CPEZ! Gpsdft!po!b!tztufn!dbo!cf!bqqmjfe!fjuifs!cz!ejsfdu!qiztjdbm!dpoubdu!ps!cz!sfnpuf! bdujpo/!Gpsdft!dbo!cf!fjuifs! !ps! !up!uif!tztufn!voefs!dpotjefsbujpo/! Bddpsejoh!up!OfxupoÔt!uijse!mbx-!gpsdf!bqqmjfe!jt!bmxbzt!bddpnqbojfe!cz!sfbdujwf! gpsdf/!!Cpui!bqqmjfe!gpsdf!boe!sfbdujwf!gpsdf!nbz!cf!fjuifs! ps! /! Uif!qsjodjqmf!pg!usbotnjttjcjmjuz!qfsnjut!vt!up!usfbu!b!gpsdf!bdujoh!po!b!sjhje!cpez!bt!tmjejoh!wfdups!bt!gbs!bt! jut!fyufsobm!fggfdut!bsf!dpodfsofe/!Uifsf!dbo!cf!uif!gpmmpxjoh!uisff!uzqft!pg!gpsdft!bdujoh!po!b!cpez!jo! frvjmjcsjvn/!! $¬ºª¹°©¬ɏ»¯¬ɏµ¨»¼¹¬ɏ¶ɏ »¯¹¬¬ɏ»À·¬ºɏ¶ɏ¶¹ª¬ºɏ ¨ª»°µ®ɏ¶µɏ¨ɏ©¶«Àȍ 2/!Bqqmjfe!Gpsdft Uiftf!bsf!uif!gpsdft!pg!qvti!ps!qvmm!bqqmjfe!fyufsobmmz!up!uif!cpez/!Fbdi!gpsdf!ibt! hpu!b!qpjou!pg!dpoubdu!xjui!uif!cpez/ 3/!Tfmg.Xfjhiu! Uif!xfjhiu! !)>! *!pg!uif!cpez!bdut!wfsujdbmmz!epxoxbse/!!Ju!dbo!cf!bttvnfe!up!cf! bdujoh!uispvhi!uif! !pg!uif!cpez/!!Jg!uif!tfmg.xfjhiu!jt!wfsz!tnbmm!dpnqbsfe!up!puifs!gpsdft! bdujoh!po!uif!cpez-!ju!nbz!cf!jhopsfe/ Wall Ball 4/!Sfbdujpot! Uiftf!bsf!uif!gpsdft!efwfmpqfe!cz!puifs! cpejft!jo!dpoubdu!xjui!uif!cpez!voefs!dpotjefsbujpo/!Jg! uif!cpez!voefs!frvjmjcsjvn!qsfttft!)dbmmfe! !gpsdf*! bhbjotu!bopuifs!cpez-!ju!jt!bmtp!qsfttfe!)dbmmfe! ! gpsdf*!cz!uif!puifs!cpez/!Bt!qfs!OfxupoÔt!uijse!mbx-!uif! sfbdujpo!jt!frvbm!boe!pqqptjuf!up!uif!bdujpo/!Uif!sfbdujpot! bekvtu!uifntfmwft!up!lffq!uif!cpez!jo!frvjmjcsjvn/!Ju!jt! pg! vunptu! jnqpsubodf! up! dpssfdumz! jefoujgz! uif! bdujpo sfbdujpo!qbjs!pg!gpsdft/!Uif!sfbdujpo!gpsdft!bsf! tvqqmjfe! cz! uif! hspvoe-! xbmmt-! spmmfst-! lojgf fehft-!dbcmft-!qjot-!ps!puifs!nfbot/!B!spmmfs!ps! lojgf.fehf!tvqqpsu!hjwft!b!sfbdujpo!qfsqfoejdvmbs! up!uif!nfncfs/!Ipxfwfs-!b!qjo!dpoofdujpo!dbo! hjwf!uif!sfbdujpo!bu!boz!bohmf/ Gjhvsf!5/3!jmmvtusbuft!uif!uisff!uzqft!pg!gpsdft! bdujoh!po!b!cbmm!cfjoh!qsfttfe!bhbjotu!b!xbmm/ .1!frf #¶µº»¹¼ª»ɏ¹¬¬Ɋ©¶«Àɏ «°¨®¹¨´ɏ¶ɏ¨ɏ©¶«Àɏ°µɏ ¬¸¼°³°©¹°¼´ɏ¶¹ɏº¶´¬ɏ °´·¶¹»¨µ»ɏª¨º¬ºȍ 5/5! Frictional force Applied force (Action) Reaction W Self-weight $ Myth # Fact! Uif!sfbdujpo!gpsdf!jt!opsnbm!up! uif!tvsgbdf!pg!dpoubdu!pomz! " "/ �! GSFF.CPEZ!EJBHSBN! Gps!bobmz{joh!uif!frvjmjcsjvn!dpoejujpo!pg!b!cpez-!ju!jt!ofdfttbsz!up!Ýstu! !uif! cpez!gspn!uif!puifs!cpejft!jo!dpoubdu/!!Xf!uifo!esbx!uif! ! "!pg!uif!cpez!tipxjoh! !uif!fyufsobm!gpsdft!gspn!uif! !uibu!bdu! !uif!cpez/!Tvdi!b!ejbhsbn! jt!dbmmfe!jut! !)GCE*/!Esbxjoh!uif!gsff.cpez!ejbhsbn!jt! " # # " # ɏ ŽŻ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ Uif!gsff.cpez!ejbhsbnt!gps!tpnf!jnqpsubou!dbtft!bsf!tipxo!jo!Ubcmf!5/2/ # W !)Sftujoh!po!b!ipsj{poubm! tvsgbdf* 2/ R T )Ibohjoh!cz!b!tusjoh!boe! tvqqpsufe!cz!b!xbmm* 3/ R W !)Sftujoh!cfuxffo!uxp!jodmjofe! xbmmt* 4/ R1 600 N W R2 F2 600 N R2 )Lfqu!bhbjotu!b! xbmm*!|Gsjdujpo!fyjtut!bu!cpui!uif!xbmm! boe!Þpps~ 5/ G W F1 R1 T T A ! B!)Sftujoh!po!Þpps!boe!qvmmfe! vq!cz!qvmmfz!bssbohfnfou* 6/ 40 N B B R 40 N W = 60 N A 60 N .1!frg $°ºª¼ººɏ»¯¬ɏ·¹°µª°·³¬ɏ¶ɏ ¬¸¼°³°©¹°¼´ɏ¶¹ɏɏ șŵȚɏ»¾¶Ɋ¶¹ª¬ɏºÀº»¬´Ȏɏ șŶȚɏ»¯¹¬¬Ɋ¶¹ª¬ɏºÀº»¬´Ȏɏ ¨µ«ɏșŷȚɏ¶¼¹Ɋ¶¹ª¬ɏ ºÀº»¬´ȍ " 5/6! �! QSJODJQMF!PG!FRVJMJCSJVN! ! " " # 2/!Uxp.Gpsdf!Qsjodjqmf " Žżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 3/!Uisff.Gpsdf!Qsjodjqmf Myth " " " ! # Fact! " ' " # " " 4/!Gpvs.Gpsdf!Qsjodjqmf " " " " " " ! # " ## " " 5/7! .1!frh �! MBNJÜT!UIFPSFN $ 2¬ª¶¼µ»Ȏɏ·¹¶½¬ɏ¨µ«ɏ ¨··³Àɏ,¨´°Ƞºɏ»¯¬¶¹¬´ȍ % & " " " 1 sin a ) # " # # " " 2 sin b " ) " ' ( " 3 * sin g F3 b a F2 a (180° – b ) b g F3 a F1 (180° – g ) b F2 c g (180° – a) F1 (a) (b) # $ % + " ' g a & " �! 9ORTHY!OF!0OTE "D ( - , ( , . ( % b /04 5 q ) % q & * 6 " , ɏ ŽŽ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ D 7 " Myth ab bc ca ) ) sin(180° - a ) sin(180° - b ) sin(180° - g ) 1 sin a ) 2 sin b ) 3 Fact! 8 sin g 'XAMPLE!frc $¬»¬¹´°µ¬ɏ»¯¬ɏ¯¶¹°Á¶µ»¨³ɏ ¶¹ª¬ɏ»¯¨»ɏ¯¨ºɏ»¶ɏ©¬ɏ¨··³°¬«ɏ»¶ɏ¨ɏ©³¶ª²ɏ¾¬°®¯°µ®ɏ ŵŴŴŴɏ.ɏ»¶ɏ¯¶³«ɏ°»ɏ°µɏ·¶º°»°¶µɏ¶µɏ¨ɏº´¶¶»¯ɏ·³¨µ¬ɏ!"ɏ°µª³°µ¬«ɏ¨»ɏŷŴǸɏ ¾°»¯ɏ»¯¬ɏ¯¶¹°Á¶µ»¨³Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŸȍŸ¨ȍɏ!ºº¼´¬ɏ»¯¬ɏº¼¹¨ª¬ɏ¶ɏª¶µ»¨ª»ɏ»¶ɏ©¬ɏ¹°ª»°¶µ³¬ººȍɏ - . / . 30° N 1000 N 1000 N $ 9 ' " *++ (b) FBD (c) Force diagram !! # : " " " # ' ' " '" ; & ' S ) 0< ' S ) 0< ( 5 ' ' , . (04 5 000 ) 0 (04 ) 0 fi fi 1000 ') cos 30∞ ()' (04 ) 1000 cos 30∞ "' ! ( 1000 ) sin 150∞ sin 120∞ ( 1000 ¥ sin 120∞ (04 ) ()) #( �! 9ORTHY!OF!0OTE ' fi x 1000 N (a) Block on inclined plane 5OLUTION 120° P 150° 90° P P 30° y N B A 01 " # ()) #( 'XAMPLE!frd !ɏº·¯¬¹¬ɏ¾¬°®¯°µ®ɏŹŴɏ.ɏ°ºɏ»°¬«ɏ»¶ɏ»¯¬ɏ·¶°µ»ɏ!ɏ¶ɏ¨ɏº´¶¶»¯ɏ¾¨³³ɏ©Àɏ¨ɏº»¹°µ®ɏº¶ɏ»¯¨»ɏ °»ɏ´¨²¬ºɏ¨µɏ¨µ®³¬ɏ¶ɏŶŴǸɏ¾°»¯ɏ»¯¬ɏ½¬¹»°ª¨³Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŸȍŹ¨ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ »¬µº°¶µɏ°µɏ»¯¬ɏº»¹°µ®ɏ¨µ«ɏ»¯¬ɏ¹¬¨ª»°¶µɏ¹¶´ɏ»¯¬ɏ¾¨³³ȍɏ - . / . 01 ŵŴŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº A 20° T 20° 20° y T R 50 N W = 50 N (a) ( 5OLUTION ! # (c) (b) $ #" " " " # ) # $ % & * # # ( ) x R # ' # $ % (# ) sin 90∞ fi ) ! * sin(180∞ - 20∞) * (# 50 sin(90∞ + 20∞) 2 "# *+ S - S % ,( fi ) (# fi * 2 ) . / */) . 'XAMPLE!fre 4¾¶ɏ´¬µɏª¨¹¹Àɏ¨ɏ¾¬°®¯»ɏ¶ɏżŴŴɏ.ɏ©Àɏ´¬¨µºɏ¶ɏ»¾¶ɏ¹¶·¬ºɏķ¿¬«ɏ»¶ɏ»¯¬ɏ¾¬°®¯»ȍɏ/µ¬ɏ ¹¶·¬ɏ °ºɏ °µª³°µ¬«ɏ ¨»ɏ ŷŴǸɏ ¨µ«ɏ »¯¬ɏ ¶»¯¬¹ɏ ¨»ɏ ŸŹǸɏ ¾°»¯ɏ »¯¬ɏ ¯¶¹°Á¶µ»¨³Ȏɏ ¨ºɏ º¯¶¾µɏ °µɏ &°®ȍɏŸȍź¨ȍɏ&°µ«ɏ»¯¬ɏ»¬µº°¶µɏ°µɏ¬¨ª¯ɏ¹¶·¬ȍɏ - . 01 T2 T1 T2 T1 45° 30° 105° 135° 120° 800 N 800 N (a) (b) 0 5OLUTION ! 8 # : ( 8 9% ) $ 9: %4 ! . ( )1 sin 135∞ 800 sin 105∞ fi ) (2( 0 6 / *: ) ( ). 9% , 6 &( 7 ( ɏ ŵŴŵ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ )2 sin 120∞ 800 sin 105∞ fi ). ) ) 0 'XAMPLE!frf 4¾¶ɏ¬µ«ºɏ¶ɏ¨ɏº»¹°µ®ɏ!"#$ɏ¨¹¬ɏ»°¬«ɏ»¶ɏķ¿¬«ɏ·¶°µ»ºɏ!ɏ¨µ«ɏ$ȍɏ4¾¶ɏ¬¸¼¨³ɏ¾¬°®¯»ºɏ¶ɏ ŹŴŴɏ.ɏ¨¹¬ɏ¨Œ¨ª¯¬«ɏ»¶ɏ°»ɏ¨»ɏ·¶°µ»ºɏ"ɏ¨µ«ɏ#ȍɏɏ4¯¬ɏ¨µ®³¬ºɏ´¨«¬ɏ©Àɏ«°Ĺ¬¹¬µ»ɏ·¨¹»ºɏ¶ɏ »¯¬ɏº»¹°µ®ɏ¾°»¯ɏ»¯¬ɏ½¬¹»°ª¨³ɏ¨¹¬ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŸȍŻȍɏɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ»¬µº°¶µºɏ°µɏ»¯¬ɏ·¨¹»ºɏ!"Ȏɏ"#ɏ¨µ«ɏ #$ɏ¶ɏ»¯¬ɏº»¹°µ®ȍɏ - . 01 A D 60° 30° 120° B 500 N C 500 N ) ));( );< )<= ? ; <( &( 7 ( 6 / . 4 ( ? <( 5OLUTION );< ) ( 6 /4 # 6 . ( $ );( ;< ) ? %6 /: );<( )<= . 4 . &( 94 TAB <=( ;( 9: 7 ( . TBC 120° 150° 150° B 60° TBC 120° C TCD 120° 500 N 500 N (a) (b) 2 @ ) ? ; < ! ( ; *$ % 6 ,( )AB sin 60∞ )BC sin 150∞ ( 500 sin 150∞ fi )); 200 );< (33 7 > # ));( ŵŴŶɏ ) %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ? < *$ % 6 ,( )CD sin 120° 500 sin 120° fi )<= (33 'XAMPLE!frg 4¾¶ɏ¬¸¼¨³³Àɏ¯¬¨½Àɏº·¯¬¹¬ºɏ¶ɏźŴɏ´´ɏ¹¨«°¼ºɏ¬¨ª¯ɏ¨¹¬ɏ²¬·»ɏ°µɏ¨ɏº´¶¶»¯ɏº·¯¬¹°ª¨³ɏ ª¼·ɏ¶ɏŵżŴɏ´´ɏ¹¨«°¼ºȍɏ3¯¶¾ɏ»¯¨»Ȏɏ¾¯¬µɏ°µɏ¬¸¼°³°©¹°¼´Ȏɏ»¯¬ɏ¹¬¨ª»°¶µɏ©¬»¾¬¬µɏ»¯¬ɏ »¾¶ɏº·¯¬¹¬ºɏ°ºɏ¯¨³ɏ»¯¬ɏ¹¬¨ª»°¶µɏ©¬»¾¬¬µɏ¨ɏº·¯¬¹¬ɏ¨µ«ɏ»¯¬ɏª¼·ȍɏ - . 01 O R A S S B D A S C 60° E W W W R R (a) (b) 4 5OLUTION !# # ) ; # ! # *( # A= 6 ( )= 4 A; . ) ( ); )< 9 <; . ! ( DA); 4 ! ) # $ %8 ) * + 1 fi + # sin 90∞ sin(90∞ + 60∞) 2 # A + @ A) . # ( $ %8 @ ( 'XAMPLE!frh !ɏº´¶¶»¯ɏª°¹ª¼³¨¹ɏªÀ³°µ«¬¹ɏ¶ɏŵŴŴŴɏ.ɏ¾¬°®¯»ɏ¨µ«ɏŵɏ´ɏ¹¨«°¼ºɏ°ºɏ³À°µ®ɏ°µɏ¨ɏ»¹°¨µ®¼³¨¹ɏ ®¹¶¶½¬Ȏɏ¶µ¬ɏº°«¬ɏ¶ɏ¾¯°ª¯ɏ´¨²¬ºɏ¨ɏŶŴǸɏ¨µ®³¬ɏ¨µ«ɏ»¯¬ɏ¶»¯¬¹ɏº°«¬Ȏɏ¨ɏŷŹǸɏ¨µ®³¬ɏ¾°»¯ɏ »¯¬ɏ¯¶¹°Á¶µ»¨³ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ¹¬¨ª»°¶µºɏ¨»ɏ»¯¬ɏº¼¹¨ª¬ºɏ¶ɏª¶µ»¨ª»ȍɏ - . 01 RA RB O 35° 20° D 20° E A B 20° 35° O 35° C 1000 N RB 1000 N RA (a) (b) 3 ( ɏ ŵŴŷ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ 5OLUTION * * &' ! " # % $ ( % ! % ) %* % ( *A *B 1000 sin(180∞ - 35∞) sin(180∞ - 20∞) sin(35∞ + 20∞) fi 1000 ¥ sin 55∞ * - * - ./ - )33 1000 ¥ sin 55∞ 4 /- )( 'XAMPLE!fri !ɏ¼µ°¶¹´ɏ¹¶«ɏ!"ɏ°ºɏ°µɏ¬¸¼°³°©¹°¼´ɏ¾¯¬µɏ¹¬º»°µ®ɏ¶µɏ¨ɏº´¶¶»¯ɏ®¹¶¶½¬Ȏɏɏ»¯¬ɏ¾¨³³ºɏ¶ɏ ¾¯°ª¯ɏ¨¹¬ɏ¨»ɏ¹°®¯»ɏ¨µ®³¬ºɏ»¶ɏ¬¨ª¯ɏ¶»¯¬¹Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŸȍŵŵ¨ȍɏ)ɏ»¯¬ɏ¾¨³³ɏ#"ɏ´¨²¬ºɏ ¨µɏ¨µ®³¬ɏfɏ¾°»¯ɏ»¯¬ɏ¯¶¹°Á¶µ»¨³Ȏɏ«¬»¬¹´°µ¬ɏ»¯¬ɏ¨µ®³¬ɏqɏ´¨«¬ɏ©Àɏ»¯¬ɏ¹¶«ɏ!"ɏ¾°»¯ɏ»¯¬ɏ¾¨³³ɏ#"ȍ - . (1 ɏ ɏ D A A RA G G q B W f C # $ (b) % 6 % * * ! RB C (a) 5OLUTION ! 79 : 7 9 < 7 9 < B q W f ; % % % $ ) %% : $ = # % ; -; ! q - –; - –; - 437 8 f ! ,% $ #&&+6+10#.!51.8'&!':#/2.'5 'XAMPLE!frj 5OLUTION ! &$ - ¥ ? @ - C? > ' ! \ – – !ɏ ŸɊ²®ɏ ³¨´·ɏ °ºɏ º¼··¶¹»¬«ɏ ©Àɏ »¾¶ɏ ª¨©³¬ºɏ !"ɏ ¨µ«ɏ !#Ȏɏ ¨ºɏ º¯¶¾µɏ °µɏ &°®ȍɏ ŸȍŵŶ¨ȍɏ $¬»¬¹´°µ¬ɏ»¯¬ɏ»¬µº°¶µɏ°µɏ¬¨ª¯ɏª¨©³¬ȍɏ - . 01 % " > ) % - D 7>E 9 - 4C / – - @ /D– - 4 4/ – ! $ - D 7CE 9 - F 4/ - @ /D– - @ / $ ) % ) ŵŴŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 2m B 1m TAB D C 1m TAC A E W = 39.2 N A (a) G C 3m D B 3m 2m (b) % $ % " 6G # $ % # # 7 >9 S - 6 ) F 4/ D ) 4C / S - 6 ) F 4/ H ) 4C / D C? > # " I ) -( 0 ) - 40 " 6G " % % $ % % ! # " J % K % F 4/9 ¥ H 7) F 4/9 ¥ > S L - 6 D C? > ¥ > H 7) fi ) - 40 " % % $ % % 7 9 ! 7 9 + ' S L - 6 C? > ¥ C D 7) fi ) -( 0 7#9 )" 4C /9 ¥ 6G ) %* % )AB )AC 39.2 sin 108.4∞ sin 116.6∞ sin(63.4∞ + 71.6∞) ) ) -( 0 " % % 7 9 4C /9 ¥ C �! 9ORTHY!OF!0OTE D 7) " fi 79 7 9 : $ % & ) %* % - 40 7 9 % % 'XAMPLE!frk "³¶ª²ºɏ!ɏ¨µ«ɏ"Ȏɏ¾¬°®¯°µ®ɏŶŴɏ²®ɏ¨µ«ɏŵŹɏ²®ɏ¹¬º·¬ª»°½¬³ÀȎɏ¹¬º»ɏ¶µɏº´¶¶»¯ɏ·³¨µ¬ºɏ¨ºɏ º¯¶¾µɏ°µɏ&°®ȍɏŸȍŵŷ¨ȍɏ4¯¬Àɏ¨¹¬ɏª¶µµ¬ª»¬«ɏ©Àɏ¨ɏ¾¬°®¯»³¬ººɏº»¹°µ®ɏ·¨ºº°µ®ɏ¶½¬¹ɏ¨ɏ ¹°ª»°¶µ³¬ººɏ·¼³³¬Àȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ¨µ®³¬ɏqɏ¨µ«ɏ»¯¬ɏ»¬µº°¶µɏ°µɏ»¯¬ɏº»¹°µ®ɏ¶¹ɏ¬¸¼°³°©¹°¼´ȍɏ - . 1 C A A B T B 30° q 30° T (a) # NA NB 196 N q 147 N (b) (c) ɏ ŵŴŹ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ 5OLUTION ! $ " - > ¥ ? @ - ?4 'M - .¥?@- F' N ) ! &$ % $ " # # $ % - 6 H ) D ?4 C /fi ) - 42 # # $ % % % $ " S $ " S H) D - 6 fi q- F q- C ) 98 147 147 fi q- 27 'XAMPLE!frcl !ɏ©¬¨´ɏ¯¨½°µ®ɏ¨ɏ·°µɏª¶µµ¬ª»°¶µɏ¨»ɏ°»ºɏ¬µ«ɏ!ɏ°ºɏº¼··¶¹»¬«ɏ©Àɏ¨ɏ¹¶³³¬¹ɏ¨»ɏ°»ºɏ¬µ«ɏ"ɏ »¶ɏ²¬¬·ɏ°»ɏ¯¶¹°Á¶µ»¨³ȍɏ)»ɏ°ºɏ³¶¨«¬«ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŸȍŵŸ¨ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ¹¬¨ª»°¶µºɏ ¶µɏ»¯¬ɏ©¬¨´Ȏɏµ¬®³¬ª»°µ®ɏ°»ºɏ»¯°ª²µ¬ººɏ¨µ«ɏ´¨ººȍ - . 1 10 kN 4 kN 6 kN 60° 45° 90° A 10 kN 3 kN 80° B 4 kN 6 kN A RAx 2m 8m 4m 4m 90° 60° 45° 4m 8m 2m 3 kN 80° B 4m RB RAy (a) 5OLUTION ! % # &$ - 6 * * S L - 6 * $ O # $ fi @ /- fi * -8 ) ! $ ¥>D7 4 /9 ¥ 4 D 74 $ % O * -2( ! = * % % $ " S - 6 * ./ D C % % % ' %% % 4 /H4 D ! # ) * $ % ) * $ D % * " % % ! ' % O S ! = (b) " ) D D 7C @ /9 ¥ @ H * ¥ @ - % % % N %% % = D * # ./9 ¥ 4 /D4 - 0 3# ! " * % ./ D C @ / H @ .> - $ $ % ŵŴźɏ : %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº !" ! " = S L -D > ! %% ¥ @H % % ¥ 4H7 $ $ O 4 /9 ¥ > H 74 ./9 ¥ ª - * % 4¾¶ɏªÀ³°µ«¬¹ºɏ!ɏ¨µ«ɏ"ɏ¶ɏ«°¨´¬»¬¹ºɏźɏª´ɏ¨µ«ɏŷɏª´ɏ¨µ«ɏ¾¬°®¯°µ®ɏżŴɏ².ɏ¨µ«ɏŶŴɏ ².Ȏɏ ¹¬º·¬ª»°½¬³Àɏ ¨¹¬ɏ ·³¨ª¬«ɏ ¨ºɏ º¯¶¾µɏ °µɏ &°®ɏ ŸȍŵŹ¨ȍɏ !ºº¼´°µ®ɏ ¨³³ɏ »¯¬ɏ ª¶µ»¨ª»ɏ º¼¹¨ª¬ºɏ»¶ɏ©¬ɏº´¶¶»¯Ȏɏķµ«ɏ»¯¬ɏ¹¬¨ª»°¶µºɏ¨»ɏ»¯¬ɏ¾¨³³ºȍɏ - . 1 'XAMPLE!frcc 5OLUTION ! &$ % . $P % % . \ q- H -CH CB 2.7 AB 4.5 .- . % H 9-F>D .->F % q - 1 - (0.6) 2 fi 4 -F>D7 72 mm B 20 kN C A 80 kN R1 80 kN RAB A R2 RAB B B q 20 kN R3 20 kN A q 80 kN 45° 45° (a) (b) FBD of cylinder A (c) FBD of cylinder B ( ! "# - S $ % *& ' * q S $ %* ' * q / 3 S "# *& $ * * %* fi * % q " fi *! ¥ q % ** : :** 8 !9 ! 20 sin q * 20 0.8 *! +, (! ! "# fi * % *! ¥ 8 % ** ¥ : : " ɏ ŵŴŻ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ S - / $ % %* fi ** "# * 3 !' q ' ** fi !9 80 + 20 0.707 % *! ¥ % ' ** ¥ : : ! : :¥ (! 'XAMPLE!frcd &°µ«ɏ»¯¬ɏ¹¬¨ª»°¶µºɏ2!ɏ¨µ«ɏ2"ɏ°µ«¼ª¬«ɏ¨»ɏ»¯¬ɏº¼··¶¹»ºɏ!ɏ¨µ«ɏ"ɏ¶ɏ»¯¬ɏ¹°®¯»Ɋ¨µ®³¬«ɏ ©¨¹ɏ !#"ɏ º¼··¶¹»¬«ɏ ¨ºɏ º¯¶¾µɏ °µɏ &°®ȍɏ Ÿȍŵź¨ɏ ¨µ«ɏ º¼©±¬ª»¬«ɏ »¶ɏ ¨ɏ ½¬¹»°ª¨³ɏ ³¶¨«ɏ 0ɏ ¨··³°¬«ɏ¨»ɏ»¯¬ɏ´°«·¶°µ»ɏ¶ɏ!#ȍɏ - . 1 B B RB P P RAy 0.9 m 0.9 m A A C 0.6 m RAx C 0.6 m 0.6 m (a) 0.6 m (b) 0 5OLUTION ; * 3 < S S S @= $ $ $ %* % "# * * q 'XAMPLE!frce = < #* * *$ ' * * %( fi * ( % D* % 8( ' ** fi % D * % 8( ' *( 0.6 ( fi * 3 0)$ 0.9 8:( ; # > 8 ? #> " RA2 x + AA2 y (- 0.67 ( ) 2 + ( 2 ( % (0 7 0.67 ( $ * # * %/ * '/ " 4¾¶ɏ ªÀ³°µ«¬¹ºɏ !ɏ ¨µ«ɏ "Ȏɏ ¾¬°®¯°µ®ɏ ż ².ɏ ¨µ«ɏ ŷ ².ɏ ¹¬º·¬ª»°½¬³ÀȎɏ ¹¬º»ɏ ¶µɏ º´¶¶»¯ɏ °µª³°µ¬«ɏ·³¨µ¬ºɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŸȍŵŻ¨ȍɏ4¯¬Àɏ¨¹¬ɏª¶µµ¬ª»¬«ɏ©Àɏ¨ɏ©¨¹ɏ¶ɏµ¬®³°®°©³¬ɏ ¾¬°®¯»ɏ¯°µ®¬«ɏ»¶ɏ¬¨ª¯ɏªÀ³°µ«¬¹ɏ¨»ɏ°»ºɏ®¬¶´¬»¹°ªɏª¬µ»¹¬ɏ©Àɏº´¶¶»¯ɏ·°µºȍɏ&°µ«ɏ»¯¬ɏ¶¹ª¬ɏ0ɏ»¶ɏ©¬ɏ¨··³°¬«ɏ »¶ɏ»¯¬ɏº´¨³³¬¹ɏªÀ³°µ«¬¹ɏ¨»ɏŸŹǸɏ»¶ɏ»¯¬ɏ½¬¹»°ª¨³ɏ»¶ɏ¯¶³«ɏ»¯¬ɏºÀº»¬´ɏ°µɏ»¯¬ɏ®°½¬µɏ·¶º°»°¶µȍɏ - . / . 01 ŵŴżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº A 45° P RAB 60° R 1 A R2 45° 45° 20° 65° 20° 20° B P 45° 60° 4 kN (a) B 3 kN (b) RAB (c) ) 5OLUTION ; # * # < / : E *AB sin(180∞ - 60∞) : > / * ; 4 sin(90∞ - 20∞ + 60∞) fi * / F ? !* +, ** < G #> ? F E / (# > ('& ( !* fi ; ( / !9 % * 8!9 % & > > 8!9 ' ** !9 83 D 9 ! / ( # > " / !ɏ¼µ°¶¹´ɏ³¨««¬¹ɏ!"ɏ¾¯¶º¬ɏ¾¬°®¯»ɏ°ºɏŶŴŴɏ.ɏ¨µ«ɏ³¬µ®»¯ɏ°ºɏźɏ´ɏ¹¬º»ºɏ¨®¨°µº»ɏ¨ɏ º´¶¶»¯ɏ½¬¹»°ª¨³ɏ¾¨³³ɏ´¨²°µ®ɏ¾°»¯ɏ°»ɏ¨µɏ¨µ®³¬ɏ¶ɏŷŴǸȍɏ4¯¬ɏ¶»¯¬¹ɏ¬µ«ɏ¹¬º»ºɏ¶µɏ»¯¬ɏ ®¹¶¼µ«ɏº¼¹¨ª¬ȍɏ&°µ«ɏ»¯¬ɏ¹¬¨ª»°¶µºɏ®°½¬µɏ»¶ɏ»¯¬ɏ³¨««¬¹ɏ©Àɏ»¯¬ɏ¾¨³³ɏ¨µ«ɏ»¯¬ɏĸ¶¶¹ɏ¨µ«ɏ»¯¬°¹ɏ°µª³°µ¨»°¶µɏ »¶ɏ»¯¬ɏ½¬¹»°ª¨³Ȏɏ¾¯¬µɏ¨ɏ´¨µɏ¾¬°®¯°µ®ɏŻŴŴɏ.ɏª³°´©ºɏ»¯¬ɏ³¨««¬¹ɏ©Àɏ¨ɏ«°º»¨µª¬ɏ¶ɏŵȍŹɏ´ɏ¨³¶µ®ɏ»¯¬ɏ³¬µ®»¯ɏ ¶ɏ»¯¬ɏ³¨««¬¹ȍɏ - . 1 'XAMPLE!frcf 5OLUTION ; H/ $ ? * # * < / H & # I ! > * # E / $ %* ' * $ %* % : ' * fi * # $ %: ¥ ! & 9" % * ¥ & fi * (2 2 8 / S S ; + S @ # * > J #> # " D , & 9" ' * ¥ 8 & 9" ɏ ; ŵŴŽ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ # 3 "# * * * RB2x + RB2y ! * > ; R R J # 4 #4 # % x y 158.8 900 * # 37 * Guy cable 30° G '/ " C A RA RBy # 158.82 + 9002 / % q , ; P M 3.6 m B 200 N B D 35° A RBx O 1.2 m 1.2 m 0.9 m 700 N 2 'XAMPLE!frcg 5OLUTION ; * 4 #¨³ª¼³¨»¬ɏ»¯¬ɏ»¬µº°¶µɏ4ɏ°µɏ»¯¬ɏ®¼Àɏ¾°¹¬ɏ#$ɏ¨µ«ɏ»¯¬ɏª¶´·¹¬ºº°¶µɏ3ɏ°µɏ¬¨ª¯ɏº»¹¼»ɏ¶ɏ »¯¬ɏº¯¬¨¹Ɋ³¬®ɏ«¬¹¹°ª²ɏº¯¶¾µɏ°µɏ&°®ȍɏŸȍŵŽȎɏ°ɏ»¯¬ɏ½¬¹»°ª¨³ɏ³¶¨«ɏ0ɏǛɏŵŴŴɏ².ȍɏ - . 01 < > =I < > L=K, + > K / < CN 2 + MN 2 3.62 + 0.92 * ? + C C q D 35° A 1.2 m b T S P B m 2 1. M N 0.9 m =I &: T S + # D=I,# 3.6 m a St 35° D (a) P 3.6 m N 0.9 m M (b) 3 D ! a " #$ ŵŵŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº D ! MB % MC & q % –" % % $' ( ) St C & 1.2 3.71 a q f 3.71 m + ! 35° T q% + + % + ,- + ) A B M 1.2 m MN NC & a % fi $ ' ( % '+ * + 0.9 % 3.6 & b % '/( & #4( & (% (a + b ) = 55° P (a) ( C d b (b) ( ) ) f % 5/( & b % #'( - : ; d % 5/( & a % 88( ! ) +t ( % % sin d sin(a + b ) sin f fi ) sin 166∞ % #0 4 ! sin 139∞ ) %(¥ + %(¥ sin 55∞ % sin 139∞ ' +t 124.9 % % 0( ) ! 1.9 1.9 ?@ * +! + % ! ) +t ( % % sin 166∞ sin 55∞ sin 139∞ $¬»¬¹´°µ¬ɏ»¯¬ɏ»¬µº°¶µºɏ°µɏ¾°¹¬ºɏ!"Ȏɏ!#ɏ¨µ«ɏ!$Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŸȍŶŶȍ 'XAMPLE!frch - . 5OLUTION : D, ) !) !) ! D! ! : E ! G - ) E F F ! - - % % D % 52 + 32 + 0.92 5i + 0 j + 2.6k 52 + 02 + 2.62 5i + 4 j - 0.9k 52 + 42 + 0.92 2.6 m 0.9 m D x z - E 5i - 3 j - 0.9k 4m B E ! - 3m C ! 5m A y % * H4 '+I4 & #; & / '!J % * H4 8 I4 K /; K 8!J % * H8 $+I4 K ; & / '!J m 1 ɏ ŵŵŵ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ ) , @ ) % * H4 '+ I4 & #; & / '!J) % ) % * H4 8 + I4 K /; K D) D % D - % , % * H8 $+ I4 K ; & / '!J) @ & 8!J) D ! K K K D %/ % * H4 '+ I4 & #; & / '!J) K * H4 8 + I4 K /; K 8!J) K * H8 $+ I4 K ; & / '!J) ) E @ @ 5 ) 5.9 - O , @ D L K 5 ) 5.64 K 5 ) 6.47 D % *+ 3 ) 5.9 K /) K 6 ) 6.47 D %/ * + 2.6 ) 5.64 0.9 ) 5.9 K ) %3( 0.9 ) 6.47 & D %/ * + ! ) ) %3 4 D %3 4¯¹¬¬ɏªÀ³°µ«¬¹ºɏ!Ȏɏ"ɏ¨µ«ɏ#ɏ¬¨ª¯ɏ¾¬°®¯°µ®ɏŵŴŴɏ.ɏ¨µ«ɏ¯¨½°µ®ɏ«°¨´¬»¬¹ɏ¶ɏżŴɏ´´ɏ ¨¹¬ɏ·³¨ª¬«ɏ°µɏ¨ɏª¯¨µµ¬³ɏ¶ɏŵżŴɏ´´ɏ¾°«»¯ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŸȍŶŷ¨ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ ¹¬¨ª»°¶µɏ¬¿¬¹»¬«ɏ©Àɏ»¯¬ɏªÀ³°µ«¬¹ºɏ!ɏ¨µ«ɏ"ɏ¨»ɏ»¯¬ɏ³°µ¬ɏ¶ɏ»¯¬°¹ɏª¶µ»¨ª»ȍɏ - . 1 'XAMPLE!frci R R B B q 80 mm A C A q D 100 N 180 mm 100 mm (a) (b) FBD of cylinder B C # 5OLUTION ! !! " $ " ! ! ! * # # ŵŵŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº q % $ * + ! Ê AD ˆ ÁË ˜ & AB ¯ ' q& ! S ' Ê AC /2 ˆ ÁË ˜ & AB ¯ ' Ê 50 mm ˆ ÁË 80 mm ˜¯ & ( ) $ fi *& q& * & , 100 &0 2 sin 51.32∞ 'XAMPLE!frcj !ɏ·¹°º´¨»°ªɏ©¨¹ɏ!"ɏ¶ɏ¾¬°®¯»ɏ7ɏ°ºɏ¹¬º»°µ®ɏ¨®¨°µº»ɏ¨ɏº´¶¶»¯ɏ½¬¹»°ª¨³ɏ¾¨³³ɏ¨»ɏ!ɏ¨µ«ɏ °ºɏº¼··¶¹»¬«ɏ¨»ɏ»¯¬ɏº´¶¶»¯ɏ²µ°¬Ɋ¬«®¬ɏ·¶°µ»ɏ$Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŸȍŶŸ¨ȍɏ)ɏ¨ɏ½¬¹»°ª¨³ɏ ¶¹ª¬ɏ&ɏ°ºɏ¨··³°¬«ɏ¨»ɏ»¯¬ɏ¬µ«ɏ"Ȏɏķµ«ɏ»¯¬ɏ·¶º°»°¶µɏ¶ɏ¬¸¼°³°©¹°¼´ɏ¨ºɏ«¬ķµ¬«ɏ©Àɏ»¯¬ɏ¨µ®³¬ɏqȍ - . 1 B l C A RA A b S # ! ! ! * + * q' ! + S 9" & , * ¥ fi fi ' fi & 4 * & + * + ! 67 " q< ' q& ! (W + F ) cos q ' 6: 7 q' cosq W +F b ¥ ' 6: 7 cos q cos q fi ! + ! & , * RD (b) + *" F W (a) 5OLUTION! # 4 " $ q D F W b B l C q D q : = 3 q& q' >& 6 q& 6- + fi = 7 q& * 3 ! ;* 6 77 2b (W + F ) l (W + 2 F ) 2b(W + F ) l (W + 2 F ) 57//#4; ? .1!frc % + ,°º»ɏ »¯¬ɏ µ¬ª¬ºº¨¹Àɏ ¨µ«ɏ º¼ĺª°¬µ»ɏ ª¶µ«°»°¶µºɏ ¶ɏ ¬¸¼°³°©¹°¼´ɏ¶¹ɏ¨ɏª¶·³¨µ¨¹ɏ¶¹ª¬ɏºÀº»¬´ȍ * + ! + * + ! ! + ! ! * + ! @ F " #.// ! ' ' E- ' GH 0# ! / #"#/123 ɏ ŵŵŷ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ ,°º»ɏ»¯¬ɏª¶µ«°»°¶µºɏ¶ɏ¬¸¼°³°©¹°¼´ɏ¶¹ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏª¶·³¨µ¨¹ɏ¶¹ª¬ɏºÀº»¬´ºȍ .1!frd 6 7 4 67 % 6 7 % 6 7 !, + + ! ! !4 !4 + + ! ! !, 4 ! ! 4 67 % 6 7 % 6 7 ! ! ! + I + 4 67 % 6 7 % 6 7 % + + + ! ! ! 4 !, ! ! !4 !4 ! ! + I + I + ! + I + I + I 4 ! + I $¬ºª¹°©¬ɏ»¯¬ɏµ¨»¼¹¬ɏ¶ɏ»¯¹¬¬ɏ»À·¬ºɏ¶ɏ¶¹ª¬ºɏ¨ª»°µ®ɏ¶µɏ¨ɏ©¶«Àȍ .1!fre % 4 + , 6 7 "44 6 7- J 6 7H #¶µº»¹¼ª»ɏ»¯¬ɏ¹¬¬Ɋ©¶«Àɏ«°¨®¹¨´ɏ¶ɏ¨ɏ©¶«Àɏ°µɏ¬¸¼°³°©¹°¼´ɏ¶¹ɏº¶´¬ɏ°´·¶¹»¨µ»ɏª¨º¬ºȍ .1!frf % 6 ! 7 " + K ! + $°ºª¼ººɏ»¯¬ɏ·¹°µª°·³¬ɏ¶ɏ¬¸¼°³°©¹°¼´ɏ¶¹ɏ¨ɏșŵȚɏ»¾¶Ɋ¶¹ª¬ɏºÀº»¬´ȎɏșŶȚɏ»¯¹¬¬Ɋ¶¹ª¬ɏºÀº»¬´Ȏɏ¨µ«ɏșŷȚɏ ¶¼¹Ɋ¶¹ª¬ɏºÀº»¬´ȍ .1!frg ? 9 ? 9 ?#9 $ ' + "% $ ' + "% $ ' + " % @ A .1!frh A A ! + * 44 ! + * ! + * 44 44 2¬ª¶¼µ»Ȏɏ·¹¶½¬ɏ¨µ«ɏ¨··³Àɏ,¨´°Ƞºɏ»¯¬¶¹¬´ȍ !L ! + * + " ! 4 4 4 + ! +/2146#06!(14/7.#' � # * � % 67 # # 6 7 # # 6 7 # # ! � !, !L # + ! B&S & * + , , # 1 sin a = 4 !, :&S ! * S & S & , S & M 2 sin b = 3 sin g - . 1 - . 1 - . 01 & ! S & S & S & S & ŵŵŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! 5*146 #059'4!37'56+105 : ' @ % G ' ' S !" S ' !" S $ % ! + ' S $ ' ' % S $ !# E !" S $% - . #1 - . 1 - . 1 E - . 1 - . 1 - . 1 - . 1 - . 01 - . 1 - . 1 ! ' % !# %+ ' + !" S $% % E ! & ' % % & G !# S S ' !" S $ % S % ' ' ( G E & # G S % !# % ' D ' S $ A % % % + ' ' 'A+ ' 'A ' ' % ! E && * & + -';!6'4/5 .1!frc .1!frd .1!fre , + + .+ / ! .1!frh 0 4 4'8+'9!37'56+105 5 + 6 ' # 5 & 7 0 + ( 5 & & + " & & 4 + & & ,%6 & + " + & & '& " ' ɏ ŵŵŹ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ ! 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS " " " ' , ; 8 9:" - . 9 < > + & S S ! ! S 8 & S S ! # > S S S S ! ! S S - . 1 + - . 1 ! ! & S S 1 ! S ( ! $! (ILL $LANKS!3UESTIONS " ! " , ? + " @@@@@@@ - . > & * ' 1 44444444 - . 1 %! /ATCH %OLUMNS!3UESTIONS " " " : 'H A & A & A & : ' HH B S ! S ! C S ! S ! / S !# S ! S & '& ' - . 1 - . 1 ! &! 5TATEMENT %ONFIRMATION!3UESTIONS! " " > " " + + && D D D ŵŵźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº #NSWERS!TO!1BJECTIVE!3UESTIONS ?*9 + A: I ' # ? 9 A ?:9 '! I A: ' I E C" ? 9 ' E B" ' A: 'J ! ' E / 'I ' 24#%6+%'!241$.'/5! 6 ( ? & ;!!' * , 8 9F : G*' HF8 < I - . 1 5m B C F 90° 20 cm 10 m M q 20 cm P 6 A cm A 5 cm P 0 ;!' ) && F!! * " 2 , 8 9J > 6 # , ? 8 9H > ;! & & ;9!M && & " & + %A ? ;! G*' <<K; " FJH9 I - . ? L 1 " G*' << < I - . 1 G*' 9 ; ; J<I - . 01 > K!M 6 ɏ ŵŵŻ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ ( > H! & " ;9! ;!! " & 6 G*' KJ ;HM ;<H FM ;98 99MI - . + 0 > , 8 9K 7 G*' ;!K9 9 " q N & ;<:MI - . 01 1 2m 3m 90° P 30° O 800 N 1500 N 78.3 N 30° 15° 4 90° W P 100 N #3 & ) # ( D" * , 8 <! G*' :9 9 I - . 1 + ( 2 6 , ;!! + ? & G*' 9: I 8 <; 4 6 % , %A ? 8 <9 - . 1 ;!!' G*' 9! " ;8! I - . 1 B 100 N 16 cm 12 cm 9 cm P P 100 N a A b C M 15 cm 120 kg # ## ;F 3 9! " , ;!! * , & 6 ( + ( N G*' ;! I - . & ;9 " & J!M 8 <8" ( 8 << # ? 5& ? 5 ? ;9! * + 1 & ) & G*' <F 8 " ;!F 8 I - . 1 G*' :HH I! - . 1 N ŵŵżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº # / ;: , 8 <: > * 8! ); 6 ? > *% ? * G*' ;< " ;: " <9 : I - . )9 1 W W T2 T1 C 30° A A B B #( > , #0 ;!! && 8 <F & & && "% A G*' HF F " ;88 < " ;;: : I - . / . 01 " ( D && 30° %" , 8 <J" " & G*' E B /% % aI - . O 1 Mast B 1 B C 30° 3.6 m D l a A a #) 99:' & F #2 FJ:' % & && " W C 1.8 m A G 30° 2 W W 0 A 60° #4 " , 8 <H % G*' ;!!F 9 " F< 8M" 8:! I ) - . 1 & && % A & % A ., & L 6P 6 P !>!31!lO/!Ofhmfdujoh!gsjdujpo!jo!uif!qvmmfz-!efufsnjof!uif!gpsdft!qspevdfe!jo!uif!cbst!BC!boe!BD/!Uif! bohmft!cfuxffo!uif!wbsjpvt!nfncfst!bsf!tipxo!jo!Gjh/!5/4:/! ! \*' 21!O!)ufotjmf*-!28/4!O!)dpnqsfttjwf*^! - . 1 D ! 2 B!spmmfs!pg!sbejvt! !>!1/4!n!boe!xfjhiu!6!>!3111!O!jt!up!cf!qvmmfe!pwfs!b!dvsc!pg!ifjhiu!"!>!1/26!n!cz!b! ipsj{poubm!gpsdf!(!bqqmjfe!up!uif!foe!pg!b!tusjoh!xpvoe!bspvoe!uif!djsdvngfsfodf!pg!uif!spmmfs-!bt!tipxo!jo! Gjh/!5/51/!Gjoe!uif!nbhojuvef!pg!(!sfrvjsfe!up!tubsu!uif!spmmfs!pwfs!uif!dvsc/! \*' 2265/8!O^! - . 1 ɏ ŵŵŽ %¸¼°³°©¹°¼´ɏ¶ɏ"¶«°¬ºɏ Q C P a A C Q B r A h W P 3 4 B!cbmm!pg!xfjhiu! !sftut!vqpo!b!tnppui!ipsj{poubm!qmbof!boe!ibt!buubdife!up!jut!dfousf!uif!uxp!tusjoht!BC! boe!BD!xijdi!qbtt!pwfs!gsjdujpomftt!qvmmfzt!bu!C!boe!D!boe!dbssz!mpbet!Q!boe!R-!sftqfdujwfmz-!bt!tipxo!jo! Gjh/!5/52/!Jg!uif!tusjoh!BC!jt!ipsj{poubm-!Ýoe!uif!bohmf!a!uibu!uif!tusjoh!BD!nblft!xjui!uif!ipsj{poubm!xifo!uif! cbmm!jt!jo!b!qptjujpo!pg!frvjmjcsjvn/!Bmtp!Ýoe!uif!qsfttvsf!*!cfuxffo!uif!cbmm!boe!uif!qmbof/ \*' dptÏ2!)(06*-! !Ï!6! 1 - ( P /Q) 2 ^! - . 1 3 B!cbmm!pg!xfjhiu!6!>!23!O!sftut!jo!b!sjhiu.bohmfe!uspvhi-!bt!tipxo!jo!Gjh/! 5/53/!Efufsnjof!uif!gpsdft!fyfsufe!po!uif!tjeft!pg!uif!uspvhi!bu!E!boe!F!jg! bmm!tvsgbdft!bsf!qfsgfdumz!tnppui/! \*' !21/5!O-!7/1!O^! - . 01 C A Foe! B! pg! b! mjhiu! tusjoh! BCDEF! jt! Ýyfe! boe! uif! puifs! foe! F! dbssjft! b! xfjhiu!pg!711!O/!Uif!tusjoh!qbttft!pwfs!b!tnppui!qvmmfz!bu!E!boe!tvqqpsut! xfjhiut! 2!boe! 3!bu!qpjout!C!boe!D-!sftqfdujwfmz-!bt!tipxo!jo!Gjh/!5/54/!! Uif!tusjoh!jt!jo!frvjmjcsjvn!xjui!CD!ipsj{poubm-!boe!CB!boe!DE!nbljoh! bohmft!261¡!boe!231¡-!sftqfdujwfmz-!xjui!uif!ipsj{poubm/!!Efufsnjof!uif! ufotjpot!jo!uif!qpsujpot!BC-!CD!boe!DE!pg!uif!tusjoh-!boe!uif!xfjhiut! 2! boe! 3/! \*' 457/5!O-!411!O-!711!O-!284/3!O-!62:/7!O^! - . 01 E 60° Q 30° D B D L 2 A 150° 120° C B L E 2 600 N B q O W1 W2 Mg a # B!vojgpsn!tmfoefs!cfbn!pg!nbtt! !ibt!jut!dfousf!pg!hsbwjuz!bt!tipxo!jo!Gjh/!5/55/!Uif!dpsofs!pg!uif!xbmm! po!xijdi!ju!sftut!jt!lojgf.fehf<!ifodf!uif!sfbdujpo!bu!C!jt!opsnbm!up!uif!cfbn/!Uif!wfsujdbm!xbmm!po!uif!mfgu!jt! tnppui/!Efufsnjof!uif!wbmvf!pg!uif!bohmf!q!gps!xijdi!uif!cfbn!jt!jo!b!tubuf!pg!frvjmjcsjvn/! \*' q!>!dptÏ2! 3 ( 2a /l ) ^! - . 1 # Cmpdlt!B!boe!C-!xfjhijoh!511!O!boe!311!O!sftqfdujwfmz-!sftu!po!b!41¡.jodmjofe!qmbof-!bt!tipxo!jo!Gjh/!5/56/!! Uif! cmpdlt! bsf! buubdife! cz! tusjoht! up! b! qptu! xijdi! jt! ifme! qfsqfoejdvmbs! up! uif! qmbof! cz! bqqmzjoh! b! gpsdf! ( qbsbmmfm!up!uif!qmbof/!Bttvnjoh!uibu!bmm!uif!tvsgbdft!bsf!tnppui!boe!uif!tusjoht!bsf!qbsbmmfm!up!uif!qmbof-! efufsnjof!uif!nbhojuvef!pg!(/! \*' 211!O^! - . 1 ŵŶŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº D E 12 cm P 1m 3m 6 cm 60° 4 cm B C O A 2m A B 30° ( 0 ! B!dzmjoefs-!ibwjoh!b!sbejvt!pg!2!n!boe!nbtt!pg!21!lh-!jt!mpehfe!cfuxffo!dsptt!qjfdft!uibu!nblf!bo!bohmf!pg!71¡! xjui!fbdi!puifs!bt!tipxo!jo!Gjh/!5/57/!!Efufsnjof!uif!ufotjpo!jo!uif!tusjoh!EF-!bttvnjoh!b!tnppui!Þpps/ \*' 75!O^! - . 1 ! ( Uisff!jefoujdbm!dzmjoefst-!fbdi!xfjhijoh! -!bsf!tubdlfe!bt!tipxo!jo!Gjh/!5/58-!po!tnppui!jodmjofe!tvsgbdft-! fbdi!jodmjofe!bu!bo!bohmf!q!xjui!uif!ipsj{poubm/!Efufsnjof!uif!tnbmmftu!bohmf!q!up!qsfwfou!tubdl!gspn!dpmmbqtjoh/ \*' 21/:¡^! - . 01 3 C C3 0.6 m B 2 C2 1 C1 1.2 m A q q ) 1.6 m 2 0 Uif!vojgpsn!41!lh!cbs!xjui!foe!spmmfst!jt!tvqqpsufe!cz!uif!ipsj{poubm!boe!wfsujdbm!tvsgbdft!boe!cz!uif!xjsf!BD/! Dbmdvmbuf!uif!ufotjpo!)!jo!uif!xjsf!boe!uif!sfbdujpot!bhbjotu!uif!spmmfst!bu!B!boe!bu!C-!bt!tipxo!jo!Gjh/!5/59/ \*' !3:6!O-!84/6!O-2:7!O^! - . 1 ɏ ŵŶŵ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ #¯¨·»¬¹ 6 Cfbnt!boe!Gsbnft .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ $°º»°µ®¼°º¯ɏ©¬»¾¬¬µɏ©¬¨´ºɏ¨µ«ɏª¶³¼´µºɏ°µɏ¨ɏ·¶¹»¨³ɏ¹¨´¬ȍ ,°º»ɏ»¯¬ɏµ¨´¬ºɏ¶ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ³¶¨«°µ®ºɏ¶ɏ©¬¨´ºȍɏ ,°º»ɏ»¯¬ɏµ¨´¬ºɏ¶ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏº¼··¶¹»ºȍ #¨»¬®¶¹°Á¬ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ©¬¨´ºȍ $¬»¬¹´°µ¬ɏ¹¬¨ª»°¶µºɏ¶¹ɏ«°Ĺ¬¹¬µ»ɏ©¬¨´ºɏ¼µ«¬¹ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ³¶¨«ºȍ $¬ķµ¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ȍ -¨·ɏ º¯¬¨¹ɏ ¶¹ª¬ɏ «°¨®¹¨´ɏ ș3&$Țɏ ¨µ«ɏ ©¬µ«°µ®ɏ ´¶´¬µ»ɏ «°¨®¹¨´ɏ ș"-$Țɏ ¶¹ɏ ©¬¨´ºɏ ¼µ«¬¹ɏ «°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ³¶¨«ȍ ɏ .1!grjɏ %º»¨©³°º¯ɏ»¯¬ɏ¹¬³¨»°¶µɏ©¬»¾¬¬µɏº¯¬¨¹ɏ¶¹ª¬Ȏɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ¨µ«ɏ³¶¨«ȍ ɏ .1!grkɏ $¬ºª¹°©¬ɏ»¯¬ɏ·¹¶·¬¹»°¬ºɏ¶ɏ3&$ɏ¨µ«ɏ"-$ȍ ɏ .1!grclɏ !µ¨³Àº¬ɏ¹¨´¬ºɏ¶¹ɏ«°Ĺ¬¹¬µ»ɏ³¶¨«°µ®ºȍ ! ɏ ɏ ɏ ɏ ɏ ɏ .1!grcɏ .1!grdɏ .1!greɏ .1!grfɏ .1!grgɏ .1!grhɏ .1!griɏ .1!grc 6/2! �! JOUSPEVDUJPO! B!cvjmejoh!gsbnf-!bmtp!lopxo!bt! -!dpotjtut!pg!tpnf!ipsj{poubm!boe!tpnf! wfsujdbm! nfncfst/!Uif! ipsj{poubm! nfncfst! tvqqpsujoh! Þpps! tmbct! bsf! lopxo! bt! !boe!wfsujdbm!nfncfst!tvqqpsujoh!cfbnt!bsf!lopxo!bt! /!Jo!gbdu-!b! cfbn!jt!opu!bmxbzt!ipsj{poubm<!ju!dbo!cf!bo!jodmjofe!pof/!Jo!tusvduvsbm!nfdibojdt-! xf!efÝof!b!cfbn!cz!jut!cfibwjpvs-!uif!xbz!ju!sftjtut!fyufsobm! �! 9ORTHY!OF!0OTE gpsdft/!Uivt-! ! ! ! Cfbnt! bsf! hfofsbmmz! nbef! /! pg! sfjogpsdfe! dpodsfuf-! tuffm! ps! ujncfs/! Uifz-! bmpoh! xjui! Uif!mfohui!pg!b!cfbn!jt!wfsz!mbshf!dpnqbsfe!up!jut!dsptt. dpmvnot-! bsf! uif! nbjo! mpbe. tfdujpobm!ejnfotjpot/!Uifsfgpsf-!xf!ofhmfdu!jut!xjeui!boe!efqui! cfbsjoh! dpnqpofout! pg! b! up!nblf!tusvduvsbm!bobmztjt!tjnqmfs/!Dsptt!tfdujpo!pg!b!cfbn!jt! cvjmejoh!gsbnf/ hfofsbmmz!sfdubohvmbs!xjui!mbshfs!wfsujdbm!ejnfotjpo!)nbudijoh! $°º»°µ®¼°º¯ɏ©¬»¾¬¬µɏ ©¬¨´ºɏ¨µ«ɏª¶³¼´µºɏ°µɏ ¨ɏ·¶¹»¨³ɏ¹¨´¬ȍ ŵŶŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº xjui!uif!ejsfdujpo!pg!mpbejoh*/!Jo!tipsu-!b!cfbn!jt!b!uijo!qsjtnbujd! nfncfs!mpbefe!usbotwfstfmz/!Ju!jt!tvqqpsufe!cz!dpmvnot!bu!jut! foet!ps!xbmmt!bmpoh!jut!mfohui/!Ju!efwfmpqt!joufsobm!gpsdft!mjlf! tifbs!gpsdf!boe!cfoejoh!npnfou!up!sftjtu!uif!fyufsobm!mpbet/! B! -!ps!tjnqmz!b! -!jt!vtfe!up!dbssz!mpbet! boe!npnfout/!Jut!nfncfst!bsf!jofyufotjcmf!xjui!bu!mfbtu!pof!pg! uifn!cfibwjoh!mjlf!b!cfbn/!Uiftf!gsbnft!boe! ! !dbo! cf!bobmz{fe!cz!frvbujpot!pg!frvjmjcsjvn/! .1!grd ,°º»ɏ»¯¬ɏµ¨´¬ºɏ¶ɏ «°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ ³¶¨«°µ®ºɏ¶ɏ©¬¨´ºȍɏ 6/3! �! 9ORTHY!OF!0OTE Qsjtnbujd! tfdujpot! ibwf! tbnf! bsfb! pg! dsptt.tfdujpo! pwfs! uif! foujsf! mfohui/! Tpnfujnft-! cfbnt! xjui! ubqfsfe! tfdujpo! ps! opo.vojgpsn! dsptt! tfdujpot! pwfs!uif!mfohui!bsf!bmtp!vtfe/! �! DMBTTJGJDBUJPO!PG!MPBEJOH! Tusvduvsbm!nfncfst!dbo!cf!tvckfdufe!up!ejggfsfou!uzqft!pg!mpbejoh/!Tpnf!jnqpsubou! boe!tjnqmf!uzqft!pg!mpbejoht!bsf!hjwfo!cfmpx; 2/!Qpjou!Mpbe!)Dpodfousbufe!Mpbe*! B!mpbe!xijdi!dbo!cf!bttvnfe!up!bdu!bu!b! qpjou!jt!lopxo!bt!b! /!Jo!qsbdujdf-!bmm!mpbet!bdu!pwfs!tpnf!mfohui!ps!bsfb!pg!uif! tusvduvsbm!nfncfs!)cfbn!ps!Þpps*/!Jg!uijt!mfohui!ps!bsfb!jt!tnbmm!dpnqbsfe!up!uif!upubm!mfohui!pg!uif!cfbn!ps!bsfb! pg!Þpps-!uif!mpbe!dbo!cf!bttvnfe!bt!b!dpodfousbufe!ps!qpjou!mpbe/! �! 9ORTHY!OF!0OTE Gjhvsf!6/2!tipxt!b!qpjou!mpbe!pg!nbhojuvef! bdujoh!bu!uif!qpjou! D!po!uif!cfbn!BC/!Uif!TJ!voju!pg!qpjou!mpbe!jt!O!ps!lO/ Qpjou! mpbet! bdujoh! bu! bo! bohmf! puifs!uibo!:1¼!up!uif!mpohjuvejobm! 3/! Vojgpsnmz! Ejtusjcvufe! Mpbe! B!mpbe!xijdi!jt!tqsfbe! byjt!pg!uif!cfbn!bsf!lopxo!bt! xjui!vojgpsn!joufotjuz!pwfs!b!qbsu!ps!gvmm!mfohui!pg!b!cfbn!jt! lopxo! bt! ! ! )VEM*/! Jut! TJ! voju! jt! O0n!ps!lO0n/!Gjhvsf!6/2!tipxt!b!vojgpsnmz!ejtusjcvufe!mpbe!pg! joufotjuz! 2 O0n!tqsfbe!pwfs!uif!tqbo!EF/!Uif!sftvmubou!pg!b!VEM!jt!frvbm!up!jut!joufotjuz!nvmujqmjfe!cz!jut! mfohui-!boe!dbo!cf!bttvnfe!up!bdu!bu!uif!njeqpjou!pg!uif!mpbefe!tqbo/ 4/!Vojgpsnmz!Wbszjoh!Mpbe! Tvdi!b!mpbe!jt!tqsfbe!pwfs!b!qbsu!ps!gvmm!mfohui!pg!b!cfbn!cvu!jut!joufotjuz! wbsjft!vojgpsnmz!pwfs!uif!mfohui/!Gps!fybnqmf-!Gjh/!6/2!tipxt!b!usjbohvmbs!mpbe!po!uif!tqbo!GH!boe!usbqf{pjebm! mpbe!po!uif!tqbo!IK!xjui!ejggfsfou!joufotjujft/!Uif!sftvmubou!upubm!mpbe!jt!frvbm!up!uif!bsfb!pg!uif!tibqf!pg!uif! mpbe/!Ju!jt!bttvnfe!up!bdu!uispvhi!uif!dfouspje!pg!uif!tibqf!pg!uif!mpbejoh/ 5/!Dpodfousbufe!Npnfou! Xifo!b!cfbn!jt!tvckfdufe!up!b!npnfou!bu!b!qpjou-!ju!jt!lopxo!bt!dpodfousbufe! npnfou!ps!tjnqmz! /!Bo!boujdmpdlxjtf!dpodfousbufe!npnfou! !bdujoh!bu!uif!qpjou!L!pg!uif!cfbn!BC! jt!tipxo!jo!Gjh/!6/2/! W A C w2 w1 D E F w3 G H w4 K J M B Gjh/!6/2 Jo!qsbdujdf-!b!cfbn!nbz!cf!tvckfdufe!up!boz!pof!ps!b!dpncjobujpo!pg!uif!bcpwf!ejtdvttfe!mpbejoht/!! ɏ ŵŶŷ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ 6/4! .1!gre �! UZQFT!PG!TVQQPSU! B!tusvduvsf!)cfbn-!gsbnf!ps!usvtt*!nbz!ibwf!uif!gpmmpxjoh!uzqft!pg!tvqqpsut; ,°º»ɏ»¯¬ɏµ¨´¬ºɏ¶ɏ «°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ º¼··¶¹»ºȍɏ 2/!Spmmfs!Tvqqpsu! Jo!uijt!dbtf-!foe!pg!uif!cfbn!sftut!po!tpnf!tmjejoh!tvsgbdf-! spmmfst!ps!boz!Þbu!tvsgbdf!mjlf!b!tnppui!nbtposz!xbmm/!Ju!jt!gsff!up!spmm!ps!npwf!jo!uif! ipsj{poubm!ejsfdujpo!bt!tipxo!jo!Gjh/!6/3 /!Uijt!tvqqpsu!dbo!sftjtu!wfsujdbm!mpbet!pomz/! Ifodf-!ju!ibt!pomz!pof!wfsujdbm!sfbdujpo!) */!Bt!uijt!tvqqpsu!dboopu!sftjtu!b!ipsj{poubm!mpbe!ps!b!npnfou-!ju! zjfmet!jo!uif!ejsfdujpot!pg!uiftf!gpsdft!sftvmujoh!jo!usbotmbujpobm!npwfnfou!ps!b!spubujpo!bcpvu!uif!tvqqpsu/! 3/! Ijohfe! Tvqqpsu! B! ijohf! jt! b! nfdibojdbmmz! nbef! tvqqpsu/! Ju! sftjtut! wfsujdbm! boe! ipsj{poubm! ejtqmbdfnfout-! cvu! bmmpxt! spubujpo/! Ju! ibt! uxp! sfbdujpotʨwfsujdbm! ) *! boe! ipsj{poubm! ) *-! bt! tipxo! jo! Gjh/!6/3 /!Uijt!tvqqpsu!jt!bmtp!lopxo!bt! ! /!!! Rotation Rotation Translation H V H V V ) *!Spmmfs!tvqqpsu! M V ) *!Ijohfe!tvqqpsu! ) *!Gjyfe!tvqqpsu Gjh/!6/3! 4/! Gjyfe! Tvqqpsu! B! gjyfe! tvqqpsu! jt! cvjmu! npopmjuijdbmmz!xjui!uif!xbmm/!Uijt!dpoofdujpo!jt!tp! tujgg!uibu!ju!epft!opu!bmmpx!boz!ljoe!pg!ejtqmbdfnfou! )ofjuifs!spubujpo!ops!usbotmbujpo*/!Uijt!tvqqpsu!ibt! uisff!sfbdujpotʨb!wfsujdbm!sfbdujpo!) *-!b!ipsj{poubm! sfbdujpo!) *!boe!b!npnfou!) *!bt!tipxo!jo!Gjh/!6/3 /! B!Ýyfe!tvqqpsu!jt!bmtp!lopxo!bt!b! / 6/5! Myth �! DMBTTJGJDBUJPO!PG!CFBNT! Fact! B!ijohfe!tvqqpsu!bmxbzt! efwfmpqt!pomz! !sfbdujpo-! xijdi!jt! /!Xf!ublf!jut! uxp!psuiphpobm!dpnqpofoutʨ ipsj{poubm!boe!wfsujdbmÐgps! fbtf!pg!bobmztjt!jo!3E! qspcmfnt/! .1!grf #¨»¬®¶¹°Á¬ɏ«°Ĺ¬¹¬µ»ɏ »À·¬ºɏ¶ɏ©¬¨´ºȍ Efqfoejoh!po!uif!uzqf!pg!tvqqpsu-!cfbnt!bsf!dmbttj. Ýfe!bt!gpmmpxt;! 2/!Tjnqmz!Tvqqpsufe!Cfbn! Jo!uijt!cfbn-!pof!foe!jt!ijohfe!boe!uif!puifs!jt! spmmfs!tvqqpsufe/!Gjhvsf!6/4 tipxt!b!tjnqmz!tvqqpsufe!cfbn/!Xifo!mpbefe-!uif!cfbn!efwfmpqt!uisff!tvqqpsu! sfbdujpotʨpof!ipsj{poubm sfbdujpo!) B*-!pof!wfsujdbm!sfbdujpo!) B*!bu!uif!ijohfe!tvqqpsu!B-!boe!bopuifs! wfsujdbm!sfbdujpo!) C*!bu!uif!spmmfs!tvqqpsu!C-!bt!tipxo!jo!Gjh/!6/4 /! ŵŶŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº A A B B (a) Cantilever (a) Simply supported beam HA A HA B A VA VA VB (b) Free body diagram (b) Free body diagram ! Gjh/!6/4! Gjh/!6/5 �! 9ORTHY!OF!0OTE 3/!Dboujmfwfs! Pof!foe!pg!uif!cfbn!jt!Ýyfe!boe!uif!puifs!jt! gsff-!bt!tipxo!jo!Gjh/!6/5 /!Ju!ibt!uisff!sfbdujpot-!bmm!bu!uif!Ýyfe! tvqqpsu!bt!tipxo!jo!Gjh/!6/5 /! Uif! cfbnt! eftdsjcfe! jo! uijt! tfdujpo! bsf! bttvnfe! up! ibwf! ofhmjhjcmf! xfjhiu/! Ifodf-! uif! cfbnt!xjmm!ibwf!sfbdujpot!pomz! xifo! uifz! bsf! tvckfdufe! up! mpbet/ Uif! ipsj{poubm! sfbdujpo! bdut! pomz!jg!uif!cfbn!jt!tvckfdufe!up! ipsj{poubm0jodmjofe!mpbet/ 4/!Cfbn!xjui!Pwfsiboh! B!tjnqmz!tvqqpsufe!cfbn!xjui! bu!mfbtu!pof!pg!jut!foet!fyufoefe!cfzpoe!uif!tvqqpsu!jt!lopxo!bt! pwfsibohjoh!cfbn/!Gjhvsf!6/6 !tipxt!b!cfbn!xjui!tvqqpsufe! tqbo!BC!boe!pwfsibohjoh!tqbot!DB!boe!CE/!Gjhvsf!6/6 !tipxt! jut!mjof!ejbhsbn!xjui!tvqqpsu!sfbdujpot/! 5/!Gjyfe!Cfbn! B!cfbn!xjui!cpui!jut!foet!Ýyfe!jt!lopxo!bt! b!Ýyfe!ps!cvjmu.jo!cfbn-!bt!tipxo!jo!Gjh/!6/7 /!Uijt!cfbn!ibt! tjy!sfbdujpot-!uisff!bu!fbdi!foe-!bt!tipxo!jo!Gjh/!6/7 / C D A A B B (a) Beam with overhangs HA B A VA ! B MA (a) Fixed beam HB HA MB MA VB B A VA MA MB (b) Free body diagram (b) Free body diagram Gjh/!6/6! Gjh/!6/7 HB VB 6/! Qspqqfe! Dboujmfwfs! Xifo!uif!gsff!foe!pg!b!dboujmfwfs!cfbn!jt!tvqqpsufe0qspqqfe!xjui!b!spmmfs! tvqqpsu-!ju!cfdpnft!b!qspqqfe!dboujmfwfs!)Gjh/!6/8 */!Uijt!cfbn!ibt!gpvs!sfbdujpot!bt!tipxo!jo!Gjh/!6/8 / ɏ ŵŶŹ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ B A HA A B MA VB VA ! ) * Qspqqfe!dboujmfwfs ) * Gsff.cpez!ejbhsbn Gjh/!6/8 7/!Dpoujovpvt!Cfbn! B!cfbn!tqboojoh!pwfs!npsf!uibo!uxp!tvqqpsut!jt!lopxo!bt!b!dpoujovpvt!cfbn/! Uijt!cfbn!ibt!uxp!ps!npsf!tqbot!boe!gpvs!ps!npsf!sfbdujpot!efqfoejoh!po!uif!ovncfs!boe!uzqf!pg!tvqqpsut/ .1!grg $¬»¬¹´°µ¬ɏ¹¬¨ª»°¶µºɏ ¶¹ɏ«°Ĺ¬¹¬µ»ɏ©¬¨´ºɏ ¼µ«¬¹ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ ¶ɏ³¶¨«ºȍ 6/6! �! TVQQPSU!SFBDUJPOT! B!tubujdbmmz!efufsnjobuf!cfbn!)tvdi!bt!tjnqmz!tvqqpsufe-!dboujmfwfs!ps!pwfsibohjoh! cfbn*! ibt! njojnvn! ovncfs! pg! tvqqpsu! sfbdujpot! up! kvtu! nbjoubjo! frvjmjcsjvn/! Uiftf!tvqqpsu!sfbdujpot!dbo!cf!efufsnjofe!cz!vtjoh!uif!gpmmpxjoh!uisff!frvbujpot! pg!frvjmjcsjvn;! ! )j*! Tvnnbujpo!pg!bmm!wfsujdbm!gpsdft!jt!{fsp-!j/f/-!S >!1/ ! )jj*! Tvnnbujpo!pg!bmm!ipsj{poubm!gpsdft!jt!{fsp-!j/f/-!S ! >!1/ ! ! )vtfe!pomz!jg!ipsj{poubm0jodmjofe!mpbe!jt!qsftfou!po!uif!cfbn*/! ! )jjj*! Tvnnbujpo!pg!npnfout!bcpvu!boz!qpjou!jo!uif!cfbn!jt!{fsp-!j/f/-!S >!1/ �!0OTE �! 9ORTHY!OF!0OTE Uif!frvjmjcsjvn!frvbujpot!bsf!bqqmjdbcmf!bu!bmm!uif!qpjout-!fwfo! jg!ju!jt!pvutjef!uif!cfbn/ Uifsf! fyjtut! bopuifs! dmbtt! pg! cfbnt-! xijdi! bsf! tubujdbmmz! joefufsnjobuf/! ! -! !boe! ! bsf! tvdi! cfbnt/!Uifz! ibwf! npsf! uibo! uisff! sfbdujpot! boe!uif!frvbujpot!pg!frvjmjcsjvn!bsf!opu!befrvbuf!up!bobmz{f! tvdi! cfbnt/!Xf! offe! fyusb! frvbujpot! )tvdi! bt! dpnqbujcjmjuz! frvbujpot*! gps! uifjs! dpnqmfuf! bobmztjt/! Jo! uijt! cppl-! pomz! tubujdbmmz!efufsnjobuf!cfbnt!bsf!ejtdvttfe/ Xijmf! esbxjoh! bo! GCE-! ju! jt! opsnbm! qsbdujdf! up! nbsl! uif! sfbdujpot! xjui! qptjujwf! tfotf/! Bgufs!dpnqvubujpo-!jg!uif!wbmvf! pg! b! sfbdujpo! jt! gpvoe! up! cf! ofhbujwf-!ju!xpvme!nfbo!uibu!jut! bduvbm! ejsfdujpo! jt! pqqptjuf! up! uibu!bttvnfe/ Uif!qspdfevsf!pg!Ýoejoh!uif!tvqqpsu!sfbdujpot!gps!tpnf!tuboebse!dbtft!pg!dboujmfwfst!boe!tjnqmz!tvqqpsufe! cfbnt!xjui!tuboebse!mpbejoh!jt!hjwfo!cfmpx/ 2/!Dboujmfwfs!xjui!b!Qpjou!Mpbe!bu!Gsff!Foe! B!dboujmfwfs!BC!pg!mfohui!"!jt!tipxo!jo!Gjh/!6/9 /!Ju! jt!tvckfdufe!up!b!qpjou!mpbe!pg!nbhojuvef! !bdujoh!epxoxbset!bu!jut!gsff!foe/!Gjhvsf!6/9 !tipxt!uif!fyufsobm! mpbe! !boe!tvqqpsu!sfbdujpot! B!boe! B/! Bqqmzjoh!uif!frvbujpot!pg!frvjmjcsjvn-!xf!hfu! S ! >!1;! B!Ï! !>!1! fi! B!>! S }B! >!1;! B!Ï! !¥!"!>!1! fi! B!>! ;! Ifsf-!S }B!nfbot!Ótvn!pg!bmm!npnfout!bcpvu!uif!qpjou!BÔ/!Uif!mfuufs!tvctdsjqufe!bgufs!uif! wfsujdbm! cbs! Ó}Ô! jefoujÝft! uif! qpjou! bcpvu! xijdi! npnfout! bsf! ublfo/! EpoÔu! hfu! dpogvtfe! xjui! b! tjnjmbs! tzncpm! B!xijdi!sfqsftfout!uif!npnfou!bu!uif!qpjou!B/ ŵŶźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº W A W B L B A a L (a) Cantilever with a point load (a) Cantilever with point load at free end W W MA B MA A A B VA L a L VA (b) Free body diagram (b) Free body diagram Gjh/!6/9! Gjh/!6/: 3/!Dboujmfwfs!xjui!b!Qpjou!Mpbe! B!dboujmfwfs!BC!pg!mfohui!"-!tipxo!jo!Gjh/!6/: -!jt!tvckfdufe!up!b! qpjou!mpbe! !bu!b!ejtubodf! !gspn!uif!foe!B/!Gjhvsf!6/: !tipxt!uif!tvqqpsu!sfbdujpot-! B!boe! B/!Bqqmzjoh! frvbujpot!pg!frvjmjcsjvn-!xf!hfu S ! >!1;! B!Ï! S }B! >!1;! !>!1! fi! B!>! !¥! !>!1! fi! B!Ï! B!>! Jg! !bdut!bu!uif!njeqpjou!pg!uif!dboujmfwfs-! # "$3<!uif!npnfou! B # B!jt!uifo!hjwfo!bt! WL 3 4/!Dboujmfwfs!xjui!VEM!pwfs!uif!Foujsf!Mfohui! B!dboujmfwfs!BC!pg!mfohui!"!jt!tvckfdufe!up!b!VEM! pg !lO0n!tqsfbe!pwfs!jut!foujsf!mfohui!"-!bt!tipxo!jo!Gjh/!6/21 /!Gjhvsf!6/21 !tipxt!uif!tvqqpsu!sfbdujpot! B!boe! B/!Uif!sftvmubou!pg!VEM!jt! "-!xijdi!dbo!cf!bttvnfe!up!bdu!bu!uif!njeqpjou!D!pg!uif!cfbn/!Bqqmzjoh! frvbujpo!pg!frvjmjcsjvn-!xf!hfu! S ! >!1;! B!Ï! S }B! >!1;! "!>!1! fi! B!>! WL3 !>! B 3 B!Ï!) "*!¥!)"03*!>!1! fi! W A A L/2 B L (a) Cantilever with UDL L ! (a) Supply supported beam with a point load W wL MA VA C C VA L/2 L ! ! B A B A (b) Free body diagram Gjh/!6/21! B C w kN/m VB L/2 L ! (b) Free body diagram Gjh/!6/22 ɏ ŵŶŻ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ 5/! Tjnqmz! Tvqqpsufe! Cfbn! xjui! b! Qpjou! Mpbe! bu! Njetqbo! B!tjnqmz!tvqqpsufe!cfbn!!BC!pg!mfohui!"!jt!tipxo! jo!Gjh/!6/22 /!Ju!jt!tvckfdufe!up!b!qpjou!mpbe! !bu!jut!njeqpjou/! Gjhvsf!6/22 !tipxt!uif!tvqqpsu!sfbdujpot/!Bqqmzjoh!frvbujpot!pg! frvjmjcsjvn-!xf!hfu! S ! >!1;! S }B! >!1;! B!,! C!Ï! C!¥!"!Ï! fi! ! Vtjoh!Fr/!) *-! !>!1! !¥! C!>! �! 9ORTHY!OF!0OTE Uif! qpjou! mpbe! " jo! uif! GCE! pg! Gjh/! 6/21 ! )boe! Gjh/! 6/24 *! jt! tipxo! bt! mjhiu.hsbz! bsspx! up! sfqsftfou! uif! frvjwbmfou! qpjou!mpbe!pg!uif!VEM/!Uijt!jt! b!Ýdujujpvt!mpbe-!xijdi!tipvme! opu!cf!dpogvtfe!xjui!bo!bduvbm! qpjou!mpbe!sfqsftfoufe!cz!b!tpmje! bsspx/ ) *!! " !>!1 3 3 B! >! !Ï! C!>! 3 �!0OTE Cpui!uif!wfsujdbm!sfbdujpot!pg!b!tjnqmz!tvqqpsufe!cfbn!tvckfdufe!up!tznnfusjdbm!mpbejoh!bcpvu!uif! njeqpjou!bsf!frvbm/ 6/! ! Tjnqmz! Tvqqpsufe! Cfbn! xjui! b! Qpjou! Mpbe! B!tjnqmz!tvqqpsufe!cfbn!BC!pg!!mfohui!"!jt! tvckfdufe!up!b!qpjou!mpbe! bu!b!ejtubodf! !gspn!jut!mfgu!foe!bt!tipxo!jo!Gjh/!6/23 /!Gjhvsf!6/23 !tipxt!uif! tvqqpsu!sfbdujpot!boe!uif!mpbe/!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn-!xf!hfu! S ! >!1;! B!,! C!Ï! !>!1! )* Wa S }B! >!1;! C!¥!"!Ï! !¥! !>!1! fi! C!>! L Wa W ( L - a ) Wb Vtjoh!Fr/!) *-!!! !>! !>! B! >! !Ï! C!>! !Ï! L L L )xifsf-! !jt!uif!ejtubodf!pg!uif!qpjou!mpbe! !gspn!uif!foe!C* W w kN/m B A a B A b L L (a) Simply supported beam with a point load (a) Simply supported beam with UDL wL W B A VA VB a b L ! VA A C L/2 L (b) Free body diagram (b) Free body diagram Gjh/!6/23! Gjh/!6/24 B V B ŵŶżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 7/! Tjnqmz! Tvqqpsufe! Cfbn! xjui! VEM! pwfs! Foujsf! Tqbo! B! tjnqmz! tvqqpsufe! cfbn! !BC! pg! mfohui! "! jt! tvckfdufe! up! VEM! pg! joufotjuz! ! lO0n! bt! tipxo! jo! Gjh/! 6/24 /!Uif! sftvmubou! pg! VEM! jt! "-!xijdi!dbo!cf!bttvnfe!up!bdu!bu!uif!njeqpjou!D-!bt!tipxo!jo!Gjh/!6/24 /!Bqqmzjoh!frvbujpot!pg! frvjmjcsjvn-!xf!hfu S ! >!1;! B!,! C!Ï! "!>!1! ! )* " wL S }B! >!1;! C!¥!"!Ï! "!¥! !>!1! fi! C!>! 3 3 wL wL Vtjoh!Fr/!) *-! !>! B!>! "!Ï! C!>! "!Ï! 3 3 'XAMPLE!grc !ɏ ª¨µ»°³¬½¬¹ɏ °ºɏ º¼©±¬ª»¬«ɏ »¶ɏ ¨ɏ 5$,ɏ ¨µ«ɏ ¨ɏ ·¶°µ»ɏ ³¶¨«ɏ ¨ºɏ º¯¶¾µɏ °µɏ &°®ȍɏ ŹȍŵŸ¨ȍɏ #¨³ª¼³¨»¬ɏ»¯¬ɏ¹¬¨ª»°¶µºɏ¨»ɏ»¯¬ɏķ¿¬«ɏº¼··¶¹»ȍɏ \MP!6/6^ 25 kN 6 kN/m 25 kN C B MA A A B 6m 36 kN VA 4m 10 m 3m 6m 4m 10 m (a) Loaded cantilever (b) Free body diagram Gjh/!6/25 5OLUTION! Uif!GCE!pg!uif!dboujmfwfs!cfbn!jt!tipxo!jo!Gjh/!6/25 /!Uif!sftvmubou!pg!uif!VEM!dbo!cf!bttvnfe! up!bdu!bu!uif!njeqpjou!D!pg!uif!VEM/!Jut!nbhojuvef!jt "!>!)7!lO0n*!¥!)7!n*!>!47!lO Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn-!xf!hfu S ! >!1;! B!Ï!36!Ï!47!>!1! fi! B!>!72!lO S }B! >!1;! BÏ!47!¥!4!Ï!36!¥!21!>!1! fi! B!>!469!lOn 'XAMPLE!grd #¨³ª¼³¨»¬ɏ»¯¬ɏº¼··¶¹»ɏ¹¬¨ª»°¶µºɏ¶¹ɏ¨ɏº°´·³Àɏº¼··¶¹»¬«ɏ©¬¨´ɏ¾°»¯ɏ¯°µ®¬«ɏº¼··¶¹»ɏ ¨»ɏ»¯¬ɏ¬µ«ɏ!ɏ¨µ«ɏ¹¶³³¬¹ɏº¼··¶¹»ɏ¨»ɏ»¯¬ɏ¬µ«ɏ"Ȏɏº¼©±¬ª»¬«ɏ»¶ɏ°µª³°µ¬«ɏ³¶¨«°µ®ɏ¨ºɏ º¯¶¾µɏ°µɏ&°®ȍɏŹȍŵŹ¨ȍɏ \MP!6/6^ 5OLUTION! Uif!GCE!pg!uif!cfbn!jt!tipxo!jo!Gjh/!6/26 /!Uif!jodmjofe!mpbet!bsf!sftpmwfe!joup!ipsj{poubm!boe! wfsujdbm!dpnqpofout/!Uif!ipsj{poubm!dpnqpofout!bsf!sftjtufe!cz!uif!ipsj{poubm!sfbdujpo! B-!boe!uif!wfsujdbm! dpnqpofout!cz!sfbdujpot! B!boe! C/!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn-!xf!hfu S !! >!1;! B!Ï!61!dpt!56¡!,!51!dpt!51¡!Ï!31!dpt!71¡!>!1! fi! B!>!25/82!lO S }B! >!1;! C!¥!26!Ï!)61!tjo!56¡*!¥!3/6!Ï!)51!tjo!51¡*!¥!9/6!Ï!)31!tjo!71¡*!¥!22!>!1 fi! C!>!44/27!lO S }C! >!1;! B!¥!26!Ï!)61!tjo!56¡*!¥!23/6!Ï!)51!tjo!51¡*!¥!7/6!Ï!)31!tjo!71¡*!¥!5!>!1 fi! B!>!56/33!lO ɏ ŵŶŽ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ S z! >!1;! B!,! C!Ï!)61!tjo!56¡*!Ï!)51!tjo!51¡*!Ï!)31!tjo!71¡*!>!1 fi B!,! C!>!89/4:!lO Uif!tvn!pg!uif!dbmdvmbufe!sfbdujpot-! B!,! C!>!44/27!,!56/33!>!89/49!lO !; 35 kN 10 kN/m A 50 kN A E 20 kN 40 kN 45° 60° 40° 7 kN/m B C 2.5 m B 5m 7m 12 m 2.5 m 2.5 m 6m 4m (a) Cantilever 15 m Fu = 50 kN (a) Simply-supported beam 50 kN HA A VA 45° 2.5 m 60° 40° 4m 35 kN B VB 2.5 m 6m Ft = 24.5 kN 20 kN 40 kN VA A E C 2.5 m 5m D B VB 7m 12 m 15 m (b) Free body diagram (b) Free body diagram Gjh/!6/27 Gjh/!6/26 'XAMPLE!gre 4.67 m #¨³ª¼³¨»¬ɏ»¯¬ɏº¼··¶¹»ɏ¹¬¨ª»°¶µºɏ¶¹ɏ»¯¬ɏº°´·³Àɏº¼··¶¹»¬«ɏ©¬¨´ɏ³¶¨«¬«ɏ¨ºɏº¯¶¾µɏ °µɏ»¯¬ɏ&°®ȍɏŹȍŵź¨ȍɏ \MP!6/6^ 5OLUTION! Uif!GCE!pg!uif!dboujmfwfs!cfbn!jt!tipxo!jo!Gjh/!6/27 /!Uif!sftvmubou!pg!uif!VEM!dbo!cf!bttvnfe! up!bdu!bu!uif!njeqpjou!F!pg!uif!VEM-!xifsf!uif!qpjou!mpbe!pg!46!lO!jt!bmtp!bdujoh/!!Uif!nbhojuvef! !pg!uif! sftvmubou!pg!VEM!jt! v! >!)21!lO0n*!¥!)6!n*!>!61!lO Uif!sftvmubou!mpbe! u!pg!uif!usjbohvmbs!mpbejoh!jt!frvbm!up!uif!bsfb!pg!uif!usjbohmfu! >!1/6!¥!)8!lO0n*!¥!)8!n*!>!35/6!lO Uijt!mpbe! u!dbo!cf!bttvnfe!up!qbtt!uispvhi!uif!dfouspje!pg!uif!usjbohmf-!xiptf!ipsj{poubm!ejtubodf!gspn!Du! >!DE!>!)304*!¥!)8!n*!>!5/78!n Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn-!xf!hfu S ! >!1;! B!,! C!Ï!46!Ï! v!Ï! u!>!1 fi boe! S }B! >!1;! B!,! C!>!46!,!61!,!35/6!>!21:/6!lO! C!¥!23!Ï! u!¥!)6!,!5/78*!Ï!46!¥!3/6!Ï! v!¥!3/6!>!1 fi! Vtjoh!Fr/!) *-!xf!hfu B! >!21:/6!Ï! C!>! 24.5 ¥ 9.67 + 35 ¥ 2.5 + 50 ¥ 2.5 !>!48/56!lO 12 C!>!21:/6!Ï!48/56!>!83/16!lO )* ŵŷŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº .1!grh $¬ķµ¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ ©¬µ«°µ®ɏ´¶´¬µ»ȍ 6/7/2! 6/7! �! JOUFSOBM!SFBDUJPOT!JO!CFBNT! ! " -!ps!gpsdft-!mjlf!tifbs!gpsdf-!cfoejoh!npnfou-!byjbm!gpsdf!boe! upstjpo!bsf!efwfmpqfe!jo!b!cfbn!up!sftjtu!fyufsobm!gpsdft/!Tifbs!gpsdf!boe!cfoejoh! npnfout!bsf!uif!nbkps!joufsobm!gpsdft/! �! 9ORTHY!OF!0OTE Tifbs!Gpsdf Evf!up!usbotwfstf!mpbet!) *-!xifo!pof!qbsu!pg!b!cfbn!efwfmpqt!b! ufoefodz!up!tmjef!ps!tifbs!sfmbujwf!up!uif!puifs!qbsu!)Gjh/!6/28 *-! bo!joufsobm! !)%*!jt!efwfmpqfe-!bt!tipxo!jo!Gjh/!6/28 /! Tifbs!gpsdf-!jo!gbdu-!jt!uif!sftjtubodf!pggfsfe!cz!pof!qbsu!up!uif! tifbsjoh!bdujpo!dpnjoh!gspn!uif!puifs!qbsu!pg!uif!cfbn/!Tifbs! gpsdf!po!boz!qbsu!jt!frvbm!boe!pqqptjuf!up!uif!sftvmubou!pg!bmm! usbotwfstf!gpsdft!bdujoh!po!uibu!qbsu!pg!uif!cfbn/!Nbuifnbujdbmmz-! ju!jt!frvbm!up!uif!bmhfcsbjd!tvn!pg!bmm!uif!wfsujdbm!gpsdft!po!pof! tjef!pg!uif!dvuujoh!tfdujpo!pg!uif!cfbn/! !tifbs!gpsdf!po!uif! tfhnfou! !tfhnfou!bsf!ublfo! -! Tjho!Dpowfoujpo/ boe! !tifbs!gpsdf!po!uif! bt!tipxo!jo!Gjh/!6/29 / 6/7/3! Uif!tvqqpsu!sfbdujpot!boe!mpbet! po! b! cfbn! bsf! fyufsobm! gpsdft<! xifsfbt!uif!tifbs!gpsdf!)%*-!uif! cfoejoh! npnfou! ) *-! boe! uif! upstjpo!))*!bsf!joufsobm!sfbdujpot! efwfmpqfe!jo!uif!cfbn!up!sftjtu! fyufsobm!mpbet/ ! Bu! uif! kvodujpo! pg! uif! cfbn! boe! tvqqpsu-! uif! tvqqpsu! sfbdujpot! )tvdi! bt! *B-! B-! B! ps! tB!bu!qpjou!B*!bsf!frvbm!boe! pqqptjuf!up!uif!joufsobm!sfbdujpot!! jo!uif!cfbo!bu!qpjou!B/ Cfoejoh!Npnfou! Up!sftjtu!usbotwfstf!mpbet-!uif!cfbn!cfoet!bmpoh!uif!mpohjuvejobm!byjt-!bt!tipxo!jo!Gjh/!6/28 /!Ju!efwfmpqt! -!xijdi!jt!uif!bmhfcsbjd!tvn!pg!uif!npnfout!pg!bmm!uif!gpsdft!po!boz!tjef!pg!uif!tfdujpo/! Gjhvsf!6/29 !tipxt!uif!cfoejoh!npnfou!jo!uif!cfbn!efopufe!cz!mfuufs! /!! F F1 M R1 F F2 S T S (a) Shearing T R2 (b) Bending (c) Twisting & Gjh/!6/28 ! / Tjho!Dpowfoujpo/! ' uif! ( !cfoejoh!npnfou!jo!uif! tfhnfou!boe! ( cfoejoh!npnfou!jo! tfhnfou!bsf!ublfo! - bt!tipxo!jo!Gjh/!6/29 /!Jo!puifs!xpset-!cfoejoh!npnfou!uibu!dbvtft!b! !jo!uif!cfou!tibqf!jt!dpotjefsfe! boe!jt!dbmmfe! / Upq! M S M (i) Sagging (positive) T M S S (a) Positive sign convention (b) Internal forces Gjh/!6/29! + H (ii) Hogging (negative) (c) Sign convention for bending moment ɏ ŵŷŵ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ gbdf!pg!uif!cfbn!jt!dpousbdufe!boe!fyijcjut!dpnqsfttjpo/!Po!uif! puifs!iboe-!b!cfoejoh!npnfou!uibu!dbvtft!bo! ! ! jt!dpotjefsfe! !boe!jt!dbmmfe! ! bt!tipxo!jo!Gjh/!6/29 /!Jo!uijt!dbtf-!uif!upq!gbdf!jt!tusfudife! boe!dbssjft!ufotjpo/ Ju!nbz!cf!tffo!uibu!uif!tjho!dpowfoujpot!gps! cfoejoh!npnfou!efÝofe!jo!Gjh/!6/29 !boe! !bsf!uif!tbnf/! 6/7/4! Puifs!Joufsobm!Gpsdft! �! 9ORTHY!OF!0OTE Uif! sjhiu.iboe! uivnc! svmf! joejdbuft!uif!byjt!pg!upstjpo-!jg! uif!Ýohfst!bsf!dvsmfe!bmpoh!uif! spubujpo/! Jg! uif! uivnc! ejsfdut! bmpoh! uif! ! byjt-! uif! upstjpo!jt! -!puifsxjtf!ju! jt!ofhbujwf/ Jo!beejujpo!up!tifbs!gpsdf!)%*!boe!cfoejoh!npnfou!) *-!uifsf!bsf! uxp!npsf!sfbdujpot-!wj{/-! ! ) *!boe! !))*-!xijdi! nbz!efwfmpq!jo!b!cfbn/!Bmm!uiftf!joufsobm!gpsdft!bsf!tipxo!jo!Gjh/!6/29 / Uif! # !) *!bsf!efwfmpqfe!jg!uif!cfbn!jt!tvckfdufe!up!byjbm!mpbet/!Jo!qsbdujdf-!uif!byjbm!gpsdft! efwfmpqfe!jo!cfbnt!bsf!ofhmjhjcmz!tnbmm!dpnqbsfe!up!puifs!joufsobm!bdujpot/! Xifo!bo!fyufsobm!upstjpo!bdut!po!b!cfbn-!ju!usjft!up!uxjtu!uif!cfbn!bcpvu!jut!mpohjuvejobm!byjt-!bt!tipxo!jo! Gjh/ 6/28 /!Uif!cfbn!efwfmpqt!frvbm!boe!pqqptjuf!upstjpobm!npnfout/!Bt!b!dpowfoujpo-!uif!upstjpo!jt!ublfo! jg!jut!byjt!pg!spubujpo!jt!qbsbmmfm!up!boz!pg!uif!qptjujwf!Dbsuftjbo!byft!bt!qfs! , /!!Upstjpo! xjmm!cf!ejtdvttfe!jo!efubjm!jo!Dibqufs!32/ Uif!joufsobm!sfbdujpot!bu!boz!qpjou!po!uif!cfbn!dbo!cf!efufsnjofe!cz!qbttjoh!bo!jnbhjobsz!tfdujpo!dvuujoh! uif!cfbn!joup!uxp!tfhnfout/!Frvbujpot!pg!frvjmjcsjvn!bsf!uifo!vtfe!up!dpnqvuf!uif!joufsobm!sfbdujpot/! .1!gri -¨·ɏº¯¬¨¹ɏ¶¹ª¬ɏ «°¨®¹¨´ɏș3&$Țɏ¨µ«ɏ ©¬µ«°µ®ɏ´¶´¬µ»ɏ «°¨®¹¨´ɏș"-$Țɏ¶¹ɏ ©¬¨´ºɏ¼µ«¬¹ɏ«°Ĺ¬¹¬µ»ɏ »À·¬ºɏ¶ɏ³¶¨«ȍ 6/8! �! TIFBS!GPSDF!BOE!CFOEJOH!NPNFOU!EJBHSBNT! B! qmpu! pg! wbsjbujpo! pg! tifbs! gpsdf! %! bmpoh!uif!mfohui!pg!uif!cfbn!jt!lopxo! bt! $ % )TGE*-! boe! uibu!pg!uif!cfoejoh!npnfou! !pg!cfbn! jt!lopxo!bt!& ' )CNE*/ 6/8/2! Tjhojgjdbodf! pg! TGE! boe! CNE Uiftf!ejbhsbnt!qspwjef!jogpsnbujpo!offefe!gps!uif!tbgf!eftjho! pg!cfbnt/!Gps!fybnqmf-!xf!dbo!mpdbuf!uif!qpjout!tvckfdufe!up! fyusfnf!wbmvft!pg!tifbs!gpsdf!boe!cfoejoh!npnfou/!!Jo!beejujpo-! uif!qpjout!pg! ( # !bsf!efufsnjofe/ Nbhojuvef!pg!tifbs!gpsdf!boe!cfoejoh!npnfou!efdjef!uif! ovncfs! boe! uijdloftt! pg! sfjogpsdjoh! tuffm! cbst! up! cf! qmbdfe! jotjef!uif!dpodsfuf!cfbnt<!ps!uif!ejnfotjpot!boe!dsptt.tfdujpobm! tibqf!pg!uif!tuffm!hjsefst/!Uivt-!uif!tibqft!pg!TGE!boe!CNE! fobcmf!uif!fgÝdjfou!boe!fdpopnjdbm!qmbdfnfou!pg!tuffm!cbst!boe! vtf!pg!puifs!nbufsjbmt/ 6/8/3! ! Tufqt!gps!Qmpuujoh!TGE!boe!CNE 2/! Esbx! uif! gsff,cpez! ejbhsbn! pg! uif! cfbn! tipxjoh! bmm! mpbet! boe! tvqqpsu! sfbdujpot-! boe! dbmdvmbuf! uif! sfbdujpot! cz!vtjoh!uif!frvjmjcsjvn!frvbujpot/ �! 9ORTHY!OF!0OTE Qpjout!pg! ! !)joÞfyjpo! qpjout*!bsf!uif!mpdbujpot!xifsf! cfoejoh! npnfou! dibohft! jut! tjho! gspn! qptjujwf! up! ofhbujwf! ps!wjdf!wfstb/ Uifsf!dbo!cf!npsf!uibo!pof! qpjou!pg!dpousbÞfyvsf!jo!b!cfbn! efqfoejoh! vqpo! nboz! gbdupst-! tvdi! bt! uif! uzqf! boe! ovncfs! pg! tvqqpsut-! boe! uif! ljoet! pg! mpbejoht!boe!uifjs!nbhojuveft/ �! 9ORTHY!OF!0OTE jt! b! mpoh-! uijdl! qjfdf! pg! tuffm! ps! jspo! uibu! jt! vtfe! jo! uif!gsbnfxpsl!pg!cvjmejoht!boe! csjehft/ ŵŷŶɏ ! ! ! ! %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 3/! Jtpmbuf!b!qpsujpo!pg!uif!cfbn!)fjuifs!mfgu!ps!sjhiu!tfhnfou*! �! 9ORTHY!OF!0OTE cz! qbttjoh! bo! jnbhjobsz! tfdujpo! uispvhi! uif! cfbn! bu! b! ! b s f ! u i f! ejtubodf! !! gspn! pof! foe/! Bo! jnbhjobsz! tfdujpo! tipvme! mpdbujpot! xifsf! b! qpjou! mpbe-! qbtt!cfuxffo!uxp!dpotfdvujwf!dsjujdbm!qpjout/ ps! dpodfousbufe! npnfou-! ps! 4/! Tipx!tifbs!gpsdf!boe!cfoejoh!npnfou!bu!uif!tfdujpo!xjui! tvqqpsu! sfbdujpo! bdut! ps! b! qptjujwf!ejsfdujpot!bt!qfs!tuboebse!tjho!dpowfoujpo!)tff! ejtusjcvufe!mpbe!tubsut!ps!foet/ Gjh/!6/29 */! 5/! Bqqmz! frvbujpot! pg! frvjmjcsjvn! up! uif! jtpmbufe! tfhnfou! boe!Ýoe!uif!fyqsfttjpot!gps!% boe! !jo!ufsnt!pg!!/ 6/! Gjoe!uif!wbmvft!pg!%!boe! !gps!ejggfsfou!wbmvft!pg!!!boe!qmpu!uifn!bmpoh!uif!mfohui!pg!uif!cfbn/ Dbvujpo;! -!ep!opu!qbtt!uif!tfdujpo!up!jtpmbuf!uif!tfhnfout!pg!uif!cfbn!voefs!b!qpjou!mpbe! ps!bu!uif!mpdbujpo!pg!b!npnfou-!bt!uiftf!mpdbujpot!tipx!b!ejtdpoujovjuz!jo!uif!tifbs!gpsdf!ejbhsbn! ps! cfoejoh! npnfou! ejbhsbn % - dipptf! uibu! qbsu! pg! uif! cfbn! )mfgu! ps! sjhiu! tjef! pg! uif! tfdujpo*!xijdi!dbssjft!mfttfs!ovncfs!pg!gpsdft-!bt!ju!vtvbmmz!hjwft!b!tjnqmfs!tpmvujpo/ Uif!bcpwf.nfoujpofe!qspdfevsf!cfdpnft!mfohuiz!boe!dvncfstpnf!xifo!b!cfbn!dbssjft!b!ovncfs!pg! mpbet!bt!npsf!dvut!bsf!offefe/!Gps!tvdi!dbtft-!b!ejsfdu!boe!tjnqmfs!bqqspbdi!jt!vtfe!up!dpnqvuf!tifbs!gpsdf! boe!cfoejoh!npnfou!bu!dsjujdbm!qpjout/!Tvddfttjwf!tvnnbujpo!pg!gpsdft0npnfout!jt!vtfe!xijmf!lffqjoh!uif! gpmmpxjoh!tjho!dpowfoujpo!jo!njoe/!Uijt!bqqspbdi!dpowfsut!b!sbuifs!dvncfstpnf!qspcmfn!joup!b!tjnqmfs!pof! )tff!Fybnqmf!6/5*/ ! ! 2/! Tifbs! gpsdf! bu! boz! qpjou! jt! frvbm! up! bmhfcsbjd! tvn! pg! bmm! wfsujdbm! gpsdft! boe! sfbdujpot! po! uif! sjhiu! )ps!mfgu*!tfhnfou!pg!uif!cfbn/!Boz!gpsdf!ps!sfbdujpo!bdujoh! !po!uif! !tfhnfou!jt!ublfo! !boe!wjdf!wfstb/ 3/! Cfoejoh!npnfou!bu!boz!qpjou!jt!frvbm!up!bmhfcsbjd!tvn!pg!npnfout!pg!bmm!gpsdft0sfbdujpot!po!uif!sjhiu! )ps!mfgu*!tfhnfou/!( !npnfout!po!uif! !tfhnfou!bsf!ublfo! +!boe!wjdf!wfstb/ 6/8/4! TGE!boe!CNE!gps!Tpnf!Tuboebse!Dbtft! 2/!Dboujmfwfs!xjui!Qpjou!Mpbe!bu!Gsff!Foe! B!dboujmfwfs!BC!pg!mfohui!"!jt!tipxo!jo!Gjh/!6/2: /! Ju!jt!tvckfdufe!up!b!qpjou!mpbe! -!bdujoh!wfsujdbmmz!epxoxbset!bu!jut!gsff!foe/!Jut!gsff.cpez!ejbhsbn!xjui! fyufsobm!mpbe! !boe!tvqqpsu!sfbdujpot-! B!>! !boe! tB!>! "!jt!tipxo!jo!Gjh/!6/2: /!B!tfhnfou!pg!cfbn!pg! mfohui!!-!dvu!gspn!uif!sjhiu!tjef!pg!uif!dboujmfwfs-!jt!tipxo!xjui!qptjujwf!tjho!dpowfoujpot!pg!joufsobm!gpsdft! jo!Gjh/!6/2: /!Frvbujoh!uif!tvn!pg!wfsujdbm!gpsdft!up!{fsp-!xf!hfu!tifbs!gpsdf!bu!uif!tfdujpo!2.2!bt!gpmmpxt;!! S !>!1;! %!Ï! !>!1! fi! %!>! Uivt-!uif!tifbs!gpsdf!jt!joefqfoefou!pg!!!boe!ju!ibt!b!qptjujwf!dpotubou!wbmvf! !pwfs!uif!foujsf!tqbo-!bt!tipxo! jo!TGE!pg!Gjh/!6/2: / ! +!Jg!zpv!mppl!dmptfmz-!uiftf!tjho!dpowfoujpot!bsf!uif!tbnf!bt!ejtdvttfe!jo!Tfdujpo!7/7/!Cvu-!ifsf-!xf!dbo!ejsfdumz! dbmdvmbuf!tifbs!gpsdft!boe!cfoejoh!npnfout!bu!b!eftjsfe!qpjou-!xjuipvu!fyqsfttjoh!uifn!jo!ufsnt!pg!!/!Uif!gpmmpxjoh! ejbhsbn!dbo!cf!vtfe!gps!hsbqijdbm!sfqsftfoubujpo/ left !!! right left right External forces causing positive SF and BM ɏ ŵŷŷ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ Opx-!frvbujoh!uif!tvn!pg!npnfout!bcpvu!uif!tfdujpo!2.2!up!{fsp-!xf!hfu S }2Ï2!>!1;! Ï! !Ï! !¥!!!>!1! fi! !>!Ï! # Uijt!tipxt!uibu!uif!cfoejoh!npnfou!jt!ofhbujwf!boe!wbsjft!mjofbsmz!xjui!ejtubodf!!/! !cfjoh!{fsp!bu!!!>!1! )foe!C*!boe!nbyjnvn!)Ï "*!bu!!!>!"!)foe!B*-!bt!tipxo!jo!CNE!pg!Gjh/!6/31 / W a W L (a) L (a) A C MsA 2 =Wa VA = W B MsA = WL 1 L (b) VA = W W W 2 A 1 W W B A 2 Wa 2 M B x2 S –WL C B A (d) SFD (d ) SFD – x1 + 0 B A 1 W + 0 M S1 Jo! b! dboujmfwfs! cfbn-! uif! joufsobm!cfoejoh!npnfou! bu! uif! kvodujpo! xjui! uif! gjyfe! tvqqpsu! bu! qpjou! B! )sfqsftfoufe! bt! B*! jt! frvbm! boe! pqqptjuf! up! uif! tvqqpsu! npnfou! )sfqsftfoufe! bt! tB */ Uivt-! B!>!Ï tB/ (c) W 0 A B 1 x (c) W 1 (b) x M S �! 9ORTHY!OF!0OTE b B A B C A 0 B (e) BMD A –Wa B C – (e) BMD Gjh/!6/31! - Gjh/!6/2:! - !!!!!! ! ! 3/! Dboujmfwfs! xjui! b! Qpjou! Mpbe! B!dboujmfwfs!BC!pg!mfohui!"!jt!tvckfdufe!up!b!qpjou!mpbe! !bu!b! ejtubodf! !gspn!uif!foe!B!boe! !gspn!uif!foe!C-!bt!tipxo!jo!Gjh/!6/31 /!Jut!GCE!xjui!fyufsobm!mpbe! !boe! tvqqpsu!sfbdujpot-! B!>! !boe! tB!>! !jt!tipxo!jo!Gjh/!6/31 /!Bt!uifsf!bsf!ejggfsfou!mpbet!gps!uif!uxp!tqbot! BD!boe!DC-!xf!ublf!uxp!tfdujpotʨ2.2!boe!3.3-!hjwjoh!jtpmbufe!tfhnfout!pg!mfohuit!!2!boe!!3-!sftqfdujwfmz/! Uif!uxp!jtpmbufe!tfhnfout!xjui!qptjujwf!joufsobm!gpsdft!bsf!tipxo!jo!Gjh/!6/31 /!Bqqmzjoh!frvbujpot!pg! frvjmjcsjvn!up!uif!sjhiu!jtpmbufe!qbsu!pg!uif!cfbn-!xf!hfu! S ! >!1;! %!>!1! boe! S }2Ï2!>!1;! !>!1 Uivt-!uif!tifbs!gpsdf!boe!uif!cfoejoh!npnfou!jo!uif!tqbo!DC!bsf!cpui!{fsp-!bt!tipxo!jo!TGE!boe!CNE!pg! Gjht/!6/31 !boe!6/31 /!Opx-!bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!mfgu!jtpmbufe!tfhnfou-!xf!hfu S ! >!1;! %!Ï! !>!1! fi! %!>! S }3Ï3! >!1;! !,! !Ï! !¥!!3!>!1! fi! !>!Ï!) !Ï! #3* Uivt-!uif!tifbs!gpsdf!jt!dpotubou!po!uif!tqbo!BD!boe!uif!cfoejoh!npnfou!wbsjft!mjofbsmz!xjui!!3!bt!tipxo! jo!Gjh/!6/31 !boe! /!!Tjodf!!3!wbsjft!gspn!1!)qpjou!B*!up! !)qpjou!D*-!uif!cfoejoh!npnfou!jt!nbyjnvn!bu!uif! qpjou!B!boe!jt!frvbm!up!Ï <!boe!jt!{fsp!bu!uif!qpjou!D-!bt!tipxo!jo!uif!CNE!pg!Gjh/!6/31 / ŵŷŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 4/!Dboujmfwfs!xjui!VEM!pwfs!Foujsf!Mfohui! B!dboujmfwfs!BC!pg!mfohui!"!jt!tvckfdufe!up!b!VEM!pg! ! lO0n!tqsfbe!pwfs!jut!foujsf!mfohui-!!bt!tipxo!jo!Gjh/!6/32 /!Jut!GCE!xjui!fyufsobm!mpbe! !lO0n!boe!tvqqpsu! sfbdujpot-! B! >! "!boe! tB!>! "303!jt!tipxo!jo!Gjh/!6/32 /!B!tfhnfou!pg!mfohui!!!gspn!uif!foe!C!pg!uif! dboujmfwfs!jt!jtpmbufe!cz!tfdujpojoh!ju!bu!2,2/!Uif!VEM!pwfs!uijt!tfhnfou!dbo!cf!sfqmbdfe!cz!b!qpjou!mpbe!pg! nbhojuvef! ! bdujoh!bu!b!qpjou!!03!ejtubodf!bxbz!gspn!uif!tfdujpo!2,2/!Uijt!mpbe!boe!joufsobm!gpsdft!)tifbs! gpsdf!%!boe!cfoejoh!npnfou! *!bsf!tipxo!jo!Gjh/!6/32 /!Frvbujoh!uif!tvn!pg!wfsujdbm!gpsdft!up!{fsp-!xf!hfu! tifbs!gpsdf!bu!uif!tfdujpo!2,2!bt!gpmmpxt/ S ! >!1;! %!Ï! !!>!1! fi! %!>! # Uivt-!uif!tifbs!gpsdf!wbsjft!mjofbsmz!xjui!uif!ejtubodf!!/!Tifbs!gpsdf!jt!{fsp!bu!!!>!1!)foe!C*!boe!nbyjnvn! ) "* bu!!!>!" )foe!B*-!bt!tipxo!jo!TGE!pg!Gjh/!6/32 /! Opx-!frvbujoh!uif!tvn!pg!cfoejoh!npnfout!bu!uif!tfdujpo!2.2!up!{fsp-!xf!hfu! wx 3 !,! !!¥!)!03*!>!1! fi! !>!Ï S }2Ï2! >!1;! 3 Uijt!tipxt!uibu!uif!CN!jt!ofhbujwf!pwfs!uif!foujsf!tqbo!boe!jut!wbsjbujpo!jt! -!cfjoh!{fsp!bu!!!>!1! )foe!C*!boe!Ï "303!bu!!!>!"!)foe!B*-!bt!tipxo!jo!Gjh!6/32 /!Uif!cfoejoh!npnfou!bu!njeqpjou!pg!uif!cfbn! jt! "309-!xijdi!nfbot!uif!qbsbcpmjd!CNE!jt!dpodbwf!bt!tipxo!jo!Gjh/!6/32 /!Uijt!dbo!gvsuifs!cf!tvqqpsufe! bt!gpmmpxt/ Tjodf!tifbs!gpsdf!bu!uif!qpjou!C!jt!{fsp-!uifsfgpsf-!bt!qfs!Fr/!)6/3*-!Ýstu!efsjwbujwf!pg!uif!cfoejoh!npnfou! xsu!ejtubodf!tipvme!cf!{fsp!bu!uif!qpjou!C/!Uijt!nfbot!tmpqf!pg!uif!ubohfou!up!CNE!bu!uif!qpjou!C!nvtu!cf! {fsp/!Ifodf-!CNE!jt!b!dpodbwf!qbsbcpmb!sbuifs!uibo!b!dpowfy!qbsbcpmb<!uif!mbuufs!xjmm!ibwf!opo.{fsp.tmpqf! ubohfou!bu!C/!Tjnjmbs!fyqmbobujpo!hpft!gps!bmm!puifs!dbtft/ w kN/m W L A (a) A w kN/m 2 L (a) B wx x/2 B 2 W/2 x1 (b) + C 0 A B B – –W/2 (d ) SFD 0 (c) SFD A B – Parabolic –wL2/2 Gjh/!6/32! - W/2 W/2 + A 1 S x2 B M S 1 M 2 A (c) 0 B 1 W/2 x M S wL 1 C L/2 L (b) wL A W/2 1 1 wL2/2 2 B 0 A (e) BMD . " ! Gjh/!6/33! % + WL/4 C (d) BMD + B ɏ ŵŷŹ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ 5/! Tjnqmz! Tvqqpsufe! Cfbn! xjui! b! Qpjou! Mpbe! bu! Njetqbo! B!tjnqmz!tvqqpsufe!cfbn!BC! pg!mfohui!"!jt!tipxo!jo!Gjh/!6/33 /!Ju!jt!tvckfdufe!up!b!qpjou!mpbe! !bu!uif!njeqpjou!pg!uif!cfbn/!Cpui!uif! tvqqpsu!sfbdujpot!bsf! 03/!Uxp!tfdujpot!bsf!ublfo!gps!dpnqvujoh!tifbs!gpsdf!boe!cfoejoh!npnfou!bt!tipxo! jo!Gjh/!6/33 /!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!sjhiu!jtpmbufe!qbsu!pg!uif!cfbn-!xf!hfu! !>!1! fi! %!>!3 3 Wx W S }2Ï2! >!1;! !Ï! ¥ x1 !>!1! fi! !>! 1 2 2 Bu!uif!qpjou!C-!!!2 >!1! fi! !>!1/! Bu!uif!qpjou!D/!!!2!>!"03! fi! S ! >!1;! %!,! 2Ï2 !>! 05 Opx-!bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!mfgu!jtpmbufe!qbsu!pg!uif!cfbn-!xf!hfu S ! >!1;! %!Ï! 3Ï3 S }3Ï3! >!1;! Bu!uif!qpjou!B-!!3!>!1! fi! 3 !>!1! fi! %!>! 3 Wx !¥!!3!>!1! fi! !>! 3 3 3 !>!1/! Bu!uif!qpjou!D-!!3!>!"03! fi! !Ï! !>! 05/ Uif!TGE!boe!CNE!bsf!tipxo!jo!Gjh/!6/33 !boe! -!sftqfdujwfmz!/ 0 % 1 ! ! 6/!Tjnqmz!Tvqqpsufe!Cfbn!xjui!b!Qpjou!Mpbe! B!tjnqmz!tvqqpsufe!cfbn!BC!pg!mfohui!"!tvckfdufe! up!b!qpjou!mpbe! !bu!uif!qpjou!D!)bu!b!ejtubodf! !gspn!uif!foe!B!boe!b!ejtubodf! !gspn!uif!foe!C*-!jt!tipxo!jo Gjh/!6/34 /!Jut!tvqqpsu!sfbdujpot! 0"!boe! 0"!bsf!tipxo!jo!Gjh/!6/34 /!Ifsf-!xf!xjmm!efufsnjof!uif!tifbs! gpsdf!boe!cfoejoh!npnfout!xjui!ejsfdu!bqqspbdi!bu!dsjujdbm!qpjout!B-!C!boe!D/ Tifbs!Gpsdf Wb !)dpotubou!ujmm!uif!qpjou!D!bt!uifsf!jt!op!mpbe!cfuxffo!B!boe!D*/ L Wb Bu!b!qpjou!kvtu!sjhiu!pg!D;! % D!>! B!Ï! !>! !Ï! ! L W (b - L) Wa ! >! !>!! )dpotjefsjoh!mfgu!tfhnfou!pg!cfbn* L L Wa Jg!uif!sjhiu!tfhnfou!jt!dpotjefsfe-!xf!hfu!uif!tbnf!wbmvf!bt!%D!>!Ï! C! >! -!xijdi!sfnbjot!dpotubou! L cfuxffo!D!boe!C/!Gjhvsf!6/34 !tipxt!uif!TGE/ Bu!uif!qpjou!B;! %B!>! B!>! Cfoejoh!Npnfou ¥ ! " # $ %& Wab L ¥ Wab L ŵŷźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 1 w kN/m W A B A C Wb/L L wL/2 Wa/L a B L (a) B + – B C 0 A (c) SFD –wL/2 Wab/L + A 0 B C (c) BMD wL2/8 !!!!!!!!!!Gjh/!6/35! % %6 S 7.5. 5 wL 5 ! % 9 : . " % !5 fi fi ! ! ' " % " % 5 wLx wx % 5 % % wL % wL2 8 fi % fi " % # wL % $ %- ' ' ! wL % ' ! ;#! fi wL ! ¥!6 !¥ % % ! 0 B C 7/!!!Tjnqmz!Tvqqpsufe!Cfbn!xjui!VEM!pwfs!Foujsf!Tqbo! " '* +!, " # $ %./. ! 0 +!, ' ' !3% " # $ %4 4 ' ' " 8 " Parabola + (d ) BMD Gjh/!6/34! % .5. 0 – –Wa/L (b) SFD S wL/2 B A 0 A x (b) 1 wL/2 C + wx M S1 Wb/L 0 wL/2 (a) b + 1 ' ɏ ŵŷŻ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ 6/9! .1!grj �! EJGGFSFOUJBM!FRVBUJPOT!PG!FRVJMJCSJVNÚSFMBUJPO! CFUXFFO!w-!S!BOE!M! ! %º»¨©³°º¯ɏ»¯¬ɏ¹¬³¨»°¶µɏ ©¬»¾¬¬µɏº¯¬¨¹ɏ¶¹ª¬Ȏɏ ©¬µ«°µ®ɏ´¶´¬µ»ɏ¨µ«ɏ ³¶¨«ȍ ' " ' ' # $ %$ < " ! ' ! + " : # $ .= " # $ %$ 0 " > ! ' !2 ! ? ' %2 % % 2 w dx w M S M + dM B A x VA dx VB dx (a) Simply-supported beam S + dS (b) Free body diagram of small element Gjh/!6/36! % @ # $ %$ 4 A S %5 %6 % 5 " ¥ ! dS dx fi 5 $. 3 ' 0 4 ! ! " S ÚS fi dS % @ x - Ú w ◊ dx fi %5% x ' " x - Ú w ◊ dx x %6 % " 4 ! " ! ! % ! 0 ! B " ;#! ' C4 ' S 5 5 A ! ¥ 2 fi 8 (dx) 6% ! 6 2 % dM dx 6 ! 5 ! 4 % 0 dx 5 %6 % ¥ !6 % " % " $% 3 ŵŷżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº @ ' 4 M ÚM x Úx dM fi ! S dx fi ! " x Úx 5 S dx ! 6 " ' # ! ' ' " C4 " $. 0 ' " " ! ! @ ' " ' " $% " " d %M dS dx dx % ' ' ' ' " ! .1!grk $¬ºª¹°©¬ɏ»¯¬ɏ·¹¶·¬¹»°¬ºɏ ¶ɏ3&$ɏ¨µ«ɏ"-$ȍ 6/:! �! QSPQFSUJFT!PG!TIFBS!GPSDF!BOE!CFOEJOH! NPNFOU!! ! ; ' ' . 0 ;#! ; ;#! A " ' " ? " ' " +!, ' " & + ' > > ! - ' ;#! A # $ %' B D # ' E ' ! '* B # " = @ A 4 ' $ %& F Myth ' " " Fact! ) " " $ .G " # $ %. G @ ' * B " " . ' " # :B ' 0 4 # ;#! $ %. ' " " # $ %. $ %% F0 +!,? " ! $ ! " ' % 0 " ' ' > " CB $E ' ɏ ŵŷŽ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ ! &' $ " #$ #¨³ª¼³¨»¬ɏ½¨³¼¬ºɏ¶ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ¶¹ɏ»¯¬ɏª¨µ»°³¬½¬¹ɏº¯¶¾µɏ°µɏ &°®ȍɏŹȍŶź¨ɏ¨µ«ɏ«¹¨¾ɏ»¯¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºȍɏ \MP!6/8^ "& S 0 13 S 5. 0 13 .& & " % + # $,% 'XAMPLE!grf 5OLUTION! " # $+ + .4 ¥,4,01 fi . 0 9!lO 4 , ¥ $ 4 , ¥ 0 1 fi . . 0 43!lOn *" &' &6 *" 6 . / . 7 &' 3 8 . 63 .3 %6 0 , 9: ! %. 0 !, ¥ % ; , 0 < 9: &6% 4 kN 1 kN/m B A 4m C 2m 2.5 kN 3 kN (a) 1 kN/m 4 kN 4 kN B 2m MA C D E A A 1.5 m 1m C 6m 2m 0.5 m (a) VA 7.5 (b) 4.5 8 4 + 0 + A B + 0 A B A B C C (b) SFD 2.5 D E (c) SFD 0 A B C – C – –8 –8.25 –15 (d ) BMD Gjh/!6/37 D E 0 – –32 # $$% *" *" ! " –22.5 (c) BMD Gjh/!6/38 –1.25 ŵŸŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 1 3 63 &3 .3 . . . *" &' 'XAMPLE!grg 5OLUTION! + " % 8 . . 8 8 . 1 . . . 8 *" & . 01 ! % 0 4 !, ¥ $% 0 4 < 9: 0 4 !, ¥ ¥ $% 4 !, ¥ -% 0 4 =$ 9: " # $#¨³ª¼³¨»¬ɏ»¯¬ɏ½¨³¼¬ºɏ¶ɏº¯¬¨¹ɏ¶¹ª¬ºɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ºɏ¶¹ɏ»¯¬ɏª¨µ»°³¬½¬¹ɏ©¬¨´ɏ º¯¶¾µɏ°µɏ&°®ȍɏŹȍŶŻ¨ȍɏ$¹¨¾ɏ»¯¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºɏ¨³º¶ȍ \MP!6/8^ / . . 3 S 0 13 .4 = 4 ¥ $ 4 $ # 0 1 fi . 0 8/6!lO S 5. 0 13 . 4 = ¥ 4 ! ¥ $% ¥ = # 4 $ # ¥ # 0 1 fi .& &6 > *" 7 &' *" &' 3 >3 %> 0 $ # 9: 3 % 0 $ # 9: ! >% 63 %6 0 ¥ $ ; $ # 0 , # 9: &3 %& ? 0 %6 0 , # 9: ! &3 %& 0 %6 ; = 0 @ # 9: .3 %. 0 = ; ¥ $ ; $ # 0 @ # 9: ! 3& 7 > 3 0 $ # ¥ 1 # 0 $# 9: 63 6 0 ! ¥ $% ¥ ; $ # ¥ $ # 0 < $# 9: &3 & 0 ! ¥ $% ¥ $ # ; $ # ¥ , 0 # 9: .3 . ? 0 = ¥ ; ! ¥ $% ¥ = # ; !$ # ¥ #% 0 $$ # 9: &' " # $@ # $@ + 'XAMPLE!grh 5OLUTION + 6 .0 33/6!lOn & 6 &6% .&% $¹¨¾ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºɏ¶¹ɏ»¯¬ɏº°´·³Àɏº¼··¶¹»¬«ɏ©¬¨´ɏ ¨»ɏ»¯¬ɏ·¶°µ»ºɏ!ɏ¨µ«ɏ"Ȏɏ³¶¨«¬«ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŶż¨ȍɏ \MP!6/8^ * " 3 S 0 13 S 5. 0 13 # $< 4 !# ¥ =% 4 # 0 1 fi . ; & 0 $1 9: & ¥ 1 4 !# ¥ =% ¥ !=A$% 4 # ¥ # ; 1 0 1 fi .; fi + & .0 & 0 = @# 9: $1 4 = @# 0 - $# 9: !; >+ S 5& 0 13 4 .¥ & 7 1 ; !# ¥ =% ¥ !@ ; =A$% ; !# ¥ #% ; 1 0 1 fi .0 - $# 9: ɏ ŵŸŵ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ % 3 &3 %& 0 4 & 0 = @# 9: ! 3 % 0 4 & ; # 0 $# 9: .3 %. 0 . 0 - $# ! 8 8 8 1 % ! 6% .6% 3 8 8 . . >3 >3 >? > 3 63 6 & 7 0 & ¥ $ 0 = @# ¥ $ 0 @ # 9: 0 @ # ; 1 0 @ # 9: 0 & ¥ # ; 1 0 = @# ¥ # ; 1 0 $< @# 9: 0 . ¥ = 4 !# ¥ =% ¥ !=A$% 0 - $# ¥ = 4 $$ # 0 $- $# 9: ! " # $< *" &' .6% !;! & & . 0 - $# ¥ 1 4 !# ¥ =% ¥ !@ ; =A$% 4# ¥ # 4 1 0 1 . 0 = @# ¥ 1 ; 1 4 # ¥ # 4 !# ¥ =% ¥ !=A$% 0 1 >+ !# $% . *" . . . 0 A$ ! - $# 4 $#% ¥ = ; $# ¥ # 0 $< @# 9: . 0 4 . 0 $< @# 4 1 0 $< @# 9: &3 .3 9 . *" &' & 6 kN/m 5 kN 5 kN/m E 10 kN ◊ m B A C 3m VA D 3m 2m 2m 2 kN/m VB C B A 6m (a) 16.25 + 4m (a) 32 1.25 + 0 A C E – D B 8 + –3.75 –3.75 A (b) SFD 28.75 26.25 0 + ! C D (c) BMD Gjh/!6/39! 'XAMPLE!gri E C B C – 17.5 7.5 0 A A B (b) SFD –16 B –124 (c) BMD Gjh/!6/3: $¹¨¾ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºɏ¶¹ɏ»¯¬ɏª¨µ»°³¬½¬¹ɏ©¬¨´ɏ³¶¨«¬«ɏ ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŶŽ¨ȍɏ \MP!6/8^ ŵŸŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 5OLUTION * + S # $B . . 1 . 0 13 .4 . .3 .0 . # $B " &' # $B $¥ 141#¥-¥,01 fi .0 =$ 9: *" .0 &6 &6 $, 9: .& . .& �! GSBNFT! " P !µ¨³Àº¬ɏ¹¨´¬ºɏ¶¹ɏ «°Ĺ¬¹¬µ»ɏ³¶¨«°µ®ºȍ M . # $B fi 4 C$ ¥ !- ; ,%D ¥ ! 1A$% 4 !1 # ¥ - ¥ ,% ¥ !-A=% 0 4 $, 9: 6/21! .1!grcl " + S 5. 0 13 . 4 C$ ¥ !- ; ,%D ¥ ! 1A$% 4 !1 # ¥ - ¥ ,% ¥ !-A=% 0 1 3 &3 %& 0 $ ¥ , 0 < 9: .3 %. 0 !$ ¥ 1% ; !1 # ¥ - ¥ ,% 0 =$ 9: 3 &3 & 0 !$ ¥ ,% ¥ !,A$% 0 E - 9: % " " 3 V H .F , . (a) A-Frame G " # =1 (b) Multi-force-member of frame Gjh/!6/41 : F G " Myth " G $ H G I * = * ! 6 % ! % + " + Fact! 9 + "& 'XAMPLE!grj ɏ ¨³ª¼³¨»¬ɏ º¼··¶¹»ɏ ¹¬¨ª»°¶µºɏ ¨»ɏ »¯¬ɏ ¯°µ®¬«ɏ º¼··¶¹»ɏ!ɏ ¶¹ɏ »¯¬ɏ ¹¨´¬ɏ º¯¶¾µɏ °µɏ # &°®ȍɏŹȍŷŵ¨Ȏɏ°ɏ»¯¬ɏ´¬´©¬¹ɏ!"ɏ°ºɏ³¶¨«¬«ɏ¾°»¯ɏ¨ɏ½¬¹»°ª¨³ɏ¶¹ª¬ɏ&ɏǛɏŻŴŴɏ.ɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ $ȍɏ!³³ɏ«°º»¨µª¬ºɏº¯¶¾µɏ°µɏ¹¨´¬ɏ¨¹¬ɏ°µɏ´¬»¹¬ºȍɏ \MP!6/6^ ɏ ŵŸŷ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ B B q D 0.9 0.8 D 0.9 0.5 (FBC)H 33.69° (FBC)V FBC 0.4 F HA C A 0.5 0.4 1.2 F = 700 N A VA (a) Frame (b) FBD of the member AB Gjh/!6/42 5OLUTION! . . . & " ! &6%H &6 F \ + 6/21/2! # =1 . . 4 q0 !1 <A $% 0 == -BJ .& "& &6 " &6 #= .& 7 &6 Qpsubm!Gsbnft & ! % L 9 ! " == -BJ 0 1 <= &6 ! &6%K 0 &6 == -BJ 0 1 ## &6 . + 7 S 5. 0 13 4 @11 ¥ 1 # ; 1 ## &6 ¥ 1 B ; 1 <= &6 ¥ 1 B 0 1 fi &6 0 $< < : ! &6%H 0 1 <= &6 0 1 <= ¥ $< < 0 $== B : ! &6%K 0 1 ## &6 0 1 ## ¥ $< < 0 ## : + S 0 13 . 4 @11 ; ! &6%K 0 1 fi . 0 @11 4 ## 0 656!O S ! 0 13 4 ! % 0 1 fi 0 344/:!O . &6 H . 9 . q = F $ * G % . F (a) Single-storey-single-bay portal frames (b) Multistorey frame Gjh/!6/43! 4 " # =$ !tipxt!uxp!tjohmf.tupsfz.tjohmf.cbz+!qpsubm!gsbnft/!Uif!Ýstu!gsbnf!jt!tjnqmz!tvqqpsufe-!bt! uifsf!bsf!pomz!uisff!volopxo!sfbdujpot!)uxp!bu!uif!ijohfe!tvqqpsu-!pof!bu!uif!spmmfs*-!xijdi!dbo!cf!efufsnjofe! cz!frvbujpot!pg!frvjmjcsjvn/!Uivt-!ju!jt!b! !gsbnf/!Xifsfbt!jo!uif!tfdpoe!gsbnf-!cpui! dpmvnot!bsf!sftujoh!po!Ýyfe!tvqqpsut/!Uifsf!bsf!b!upubm!pg!tjy!volopxo!sfbdujpot!)uisff!bu!fbdi!tvqqpsu*-! nbljoh!ju!b! !gsbnf/!Gjhvsf!6/43 !tipxt!b!qpsubm!gsbnf!pg!gpvs!tupsfzt!boe!gpvs!cbzt/ ! +!B!cbz!jt!b!tqbdf!cfuxffo!uxp!bekbdfou!dpmvnot/! ŵŸŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!grk !ɏº°µ®³¬Ɋº»¶¹¬ÀɊº°µ®³¬Ɋ©¨Àɏ·¶¹»¨³ɏ¹¨´¬ɏ¶ɏŷɏ´ɏº»¶¹¬Àɏ¯¬°®¯»ɏ¨µ«ɏŸɏ´ɏ©¨Àɏ¾°«»¯ɏ°ºɏ ³¶¨«¬«ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŷŷ¨ȍɏɏ#¨³ª¼³¨»¬ɏº¼··¶¹»ɏ¹¬¨ª»°¶µºɏ¨»ɏ!ɏ¨µ«ɏ$ȍɏ \MP!6/6^ 10 kN 10 kN C B 6 kN 1m 6 kN 3m 2m 3m A D A C B 1m 2m D HA VA 4m (a) Frame 4m VD (b) FBD of frame Gjh/!6/44 5OLUTION! Gjhvsf!6/44 !tipxt!uif!gsff.cpez!ejbhsbn!pg!uif!qpsubm!gsbnf/!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn! up!uif!GCE!pg!gsbnf-!xf!hfu S !! >!1;! B!,!7!>!1! fi! B!>!Ï!7!lO Ofhbujwf!tjho!nfbot!uif!ejsfdujpo!pg! B!jt!pqqptjuf!up!jut!bttvnfe!ejsfdujpo/ S ! >!1;! B!,! E!Ï!21!>!1! fi! B!,! E!>!21!lO S }B! >!1;! )21!¥!2*!,!)7!¥!3*!Ï!) E!¥!5*!>!1! fi! E!>!6/6!lO fi! B!>!21!Ï!6/6!>!5/6!lO ! #&&+6+10#.!51.8'&!':#/2.'5 'XAMPLE!grcl ɏ4¾¶ɏ¹¶³³¬¹ºɏ#ɏ¨µ«ɏ$ɏ·¹¶«¼ª¬ɏ½¬¹»°ª¨³ɏ¶¹ª¬ºɏ0ɏ¨µ«ɏ1ɏ¶µɏ»¯¬ɏ¯¶¹°Á¶µ»¨³ɏ©¬¨´ɏ!"Ȏɏ ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŷŸȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ«°º»¨µª¬ɏ¿ɏ¶ɏ»¯¬ɏ³¶¨«ɏ0ɏ¹¶´ɏ»¯¬ɏº¼··¶¹»ɏ!ɏ°ɏ »¯¬ɏ¹¬¨ª»°¶µɏ¨»ɏ!ɏ°ºɏ»¾°ª¬ɏ¨ºɏ®¹¬¨»ɏ¨ºɏ»¯¬ɏ¹¬¨ª»°¶µɏ¨»ɏ"ȍɏ4¯¬ɏ¾¬°®¯»ɏ¶ɏ»¯¬ɏ©¬¨´ɏ°ºɏ»¶ɏ©¬ɏµ¬®³¬ª»¬«ȍɏ '°½¬µȏɏ0ɏǛɏŵżɏ².Ȏɏ1ɏǛɏŽɏ².Ȏɏɏ³ɏǛɏŷȍźɏ´ȎɏªɏǛɏŴȍŽɏ´ȍɏ \MP!6/6^ c VA C VB D B A x Q P l Gjh/!6/45 5OLUTION! Bqqmzjoh!uif!frvbujpo!pg!frvjmjcsjvn-!xf!hfu!! S !>!1;! B!,! C!>!4!,!5!>!38!lO Tjodf-! C!>!1/6 B-!xf!ibwf B!,!1/6 B!>!38! fi! B!>!29!lO!boe! C!>!:!lO S }B!>!1;! C!¥!4/7!Ï!29!!Ï!:)!!,!1/:*!>!1 fi! :!¥!4/7!Ï!29!!Ï!:)!!,!1/:*!>!1! fi !!>!1/:!n ɏ ŵŸŹ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ 'XAMPLE!grcc !ɏª°¹ª¼³¨¹ɏ¹°µ®ɏ¶ɏŵŹŴɊ´´ɏ¹¨«°¼ºɏ°ºɏº¼··¶¹»¬«ɏ¨»ɏ»¯¬ɏ·°µɏ!ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŷŹ¨ȍɏ !ɏª¶³³¨¹ɏ°ºɏ¨³º¶ɏķŒ¬«ɏ¨»ɏ#ɏ¾¯°ª¯ɏ°ºɏ¨Œ¨ª¯¬«ɏ»¶ɏ¨µ¶»¯¬¹ɏº¼··¶¹»ɏ"ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ ¶¹ª¬ɏ°µɏ»¯¬ɏ´¬´©¬¹ɏ"#ɏ¨µ«ɏ¹¬¨ª»°¶µºɏ¨»ɏ!ɏ¶¹ɏ»¯¬ɏ·¶º°»°¶µɏ¶ɏ»¯¬ɏª¶³³¨¹ɏ¾¯¬µɏqɏǛɏŶŴǸȍ \MP!6/6^ 30 N B q 30 N B D q 150 mm C D FBC C A A HA VA (b) FBD of ring (a) Ring Gjh/!6/46 5OLUTION! Gjhvsf!6/46 !tipxt!uif!gsff.cpez!ejbhsbn!pg!sjoh/! CD!!jt!uif!gpsdf!jo!nfncfs!CD!boe! B!boe! B!bsf!ipsj{poubm!boe!wfsujdbm!sfbdujpot-!sftqfdujwfmz-!bu!uif!qjoofe!tvqqpsu!B/!Bqqmzjoh!uif!frvbujpot!pg! frvjmjcsjvn!up!uif!GCE-!xf!hfu ! S }B! >!1;! Ï!41!¥!261!,! CD!dpt!31¡!¥!261!>!1! fi! CD!>!42/:!O ! !S !! >!1;! B!Ï! CD!dpt!31¡!>!1! fi! B!>!42/:!dpt!31¡!>!41!O ! !S ! >!1;! B!Ï! CD!tjo!31¡!Ï!41!>!1! fi! B!>!51/:!O 'XAMPLE!grcd !ɏº°µ®³¬Ɋº»¶¹¬ÀɊº°µ®³¬Ɋ©¨Àɏ·¶¹»¨³ɏ¹¨´¬ɏ¶ɏŸɊ´ɏº»¶¹¬Àɏ¯¬°®¯»ɏ¨µ«ɏźɊ´ɏ©¨Àɏ¾°«»¯ɏ°ºɏ ³¶¨«¬«ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŷź¨ȍɏɏ#¨³ª¼³¨»¬ɏ»¯¬ɏº¼··¶¹»ɏ¹¬¨ª»°¶µºɏ¨»ɏ!ɏ¨µ«ɏ$ȍɏ ɑ \MP!6/6^ 10 kN/m B 25 kN 10 kN/m B C 2m 25 kN 4m E 2m 4m E D A C HA A VA 6m (a) Frame D 6m VD (b) FBD of frame Gjh/!6/47 5OLUTION! Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!GCE!pg!uif!gsbnf!)Gjh/!6/47 *-!xf!hfu S !! >!1;! B!,!36!>!1! fi! B!>!Ï!36!lO!>!36!lO!)¨* S ! >!1;! B!,! E!>!21!¥!7! fi! B!,! E!>!71!lO! S }B! >!1;! Ï!)21!¥!7*!¥!4!Ï!36!¥!3!,! E!¥!7!>!1! fi! E!>!49/44!lO Ifodf-!gspn!Fr/!) *-! B!>!71!Ï!49/44!>!32/78!lO )* ŵŸźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!grce !ɏº°´·³Àɏº¼··¶¹»¬«ɏ©¬¨´ɏ¶ɏŵŴɏ´ɏº·¨µɏ°ºɏª¨¹¹À°µ®ɏ¨ɏ·¶°µ»ɏ³¶¨«ɏ¶ɏŵŴŴɏ.ɏ¨»ɏ¨ɏ «°º»¨µª¬ɏ¶ɏŸɏ´ɏ¹¶´ɏ¶µ¬ɏ¬µ«ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ©¬¨´ɏ¹¬¨ª»°¶µºȍɏ \MP!6/6^ 5OLUTION! Gjhvsf!6/48!tipxt!uif!GCE!pg!uif!tjnqmz!tvqqpsufe!cfbn!xjui!uif!foe!B!ijohfe!boe!C!spmmfs! tvqqpsufe/!Uifsfgpsf-!uif!sfbdujpot!bu!B!bsf! B!boe! B!boe!uibu!bu!C!jt! C/!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn-! xf!hfu S !! >!1;! B!>!1 )* S ! >!1;! B!Ï!211!,! C!>!1! fi! B!,! C!>!211!O! S }C! >!1;! Ï! B!¥!21!,!211!¥!7!>!1! fi! B!>!71!O Gspn!Fr/!) *-! C! >!211!Ï! B!>!211!Ï!71!>!51!O -!uif!sfbdujpot!dbo!cf!dbmdvmbufe!ejsfdumz!vtjoh!uif!fyqsfttjpot!efsjwfe!jo!Dbtf!6!pg!Tfdujpo!6/6-! xjui! !>!211!O-! !>!5!n-! !>!7!n!boe!"!>!21!n/!UivtB! >! Wb 100 ¥ 6 !>! !>!71!O! boe! L 10 C!>! Wa 100 ¥ 4 !>! !>!51!O L 10 35 kN/m 20 kN 100 N A HA VA C 4m 6m 10 m ! Gjh/!6/48! 'XAMPLE!grcf VB 10 kN/m D A B VA B 3m C 2m 4m 13 m VD E 4m Gjh/!6/49 ɏ ɏŵŷɊ´ɏ³¶µ®ɏ©¬¨´ɏ°ºɏ³¶¨«¬«ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŷżȍɏ#¨³ª¼³¨»¬ɏº¼··¶¹»ɏ¹¬¨ª»°¶µºɏ¨»ɏ ! !ɏ¨µ«ɏ$ȍ \MP!6/6^ 5OLUTION! Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn-!xf!hfu S ! >!1;! B!,! E!Ï!31!Ï!21!¥!5!Ï!1/6!¥!46!¥!5!>!1 fi! B!,! E!>!241!lO! S }B! >!1;! Ï!31!¥!4!Ï!)21!¥!5*!¥!)4!,!3!,!3*!,! E!¥!:!Ï!)1/6!¥!46!¥!5*!¥!):!,!504*!>!1 )* fi! E!>!229/26!lO Tvctujuvujoh!uif!wbmvf!pg!*E!jo!Fr/!) *-!xf!hfu B!>!241!Ï!229/26!>!22/96!lO !;! S }E!>!1;! 22/96!¥!:!Ï!31!¥!7!Ï!21!¥!5!¥!3!,!)1/6!¥!46!¥!5*!¥!)504*!>!1 'XAMPLE!grcg ɏ °®¼¹¬ɏŹȍŷŽ¨ɏº¯¶¾ºɏ¨ɏºÀº»¬´ɏ¶ɏ³¬½¬¹ºɏº¼··¶¹»°µ®ɏ¨ɏ³¶¨«ɏ¶ɏŹŴŴɏ.ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ & ¹¬¨ª»°¶µºɏ¨»ɏº¼··¶¹»ºɏ!ɏ¨µ«ɏ"ȍɏɏ \MP!6/6^ ɏ ŵŸŻ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ 500 N Hinge D C A E B 300 mm 200 mm 400 mm 400 mm (a) System of levers 500 N VA D C B A E VC C VE VB 300 mm 200 mm 400 mm 400 mm (b) FBD of levers Gjh/!6/4: 5OLUTION! Gjhvsf!6/4: !tipxt!uif!gsff!cpez!ejbhsbn!pg!mfwfst/!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif! mfwfs!DF-!xf!hfu S ! >!1;! D!,! F!Ï!611!>!1! fi! D!,! F!>!611!O! )* S }D! >!1;! F!¥!711!Ï!611!¥!311!>!1! fi! F!>!277/8!O Gspn!Fr/!) *-! D! >!611!Ï!277/78!>!444/44!O Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!mfwfs!BD-!xf!hfu Gspn!Fr/!) *-! S ! >!1;! Ï! B!,! C!Ï!444/44!>!1! fi! C!Ï! S }B! >!1;! C!¥!411!Ï!444/44!¥!811!>!1! fi! B! >!888/88!Ï!444/44!>!555/55!O 'XAMPLE!grch B!!>!444/44!O! ) * C!>!888/8!O #¨³ª¼³¨»¬ɏ¹¬¨ª»°¶µºɏ¨»ɏ!ɏ¨µ«ɏ"ɏ¶¹ɏ»¯¬ɏº°´·³Àɏº¼··¶¹»¬«ɏ©¬¨´ɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŸŴ¨ȍ \MP!6/6^ 5OLUTION! Uif! 21,O! gpsdf! jt! bqqmjfe! bu! uif! qpjou! E! xjui! b! mfwfsbhf! ejtubodf! pg! 3! n/! Ju! dbo! cf! sfqmbdfe! cz! bo! frvjwbmfou! dmpdlxjtf!cfoejoh!npnfou!pg!31!On!)21!O!¥!3!n*!boe!b!gpsdf!pg! 21!O!sjhiuxbse!bu!uif!qpjou!E!bt!tipxo!jo!Gjh/!6/51 /!Bqqmzjoh! frvbujpot!pg!frvjmjcsjvn-!xf!hfu S }F! >!1;! Ï! B!¥!22!,!51!Ï!21!Ï!31!>!1! fi! S }B! >!1;! F!¥!22!Ï!31!Ï!21!,!51!>!1! fi S !! >!1;! F!,!21!>!1! fi! F!>!Ï21!O B!,! F!>!1! fi! B!>!Ï! F! 40 Nm 10 Nm B C A VA 3m F!>!Ï!1/:2!O 40 Nm A ! 3m 2m E D 2.5 m 2.5 m VE (a) Simply supported beam B!>!1/:2!O Cpui!uif!wfsujdbm!sfbdujpot!bsf!frvbm!jo!nbhojuvef!cvu!pqqptjuf!jo! ejsfdujpo/! !;! S !>!1;! 10 N VA B 3m 10 Nm 20 Nm 10 N E C D 2.5 m 2.5 m VE 3m (b) FBD of beam Gjh/!6/51 HE ŵŸżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!grci &¶¹ɏ»¯¬ɏ¹¨´¬ɏ³¶¨«¬«ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŸŵ¨Ȏɏª¨³ª¼³¨»¬ɏ¨³³ɏ»¯¬ɏ¶¹ª¬ºɏ¨ª»°µ®ɏ¶µɏ»¯¬ɏ ´¬´©¬¹ɏ!"#ȍɏ \MP!6/6^ C B C C 0.2 m 0.2 m D 8 kNm0.2 m D D 8 kNm0.2 m D E A B 0.2 m HA F E A VA 0.3 m VC B FBE 0.2 m F VF A HA VA 0.3 m 0.3 m (a) Frame HC (b) FBD of Frame (c) FBD of member AC Gjh/!6/52 5OLUTION! Gjhvsf!6/52 !tipxt!uif!gsff!cpez!ejbhsbn!pg!b!gsbnf!xjui! B!boe! B!bt!sfbdujpo!dpnqpofout!bu! uif!qpjou!B!boe! G!bt!uif!sfbdujpo!bu!G/!Uif!gsff!cpez!ejbhsbn!pg!uif!nfncfs!BCD!xjui!bmm!uif!gpsdft!bdujoh! bu!qpjout!B-!C!boe!D!jt!tipxo!jo!Gjh/!6/52 /!! Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!gsff!cpez!ejbhsbn!pg!uif!gsbnf-!xf!hfu S }G! >!1;! ) B!¥!1/4*!Ï!9!>!1! fi! B!>!37/78!lO S !! >!1;! B!>!1 Up!dbmdvmbuf!gpsdft!bu!kpjout!C!boe!D-!xf!bqqmz!frvbujpot!pg!frvjmjcsjvn!up!uif!GCE!pg!uif!nfncfs!uif! BCD!)Gjh/!6/52 *S }D!>!1;! ) B!¥!1/4*!Ï!) CF!¥!1/5*!>!1 fi )37/78!¥!1/4*!Ï!) CF!¥!1/5*!>!1! fi! CF!>!31!lO S !>!1;! Ï! B!,! D!>!1! fi! D!>!37/78!lO S !!>!1;! CF!Ï! D!>!1! fi! D!>!31!lO 'XAMPLE!grcj #¨³ª¼³¨»¬ɏ»¯¬ɏ¯¶¹°Á¶µ»¨³ɏ¨µ«ɏ½¬¹»°ª¨³ɏ¹¬¨ª»°¶µɏª¶´·¶µ¬µ»ºɏ¨»ɏ·¶°µ»ºɏ!ɏ¨µ«ɏ$ɏ¶¹ɏ »¯¬ɏ³¶¨«¬«ɏ¹¨´¬ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŸŶ¨ȍ \MP!6/6^ C B C B 100 N E 250 N A D 1m 1m (a) Frame E 250 N 60° VE 100 N HA A VA HE HD 30° 1m 100 N E 60° 1m C D (b) FBD of frame VD A 30° HA VA (c) FBD of member AC Gjh/!6/53 5OLUTION! Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!GCE!pg!uif!gsbnf!tipxo!jo!Gjh/!6/63 -!xf!hfu ɏ ŵŸŽ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ S }B! >!1;! ) E!¥!3*!Ï!)211!¥!3!ubo!41¡*!>!1! fi! E!>!68/85!O S ! >!1;! B!,! E!Ï!361!>!1! fi! B!>!2:3/37!O S !! >!1;! B!,! E!,!211!>!1! fi! B!,! E!>!Ï211! Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!GCE!pg!uif!nfncfs!BCD!tipxo!jo!Gjh/!6/56 -!xf!hfu S }F! >!1;! Ï!) B!¥!2*!,! B!¥!)2!¥!ubo!41¡*!Ï!211!¥!)2!¥!ubo!41¡*!>!1 fi! B!>!544!O Gspn!Fr/!) *-! !! E!>!Ï211!Ï! B!>!Ï211!Ï!544!>!Ï!644!O!>!644!O!)¨* 'XAMPLE!grck )* !ɏ©¬¨´ɏ!"ɏ¶ɏźɗ´ɏº·¨µɏ°ºɏº¼··¶¹»°µ®ɏ¨µ¶»¯¬¹ɏ©¬¨´ɏ#$ɏ¶ɏ»¯¬ɏº¨´¬ɏº·¨µɏ¨ºɏ º¯¶¾µɏ°µɏ&°®ȍɏŹȍŸŷ¨ȍɏ#¨³ª¼³¨»¬ɏº¼··¶¹»ɏ¹¬¨ª»°¶µºɏ¶¹ɏ©¶»¯ɏ»¯¬ɏ©¬¨´ºȍɏ \MP!6/6^ 5OLUTION! Gjhvsf!6/54 !tipxt!uif!gsff!cpez!ejbhsbn!pg!uif!cfbn/!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif! cfbn!DE-!xf!hfu (3 + 23 ¥ 3) !Ï!)6!¥!4*!¥!2/6!>!1! fi! E!>!26!lO 1 D!¥!7!Ï!)6!¥!4*!¥!5/6!Ï!)1/6!¥!:!¥!4*!¥! ( 3 ¥ 3) !>!1! fi! D!>!24/6!lO!! S }D! >!1;! E!¥!7!Ï!)1/6!¥!:!¥!4*!¥! S }E! >!1;! !;! Bmtp-! S !>!1;! D!,! E!Ï!6!¥!4!Ï!1/6!¥!:!¥!4!>!1! fi! D!,! E!>!26!,!24/6!>!39/6!lO D!,! E!>!39/6!lO Gps!uif!cfbn!BC-!bqqmzjoh!frvbujpot!pg!frvjmjcsjvn-!xf!hfu S ! >!1;! !! B!,! C!Ï! D!>!1! fi! B!,! C!>!24/6!lO! S }B! >!1;! C!¥!7!Ï! D!¥!4!>!1! fi! ! C!>!1/6!¥!24/6!>!7/86!lO Gspn!Fr/!) *-! B!>!24/6!Ï! C!>!24/6!Ï!7/86!>!7/86!lO 9 kN/m 5 kN/m D C B A 3m 6m 3m (a) Beams AB and CD 9 kN/m 5 kN/m C D VC VD A B VA VB 3m 6m 3m (b) FBD of beams Gjh/!6/54 )* ŵŹŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!grdl ɏ ¨³ª¼³¨»¬ɏ»¯¬ɏ½¨³¼¬ºɏ¶ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ¶¹ɏ»¯¬ɏª¨µ»°³¬½¬¹ɏ©¬¨´ɏ # º¯¶¾µɏ°µɏ&°®ȍɏŹȍŸŸ¨ȍɏ!³º¶Ȏɏ«¹¨¾ɏ»¯¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºȍ \MP!6/6-!MP!6/8^ 5OLUTION! Uif! tvqqpsu! sfbdujpot! frvjmjcsjvn!bt!gpmmpxt/ S ! >!1;! % 1 B! boe! tB! bu! uif! Ýyfe! foe!B! bsf! dbmdvmbufe! cz! vtjoh! frvbujpot! pg! B!Ï!3!¥!2/36!Ï!5!>!1! fi! B!>!7/6!lO S }B! >!1;! tB!Ï!)3!¥!2/36*!¥!|)2/3603*!,!1/36~!Ï!5!¥!2/36!>!1! fi! tB!>!8/2986!lOn ; Bu!uif!qpjou!B;! ! %B!>! B!>!7/6!lO! )sfnbjot!dpotubou!ujmm!uif!qpjou!D* Bu!uif!qpjou!D;! ! %D!>! B!>!7/6!lO Kvtu!mfgu!pg!uif!qpjou!E;! !!!%E-M!>! B!Ï!3!¥!2!>!7/6!Ï!3!>!5/6!lO Kvtu!sjhiu!pg!uif!qpjou!E;! %E-S!>! B!Ï!3!¥!2!Ï!5!>!7/6!Ï!7!>!1/6!lO Bu!uif!qpjou!C;! %C!>! B!Ï!3!¥!2/36!Ï!5!>!7/6!Ï!7/6!>!1! )wfsjÝfe-!tjodf!C!jt!b!gsff!foe* ; Bu!uif!qpjou!B;! Bu!uif!qpjou!D;! Bu!uif!qpjou!E;! B!>!Ï!8/2986!lOn! )ofhbujwf!tjho!bt!qfs!tjho!dpowfoujpo*! D!>!Ï! B!,! B!¥!1/36!>!Ï!8/2986!,!7/6!¥!1/36!>!Ï!6/6736!lOn E!>!Ï! B!,! B!¥!2/36!Ï!)3!¥!2*!¥!)203* ! >!Ï!8/2986!,!7/6!¥!2/36!Ï!2!>!Ï!1/1736!lOn ! Ps-!gspn!sjhiu.iboe!tjef!pg!E;! NE!>!Ï!3!¥!1/36!¥!1/3603!>!Ï!1/1736!lOn Bu!uif!qpjou!C;! C!>!Ï! B!,! B!¥!2/6!Ï!)3!¥!2/36*!¥!)2/3603*!Ï!5!¥!1/36 ! >!Ï8/2986!,!7/6!¥!2/6!Ï!2/6736!Ï!2!>!1! )wfsjÝfe-!bt!C!jt!b!gsff!foe* TGE!boe!CNE!bsf!tipxo!jo!Gjh/!6/55 !boe! -!sftqfdujwfmz/ 500 N 4 kN MA 2 kN/m C A 1m VA 0.25 m 6.5 C A C (b) SFD – A 5m 0 A B D B D 5m 15 m B C – 0.5 D VD –500 0 D – –500 –950 (b) SFD – 0.0625 MD C (a) 4.5 + A B 0.25 m (a) 6.5 B D 30 N/m 0 0 A B C D – –2500 –5.5625 –7.1875 ! (c) BMD Gjh/!6/55! (c) BMD Gjh/!6/56 –13375 ɏ ŵŹŵ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ 'XAMPLE!grdc $¬»¬¹´°µ¬ɏ»¯¬ɏº¼··¶¹»ɏ¹¬¨ª»°¶µºɏ¶¹ɏ»¯¬ɏª¨µ»°³¬½¬¹ɏ©¬¨´ɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŸŹ¨ɏ¨µ«ɏ º²¬»ª¯ɏ»¯¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºɏº¯¶¾°µ®ɏ²¬Àɏ·¶°µ»ºȍɏ \MP!6/6-!MP!6/8^ 5OLUTION! Uif!tvqqpsu!sfbdujpot! E!boe! tE!bu!uif!Ýyfe!foe!bsf!dbmdvmbufe!cz!vtjoh!frvbujpot!pg!frvjmjcsjvn! bt!gpmmpxt/ S ! >!1;! Ï!611!Ï!41!¥!26!,! E!>!1! fi! E!>!:61!lO S }E! >!1;! 611!¥!31!,!)41!¥!26*!¥!)2603*!,! tE!>!1! fi tE!>!Ï!24!486!lOn % ; Bu!uif!qpjou!B;! %B!>!1! )ju!jt!b!gsff!foe-!boe!dbssjft!op!mpbe* Kvtu!mfgu!pg!uif!qpjou!C;! %C-M!>!1 Kvtu!sjhiu!pg!uif!qpjou!C;! %C-S!>!Ï!611!lO Bu!uif!qpjou!D;! %D!>!Ï!611!lO ! Ps-!gspn!sjhiu.iboe!tjef!pg!D;!!!!!!!!!%D!>!Ï! E!,!41!¥!26!>!Ï!:61!,!561!>!Ï!611!lO Bu!uif!qpjou!E;! %E!>!Ï! E!>!Ï!:61!lO 1 ; Bu!uif!qpjou!B;! B! >!1! )ju!jt!b!gsff!foe* Bu!uif!qpjou!C;! C! >!1! )uifsf!jt!op!mpbe0sfbdujpo!pg!uif!tqbo!BC* Bu!uif!qpjou!D;! D! >!Ï!611!¥!6!>!Ï!3611!lO!◊ n PS-!gspn!sjhiu.iboe!tjef!pg!D;! D!>! E!,! E!¥!26!Ï!)41!¥!26*!¥!2603 ! >!Ï!24486!,!:61!¥!26!Ï!4486!>!Ï!3611!lOn TGE!boe!CNE!bsf!tipxo!jo!Gjh/!6/56 !boe! -!sftqfdujwfmz/ 'XAMPLE!grdd $¹¨¾ɏ»¯¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºɏ¶¹ɏ»¯¬ɏ¶½¬¹¯¨µ®°µ®ɏ©¬¨´ɏ º°´·³Àɏº¼··¶¹»¬«ɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ!ɏ¨µ«ɏ"ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŸź¨ȍɏɏ ɏ \MP!6/8^ 5OLUTION! Uif!tvqqpsu!sfbdujpot! B!boe! C!bsf!dbmdvmbufe!cz!vtjoh!frvbujpot!pg!frvjmjcsjvn!bt!gpmmpxt/! S }B! >!1;! Ï!21!¥!3!¥!303!Ï!31!¥!3!Ï!31!¥!6!Ï!31!¥!4!¥!)6!,!403* ! !! Ï21!¥!8!,! C!¥ 9!Ï!51!¥!21!>!1! fi! C!>!238/6!lO S ! >!1;! B!Ï!21!¥!3!Ï!31!Ï!31!Ï!31!¥!4!Ï!21!,! C!Ï!51!>!1! fi! B!>!53/6!lO % ; Bu!uif!qpjou!B;! !!!%B! >! B!>!53/6!lO Kvtu!mfgu!pg!uif!qpjou!D;! %D-M! >!%B!Ï!21!¥!3!>!53/6!Ï!31!>!33/6!lO Kvtu!sjhiu!pg!uif!qpjou!D;! %D-S! >!%D-M!Ï!31!>!33/6!Ï!31!>!3/6!lO! )sfnbjot!dpotubou!ujmm!uif!qpjou!E* Kvtu!mfgu!pg!uif!qpjou!E;! %E-M! >!%D-S!>!3/6!lO Kvtu!sjhiu!pg!uif!qpjou!E;! %E-S! >!%E-M!Ï!31!>!3/6!Ï!31!>!Ï!28/6!lO Kvtu!mfgu!pg!uif!qpjou!F;! %F-M! >!%E-S!Ï!31!¥!3!>!Ï!28/6!Ï!51!>!Ï!68/6!lO Kvtu!sjhiu!pg!uif!qpjou!F;! %F-S! >!%F-M!Ï!21!>!Ï!68/6!Ï!21!>!Ï!78/6!lO Kvtu!mfgu!pg!uif!tvqqpsu!C;! %C-M! >!%F-S!Ï!31!¥!2!>!Ï!78/6!Ï!31!>!Ï!98/6!lO Kvtu!sjhiu!pg!uif!tvqqpsu!C;! %C-S! >!%C-M!,! C!>!Ï!98/6!,!238/6!>!51!lO Bu!uif!qpjou!G;! !!!%G! >!%C-S!>!51!lO! )wfsjÝfe-!tjodf!G!dbssjfe!b!51.lO!qpjou!mpbe* ŵŹŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 1 ; Bu!uif!qpjou!B;! B! >!1! ! )ju!jt!b!tjnqmf!tvqqpsu* Bu!uif!qpjou!D;! D! >! B!¥!3!Ï!)21!¥!3*!¥!)303*!>!53/6!¥!3!Ï!31!>!76!lOn Bu!uif!qpjou!E;! E! >! B!¥!6!Ï!)21!¥!3*!¥!)303!,!4*!Ï!31!¥!4!>!83/6!lOn Bu!uif!qpjou!F;! F! >! B!¥!8!Ï!)21!¥!3*!¥!)303!,!4!,!3*!Ï!31!¥!6 ! Ï!31!¥!3!Ï!)31!¥!3*!¥!)303*!>!Ï!3/6!lOn Bu!uif!tvqqpsu!C;! !>! !¥!9!Ï!)21!¥!3*!¥!)303!,!4!,!3!,!2*!Ï!31!¥!7 C B ! Ï!31!¥!4!Ï!)31!¥!4*!¥!)403*!Ï21!¥!2!>!Ï!91!lOn !>!1! ! )ju!jt!b!gsff!foe* Bu!uif!qpjou!G;! TGE!boe!CNE!bsf!tipxo!jo!Gjh/!6/57 !boe!6/57 -!sftqfdujwfmz/ 20 kN 10 kN/m C A 40 kN 10 kN E 20 kN/m B D 3m 2m VA 20 kN 2m 1m V B F 5 kN 2m 5 kN/m 10 kN ◊ m D C (a) E B A 42.5 40 + A 22.5 2.5 40 3m VA 3m 2m D + E B – 14.75 F + –17.5 (b) SFD –57.5 –67.5 A –87.5 C D 72.5 65 E B – –0.25 (b) SFD A VB (a) 2.5 C – 5.25 – 5.25 21.75 21.25 + 0 2m C E D B – –2.5 + F 0 0 A C 11.25 D E – B 0 –11.5 (c) BMD ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Gjh/!6/57! 'XAMPLE!grde –80 ! (c) BMD !!!!!!!!!!!!!!!!!!!!!!!!Gjh/!6/58 $¹¨¾ɏ»¯¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºɏ¶¹ɏ»¯¬ɏº°´·³Àɏº¼··¶¹»¬«ɏ ©¬¨´ɏ¨»ɏ»¯¬ɏ·¶°µ»ºɏ!ɏ¨µ«ɏ"Ȏɏ³¶¨«¬«ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŸŻ¨ȍɏ \MP!6/7^ 5OLUTION! Uif!tvqqpsu!sfbdujpot! B!boe! C!bsf!dbmdvmbufe!cz!vtjoh!frvbujpot!pg!frvjmjcsjvn!bt!gpmmpxt/! S }B! >!1;! Ï!)6!¥!4*!¥ (403*!,!21!Ï!6!¥!9!,! C!¥!21!>!1! fi! C!>!6/36!lO S ! >!1;! B!Ï!6!¥!4!Ï!6!,! C!>!1! fi! B!>!31!Ï!6/36!>!25/86!lO ɏ ŵŹŷ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ % ; Bu!uif!qpjou!B;! %B! >! B!>!25/86!lO Bu!uif!qpjou!D;! %D! >! B!Ï!6!¥!4!>!25/86!Ï!26!>!Ï1/36!lO! )sfnbjot!dpotubou!ujmm!mfgu!pg!F* Kvtu!mfgu!pg!uif!qpjou!F;! %F-M! >!%D!>!Ï1/36!lO! Kvtu!sjhiu!pg!uif!qpjou!F;! %F-S! >!%D!Ï!6!>!Ï1/36!Ï!6!>!Ï!6/36!lO! )sfnbjot!dpotubou!ujmm!uif!qpjou!C* Bu!uif!qpjou!C;! %C! >!Ï! C!>!Ï!6/36!lO 1 ; Bu!uif!qpjou!B;! B! >!1! )ju!jt!b!tjnqmf!tvqqpsu* Bu!uif!qpjou!D;! D! >! B!¥!4!Ï!)6!¥!4*!¥!)403*!>!25/86!¥!4!Ï!33/6!>!32/86!lOn Kvtu!mfgu!pg! E;! E-M! >! B!¥!6!Ï!)6!¥!4*!¥!)403!,!3*!>!25/86!¥!6!Ï!63/6!>!32/36!lOn Kvtu!sjhiu!pg!E;! E-S! >! B!¥!6!Ï!)6!¥!4*!¥!)403!,!3*!Ï!21!>!25/86!¥!6!Ï!63/6!Ï!21!>!22/36!lOn Bmtp-!gspn!sjhiu.iboe!tjef!pg!E-! E-S!>! C!¥!6!Ï!6!¥!4!>!6/36!¥!6!Ï!26!>!22/36!lOn Bu!uif!qpjou!F;! F!>!Ï! C!¥!3!>!Ï!6/36!¥!3!>!Ï22/6!lOn Bu!uif!qpjou!C;! C!>!1! ! )ju!jt!b!tjnqmf!tvqqpsu* TGE!boe!CNE!bsf!tipxo!jo!Gjh/!6/58 !boe! -!sftqfdujwfmz/ 'XAMPLE!grdf &°µ«ɏ »¯¬ɏ º¯¬¨¹ɏ ¶¹ª¬ɏ ¨µ«ɏ ´¶´¬µ»ɏ ¬¸¼¨»°¶µºɏ ¶¹ɏ »¯¬ɏ º°´·³Àɏ º¼··¶¹»¬«ɏ ©¬¨´ɏ º¯¶¾µɏ°µɏ&°®ȍɏŹȍŸż¨ȍɏ!³º¶ɏº²¬»ª¯ɏ»¯¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºȍɏ \MP!6/8^ 20 kN/m A X 2m C A B Y 2m VA X 1 S1 (b) 15 + 0 (40 – 10x) 2 20 kN/m B C A – (d ) SFD –15 M2 A –20 26.6 18.3 VA 18.3 C X 2m C x Y (x – 2) 2 S2 (c) + 0A M1 x (a) 20 1 10x B0 (e) BMD Gjh/!6/59 5OLUTION! Bt!uif!mpbejoh!jt!tznnfusjdbm-!tvqqpsu!sfbdujpot!bu!B!boe!C!bsf!tbnf1 1 B!>! C!>! 2!¥!) 2 !¥ 5!¥!31*!>!31!lO ŵŹŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº &3 % 1 % BD )1!£!!!£!3!n*;!Dpotjefs!b!tfdujpo!2.2!bu!b! ejtubodf!!!gspn!uif!foe!B!boe!GCE!pg!uif!tqbo!BY-!bt!tipxo!jo!Gjh/!6/59 /!Mfu!%2!boe! 2!cf!uif!tifbs! gpsdf! boe! cfoejoh! npnfou! bu! tfdujpo! 2.2-! sftqfdujwfmz/! Joufotjuz! pg! mpbejoh! bu! tfdujpo! 2.2! jt! hjwfo! bt! !>!)3103*!¥!!!>!21!/!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!po!uif!tqbo!BY-!xf!hfu S !>!1;! ! 2 fi! S S1 = 5(4 - x ) ¥! 6 % ¥ 7 ! ¥ ¥ ; ! fi S2 = (2 - x) (30 - 5 x) ¥ fi ! ¥ ! ! £!£ ' $* + , 0 #/ * ! &" ' * ¥; < % !< ¥ 80 3 ! ! ! È 60 - 15 ! + 10 ! - 20 ˘ Í ˙ 3 Î ˚ 1 M 2 = (5 x3 - 60 x 2 + 180 x - 80) 3 fi % B * C8 "/ 9 ! !9 # % ! EF EF %! ! # % % ! ! + 5 ! 3 ! % % Ê1 ˆ ¥ Á ¥ 2 + ( ! - 2)˜ Ë3 ¯ ( ! - 2) 2 È ˘ + Í(40 - 10 !) ¥ ( ! - 2) ¥ + 0.5 ¥ ( ! - 2) ¥ (10 ! - 20) ¥ ( ! - 2) ˙ 2 3 Î ˚ 4ˆ 2 Ê È ˘ ! ! ¥ Á! - ˜ Í(20 - 5 !) + 3 (5 ! - 10) ˙ Ë 3¯ Î ˚ fi # # &" ! . /0 6 # 89 / - 9 ! ¥ ! ! ¥! # # # fi ! : fi & D D D G"# D D $ *9 ! % $ % # " !!/0 * 89 ! S S ! ¥ 1 !# * " # ¥!¥ Ê x2 ˆ M1 = 5 x Á 4 - ˜ 3¯ Ë fi &3 ! fi! 31!Ï!)1/6!¥!!!¥!21!*!Ï!%2!>!1 B!Ï!)1/6!¥!!!¥!21!*!Ï!%2!>!1! ¥ ¥ ¥ %! ! ' % D$% # - D$% ! - / EF EF *. " ɏ ŵŹŹ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ 1 - B * C8 "/ 9 ! * ! * ! ! * G"# # ! * ! * $ *9 + ' I% # 'XAMPLE!grdg - . Ê 02 ˆ Á4 - 3 ˜ Ë ¯ ¥ Ê 12 ˆ 4 Á 3 ˜¯ Ë + ¥ Ê 22 ˆ Á4 - 3 ˜ Ë ¯ H H EF 1 3 1 3 ! * ¥ 1 3 ! !9 - J 9 ! EF ¥ H ¥ + ¥ + H H EF ¥ H ¥ + ¥ + + ¥ H ¥ I% + ¥ + 9- ! - / ! # EF &¶¹ɏ¨ɏº°´·³Àɏº¼··¶¹»¬«ɏ©¬¨´ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŸŽ¨Ȏɏ«¹¨¾ɏ»¯¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ ©¬µ«°µ®ɏ ´¶´¬µ»ɏ «°¨®¹¨´ºɏ ¨»¬¹ɏ °µ«°µ®ɏ »¯¬ɏ ¬¸¼¨»°¶µºɏ ¶¹ɏ º¯¬¨¹ɏ ¶¹ª¬ɏ ¨µ«ɏ ©¬µ«°µ®ɏ´¶´¬µ»ȍɏ \MP!6/8^ 5 kN/m 5 kN/m A 1 C 2m M1 B 2m X S1 (a) B x VB 1 (b) 6.67 2.92 + A 1.667 B C (d) SFD M2 – 5 kN/m 2 B Y 6.67 4.58 –8.33 (x – 2) S2 5.83 2m x 2 + 0A C (e) BMD B VB (c) 0 Gjh/!6/5: 5OLUTION! D9!! ¥ ¥ S S , 9 E ¥ ¥ * ¥ # // ' ( 13 ¥ 2) ¥ - ¥ ¥ 9 ¥ 7 fi / #' / H HK EF * - fi + EF ŵŹźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº &3 % 1 $ % # " ! # 89 / - 9 !# - * !!/0 * 89 % ! L ' . /0 ! L" ' * S ¥! S &3 ! ¥! L % # *. " ¥! ¥ fi S fi + ¥! ; ! + ¥ ! ¥ ! ! ¥ * C8 % ! + D # G"# ! % % ¥ J ! - / D$% # B $ *9 ! ! C8 ! ! ! M ' + + - EF HK EF HK HK $* HK HK M EF H HK EF M !9 - * . + ! ! + ! ! + ¥ ¥ + EF + ! ! + ¥ ¥ H HK EF HK ¥ HK! ! ! I% # # "/ 9 ! * ( 13 ¥ ( ! - 2)) HK EF * C8 ! * G"# * ¥ + ' ! * * !9 ! ! - 1 - S2 = 1.25( x - 2) 2 + 1.67 ! HK % % ! <¥ ! "/ 9 ! ! fi M 2 = - 0.42( x - 2) - 1.67 x + 10 # # # % < % ¥ ¥ 7 ¥ ! ! ! D D D ! 3 fi C8 ! ! ; B ! + % £!£ , $ % # ! & ' $* M , % , " ! . /0 6 0 # *9/ / * , !!/0 * 89 # 89 / - 9 ! &" ' * ¥ % + 1 S fi ! # + ! & % ! , - fi !# * 7 ¥ ! " fi % £!£ M , % $* HK! HK ¥ HK! 9 ! H K EF + EF HK ¥ ɏ ŵŹŻ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ 'XAMPLE!grdh !ɏº°´·³Àɏº¼··¶¹»¬«ɏ©¬¨´ɏ¶ɏŻɊ´ɏº·¨µɏ¾°»¯ɏ¶µ¬ɏ¶½¬¹¯¨µ®ɏ¶ɏŶɊ´ɏ³¬µ®»¯ɏª¨¹¹°¬ºɏ¨ɏ ª¶µª¬µ»¹¨»¬«ɏ´¶´¬µ»ɏ¶ɏŷŴŴŴɏ.´ɏ¨»ɏ¨ɏ·¶°µ»ɏŶɏ´ɏ¨¾¨Àɏ¹¶´ɏ»¯¬ɏº¼··¶¹»¬«ɏ¬µ«Ȏɏ ¨µ«ɏ¨ɏ·¶°µ»ɏ³¶¨«ɏ¶ɏŻŹŴɊ.ɏ´¨®µ°»¼«¬ɏ¨»ɏ»¯¬ɏ¨¹ɏ¬µ«ɏ¶ɏ¶½¬¹¯¨µ®ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŹȍŹŴ¨ȍɏ#¨³ª¼³¨»¬ɏ º¼··¶¹»ɏ¹¬¨ª»°¶µºɏ¨µ«ɏ·³¶»ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºɏ¶¹ɏ»¯¬ɏ©¬¨´ȍɏɏ \MP!6/6-!MP!6/8^ 5OLUTION J 9!! - S ¥ J # D$% I% ! / N " I% ' // / # F ' // 9 9 I% % ! 6 ! fi K 411!O 750 N A C B VA 2m ' ! "- // 6 /0 / ! # ! 300 + * C B A D (b) SFD * * . * J # P9 * P9 / # # + ¥ ", " F H F - A C D B – * –1500 –2400 # # ! "Q ! ", H F (c) BMD ¥ Gjh/!6/61 F !; $ R9 I% * # ' 'XAMPLE!grdi 5OLUTION! J # ! $* - "' * K "Q ¥ F !ɏ ©¬¨´ɏ °ºɏ ³¶¨«¬«ɏ ¨ºɏ º¯¶¾µɏ °µɏ &°®ȍɏ ŹȍŹŵ¨ȍɏ $¹¨¾ɏ °»ºɏ º¯¬¨¹ɏ ¶¹ª¬ɏ «°¨®¹¨´ɏ ¨µ«ɏ ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ȍ \MP!6/8^ 9!! / 9/ S -0 9 ¥ ¥ S \ 750 450 600 P9 / # I J D VC 2m 3000 Nm 3m (a) # * . K F ! ! . $* 89 / G. # 89 / - 9 " 561!O * . -0 ' D$% ' // - O * ! ! " ! * # * " 89 / F %" # ! D # . J D$% 1 -0 * fi K ! -0 !!/0 * 89 ¥K K S / 9/ + ¥ 32/98!lO * 89 fi ¥ ¥ # 89 / - 9 EF 7 fi 39/24!lO ŵŹżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº % ! ! * P9 % % %C #C 1 +K EF ¥ + EF + EF S ! ¥ ¥ ¥ ¥ ¥ ¥ %", H H EF %"Q ¥ + EF C $* " ! . /0 * ! P9 / # # ! P9 * # ! ! C J D$% I% % % ' // // 7 EF 10 kN 10 kNm A 30 kNm C 1.5 m VA D E 1m 0.5 m 2m VA 1m VB VB (a) C D E 5 0 A B 5 C + – A D – –5 –8.13 E B 2m (a) 21.87 + 3 kNm D C 2m 2m B A C EF H 20 kN 20 kN/m ! ! 6 B + E –5 – –11 (b) SFD (b) SFD –28.13 20 36.25 10 28.13 Parabolic Linear 10.13 C A ! 6.24 D 0 A + E 10 0.593 m D F + C B E B – –6 (c) BMD (c) BMD Gjh/!6/62! Gjh/!6/63 'XAMPLE!grdj &°®¼¹¬ɏŹȍŹŶ¨ɏº¯¶¾ºɏ¨µɏ¶½¬¹¯¨µ®ɏ©¬¨´ɏª¨¹¹À°µ®ɏ5$,Ȏɏ·¶°µ»ɏ³¶¨«ɏ¨µ«ɏª¶µª¬µ»¹¨»¬«ɏ ´¶´¬µ»ȍɏ0³¶»ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºɏ¶¹ɏ»¯¬ɏ©¬¨´ȍɏ,¶ª¨»¬ɏ »¯¬ɏ·¶°µ»ɏ¶ɏª¶µ»¹¨ĸ¬¿¼¹¬ɏ¨³º¶Ȏɏ°ɏ¨µÀȍɏɏ \MP!6/8^ 5OLUTION! S S ¥ ' ¥ !¥ " ¥ " ¥# " fi fi ' "$ %& fi ## ## "$ ( %& % ) , , ) ) ) % + %+ +. %+ / ( %& ( %& %+ - " * ( " ) 0 ( %& +! * ) 1! ɏ ŵŹŽ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ * , , 1 ! ) ) ) 3 ) 4 ) ) * ! 1 ! ( ! %1 !! ( " # ! % ( ¥ #! "" %& 0"" ' "$ % / % -' %3 3 ) ) * 2 * 2 2 %& %& 5 1 23 , , ) ) ) 1 ) ) 6 * ) * 9 : 2 ) ;) 641 + + ! 3 ( ¥ # " %& " '" # %& (¥ " ¥#'" " %& ¥ #! ¥ " %& 8 1 8 2 15 - ) 4 2 ++1 7 *) 4! 4 ! ' #!# = # ! 5$ "$! ) ) 2 71 ) 5 ;) * 8 5 < !# * fi ##! ' "# 2) * ) ) ) 'XAMPLE!grdk ) * ! 9 : ) ! 1/6:4!n 25 4 5 (5(# 2 $¹¨¾ɏ »¯¬ɏ º¯¬¨¹ɏ ¶¹ª¬ɏ ¨µ«ɏ ©¬µ«°µ®ɏ ´¶´¬µ»ɏ «°¨®¹¨´ºɏ ¶ɏ »¯¬ɏ ©¬¨´ɏ º¯¶¾µɏ °µɏ &°®ȍɏŹȍŹŷ¨ȍɏ \MP!6/8^ ) 5OLUTION! S ¥#' S ( ) 5( ¥ " ¥ " ! ¥ 23 ¥ 1 5( ¥ " ¥ " ' fi fi ( "5 $ %& ( "5 $ 5 %& % ) ) ) ) + 2 + B/ ) C) 2 2 % %+ %1 % % "5 $ %& * ) "5 $ %& ' 5( ¥ 5( ¥ ( 5 ' "5#( #5 A %& 5( ¥ " ¥ " "5 $ ( 5 %& 5 %& 1 ) ) ) ) ;) 641 + 2 + + 1 1 2 71 ) 4 5 (5( ! ¥ " "5 $ %& ¥ 5( 5( ¥ 5( ¥ (! ¥ ! 2 * 8 5 1 3 ¥" 2 +! "5#( %& +! ŵźŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 20 kN 15 kN/m C A 10 kN/m VD 2m B 1m VA 1m 1m (a) VB 22.5 22.5 2.5 + 1.67 0 A + B (b) SFD B C 1m 52.5 (a) 0 A D B VA C A 100 kNm C D C D 2.5 0 – 75 –2.08 –3.33 (b) SFD + 1.67 0 A 1.25 0 – B –2.5 + 0 A C ! –25 B (c) BMD (c) BMD Gjh/!6/64! Gjh/!6/65 'XAMPLE!grel $¹¨¾ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ«°¨®¹¨´ºɏ¶¹ɏ»¯¬ɏº°´·³Àɏº¼··¶¹»¬«ɏ©¬¨´ɏ º¯¶¾µɏ°µɏ&°®ȍɏŹȍŹŸ¨ȍ \MP!6/8^ 5OLUTION! S "( ¥ #! ¥ #=#! ' " S "( ¥ # # ' # ¥ fi 1 ' 1 ¥ ( fi 1 1 ( #5( %& * 2 #5(! 2! (#5( %& % % % ) ) , ) ) + (#5( %& "( ¥ # (#5( "( ¥ # # (#5( %+ / ##5( %& * # #5( %& ) * ) B 1 ) ,) 2 2 %1 %1 1 "( ¥ # # #5( %& (#5( 1 ) ! # #5( %& +! ) 1! ɏ ŵźŵ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ , ) - ¥# "( ¥ #! ¥ " (#5( ¥ # ¥# ¥ "( ¥ #! ¥ " " (#5( ¥ # "( ¥ #! ¥ " ' "! " (#5( ¥ ! 2 * 8 5 $( %& * , ) ) ) ;) 641 ) + 1 2 71 / + 1 ) ! 4 5 (5( " 2 ! #( %& " #5( %& 57//#4; H % difdl! zpvs!voefstuboejohI!6* ) 2J * K/ * 2 .1!grc! $°º»°µ®¼°º¯ɏ©¬»¾¬¬µɏ©¬¨´ºɏ¨µ«ɏª¶³¼´µºɏ°µɏ¨ɏ·¶¹»¨³ɏ ¹¨´¬ȍ ;) ) < ) ) 5 ;) * : * 8 * 8 2 % 7$$3 2 % 5 ;) 8 2 5+ ( $ ! $898 2 5 * 25 .1!grd! ,°º»ɏ»¯¬ɏµ¨´¬ºɏ¶ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ³¶¨«°µ®ºɏ¶ɏ©¬¨´ºȍ "! D 2 #! E 2 2 2 E1-! !E 8 2 !4: 2 5 2 !+ * .1!gre! ,°º»ɏ»¯¬ɏµ¨´¬ºɏ¶ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏº¼··¶¹»ºȍ "! / #! F 2 2 ! 2 .1!grf! #¨»¬®¶¹°º¬ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ©¬¨´ºȍ "! 6 !+ 2 5 #! + 8 ! ) 8 ) ! 4: 2 (! D 2* 8 2 2 !S 5 .1!grg! $¬»¬¹´°µ¬ɏ¹¬¨ª»°¶µºɏ¶¹ɏ«°Ĺ¬¹¬µ»ɏ©¬¨´ºɏ¼µ«¬¹ɏ«°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ³¶¨«ºȍ 6 * * 2 2 ) !S ) !S ! .1!grh! $¬ķµ¬ɏº¯¬¨¹ɏ¶¹ª¬ɏ¨µ«ɏ©¬µ«°µ®ɏ´¶´¬µ»ȍ ) $ 8 2 * 2 ) 2 ) ) ) 2 * ) 2 ) ) * * : 5G 2 8 5 * ) ) ) ) ) *) 5; * .1!gri! -¨·ɏ »¯¬ɏ º¯¬¨¹ɏ ¶¹ª¬ɏ «°¨®¹¨´ɏ ș3&$Țɏ ¨µ«ɏ ©¬µ«°µ®ɏ ´¶´¬µ»ɏ «°¨®¹¨´ɏ ș"-$Țɏ ¶¹ɏ ©¬¨´ºɏ ¼µ«¬¹ɏ «°Ĺ¬¹¬µ»ɏ»À·¬ºɏ¶ɏ³¶¨«ȍ ;) 6 8 ) CNE*/ ) 8 ) ) * % 2 ) ) ) ) % ) ) ) TGE*/! % ) ŵźŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº .1!grj! %º»¨©³°º¯ɏ»¯¬ɏ¹¬³¨»°¶µɏ©¬»¾¬¬µɏº¯¬¨¹ɏ¶¹ª¬Ȏɏ©¬µ«°µ®ɏ´¶´¬µ»ɏ¨µ«ɏ³¶¨«ȍ ;) ;) 2 *) * ) ) * ) * 2 *) ) ! ) 8 ) 2 ) 2 5 2 !5 .1!grk! $¬ºª¹°©¬ɏ»¯¬ɏ·¹¶·¬¹»°¬ºɏ¶ɏ3&$ɏ¨µ«ɏ"-$ȍ ;) 2 641 ) 2 * 2 ) 5 .1!grcl! !µ¨³Àº¬ɏ¹¨´¬ºɏ¶¹ɏ«°Ĺ¬¹¬µ»ɏ³¶¨«°µ®ºȍ 4 ) 54 2 2 * 2 * % ) % 2 : ;) ) L ;) ) L 4 dM dx ) % 71 8 %5 ) ) 641 d #M - # dx ) 8 8 !5 \MP!6/9^ \MP!6/9^ ) *) ! * 2 * : ) 2 5 ;) \MP!6/2^ 2 2 2 2 54 2 2 ) * 2 2 ) 5 3/! Xibu!jt!b!spmmfs!tvqqpsu@!Ipx!jt!ju!ejggfsfou!gspn!b!ijohfe!tvqqpsu@! ) ! * 2* 2 ) ) ) M 2 \MP!6/4^ 22 8 2 ! 4/! EfÝof!tifbs!gpsdf/!Xifo!epft!ju!efwfmpq!jo!b!cfbn@ ! ! 6) * * 2 8 2 2 8 ) 8 ) ) 5 5/! EfÝof!cfoejoh!npnfou/!Xifo!epft!ju!efwfmpq!jo!b!cfbn@! ! ! 2 2 ) 4 1 2/! Xibu!jt!uif!ejggfsfodf!cfuxffo!b!cfbn!boe!b!gsbnf@! 2 ! 2 5*146 #059'4!37'56+105 ) ! 2 \MP!6/9^ 8 ! dS dx ) E1- * ! ) 71 ! ! ) *) 2 +/2146#06!(14/7.#' L / ! : ) 5 ! ! * 2 2 * ) M 25 \MP!6/7^ 2 ) *) 2 ) * * * 5 H) 2 2 2 8 2 ) 5 6/! Xibu!jt!uif!tjhojÝdbodf!pg!tifbs!gpsdf!boe!cfoejoh!npnfou!ejbhsbnt@! ! ;) 2 82 2 2 ) 2 54 : J * 2 : 8 ) * 2 2 ) 5 2 2 \MP!6/7^ * 8 * \MP!6/8^ * ) ɏ ŵźŷ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ ! 7/! Xiz!jt!b!qpjou!pg!dpousbÞfyvsf!dbmmfe!tp@! ) ! ) * 8 ! ! \MP!6/8^ 2 2 ! ) *) !5 2 5 5 8 25 ;) ) 8/! Xibu!jt!uif!sfmbujpotijq!cfuxffo!cfoejoh!npnfou-!tifbs!gpsdf!boe!mpbejoh!bu!b!qpjou!po!b!cfbn@! \MP!6/9^ dS d 2M dM =- 2 . ! % ! dx dx dx ! ! 9/! Xibu!jt!uif!ejggfsfodf!cfuxffo!nfdibojdbm!boe!tusvduvsbm!qpsubm!gsbnft@! ! ;) J ! *) * 2 ) \MP!6/21^ ) J 25 -';!6'4/5 .1!grc .1!grd D + .1!gre 2 .1!grf 6) 6 / E 8 + F * + 2 + 2 * : 8 641 71 9 : * ) 4: 2 2 .1!gri 2 2 E1- D .1!grh 8 ) 4: 2 D 2 * 8 + ! 4'8+'9!37'56+105 ! 2/! 6 ) ! 3/! 6 2 2 2 2 : ! 4/! H) 2 2 2 ) ) 2 8 ! 7/! 3: ! 8/! F ! 9/! 1 O ! :/! H) * 9 : 5 ) I ) * \MP!6/5^ 2 5 \MP!6/21^ 9 : 2 9 : \MP!6/8^ I ! 5/! H ! 6/! F ) ) ) ) 5 2 ) N ) * 2 : !D 5 2 I 3: \MP!6/21^ 2 ) ) \MP!6/4^ * ) ! 7 *) * M5 H) ) 2 * ) O: 2 2 2 * 2 2 I * * * 2 ) I H) \MP!6/4^ ) * 8 * ) 2 8 ! I \MP!6/4^ ) 5 \MP!6/7^ I \MP!6/8^ ŵźŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS! + 8 ! 2/! ! ) ! : 2 2 8 * * ! 3/! ;) ! ! 2 2 # ! \MP!6/3^ 2 2 *) * ) 9 : ! ) * * 2 \MP!6/6^ =# ! 8 ) \MP!6/9^ ! 2 9 * I \MP!6/8^ ! # 2 2 2 ! ) ! O: 2 ! 8 ) ! 8/! 4 ) ! ! " ! 7/! ) ! ! ) ) ! ! 6/! F 2 8 \MP!6/6^ ) 2 2 ) 8 ! ! = ! 2 ) ! 5/! ;) 2 ! 4/! 4 2 ) ! ) ! 2 2 ) ) 2 \MP!6/5^ 2 2 " E1- \MP!6/8^ " " " " " ! ! 9/! \MP!6/8^ " " " " ! :/! " \MP!6/9^ $! (ILL $LANKS!3UESTIONS ( # $$$$$$$$$ ! 2/! % \MP!6/3^ ! 3/! " & $$$$$$$ % \MP!6/7^ ! 4/! " & ! % ! 5/! ' ! 6/! " ( ! ) ! $$$$$$$$$ % $$$$$$$ % $$$$$$$$$ \MP!6/9^ \MP!6/5^ \MP!6/8^ ɏ ŵźŹ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ ! 7/! * $$$$$$ ! 8/! $$$$$$$$$$$$ $$$$$$$$$% ! 9/! , & $$$$$$$$$$ %! % \MP!6/9^ ! + \MP!6/8^ \MP!6/9^ %! /ATCH %OLUMNS!3UESTIONS # ! 2/! Dpmvno!J! , . 013 Dpmvno!JJ! - ( / " 4 5 " ( 5 ! 3/! Dpmvno!J! 0 0 * ! 4% * ! \MP!6/8^ ,.1 Dpmvno!JJ! - 5 / 5 4 5 5 , 66 \MP!6/8^ ! ! Dpmvno!J! * * ! ! % Dpmvno!JJ! " % 5 ! 5 ! % / " 4 " 5 " \MP!6/8^ #NSWERS!TO!1BJECTIVE!3UESTIONS !)B*! Nvmujqmf.Dipjdf!Rvftujpot ! 2/ ! 3/! ! 4/! ! 5/! ! 6/ ! 7/ ! 8/! 9/! !)C*! Gjmm.Cmbolt!Rvftujpot 2/ 5/! 8/ 3/! 6/! 9/! 7 ! 4/! 7/ !)D*! Nbudi.dpmvno!Rvftujpot ! 2/! 4/! 8" 84 85 85 84 8- 8/ 8/ 8- 3/! 84 8/ 85 8- :/! ŵźźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! 24#%6+%'!241$.'/5! ! 2/! ' 9 % :%::% * % + <Bot/ '> : ( 10 kN 6 kN/m 8 kN ◊ m B 7 '> 1 kN/m C A :? ( ! ;( @ \MP!6/6^ D B A 5m 3m ! 1m ! 15 m Gjh/!6/66! Gjh/!6/67 ! 3/! * ! !<Bot/ ! 4/! 1 1> ! A: ( % :%:;% 1 > AA?%: ( ! AB !<Bot/ , > DC%? ( % :%:C% 30 kN/m @ \MP!6/6^ ! :C%E ( @ ! \MP!6/6^ '> 15 kN 10 kN 5 kN/m B C D A w E VA A VB 1m 4m ! 1m B 1m L Gjh/!6/68! ! 5/! ' " ', , ( Gjh/!6/69 ! 9 % :%: % 1 ! 5 1 ! 6/! ' A;B + ,.1 :( ! % % :%:E% * ' \MP!6/8^ % ! ! !<Bot/ 5 kN/m *> ,> ? ( @ \MP!6/8^ 1 kN/m A B A 3m ! C 10 m C D B 3m 3m Gjh/!6/6:! Gjh/!6/71 ! 7/! ' 5( 9 7 ! 8/! * ! % :%;A% ' 1m ! !<Bot/ '> D% : ( 013 A( ' , * % 4 %, > ? ' > D%:E ( ! ) % :%;?% % \MP!6/8^ 1 F :% ? % , > ?@ \MP!6/6-!MP!6/8^ ɏ ŵźŻ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ 2 kN 1 kN/m B A 0.25 m 0.25 m 1m C D Gjh/!6/72 ! ! 9/! " % 1> !<Bot/ % :%; % * ( ' > : ( @ \MP!6/6-!MP!6/8^ A 10 kNm 8 kNm B 300 kN 0.75 m D B A C 2m 2m ! C 1.25 m D 2m Gjh/!6/73! ! :/! * Gjh/!6/74 ' , D?? ( !<Bot/ % :%;D% !21/! ' 3B 1m ' 1 '> ? '> ,! ,* ' ?( ( ,> ! : ? ( @ \MP!6/21^ ! q > :G% ' >D? ! <Bot/ ,* > DD%A % :%; % 1 '> A; @ \MP!6/6^ A Link C 2m P 150 mm 4m q 3m B D 30 N E 1000 N 150 mm 60° 60° D B A ! C Gjh/!6/75! Gjh/!6/76 1F ! 22/! !23/! ' ! B % :%;:% !<Bot/ % :%;;% * !<Bot/ \MP!6/21^ '> F 8C%?C ( ' > C%CE ( , E 45° 8 kN/m D 2m Gjh/!6/77! ( @ \MP!6/6^ 2m 45° A C B 60 kNm 60 kN ◊ m 1m 10 kN/m D B A C ,% > % ' 40 kN 4 kN/m 10 kN 2 kN/m ! > DC: @ + ! 3m 1F 3m 2m Gjh/!6/78 1m 2m ŵźżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº !24/! 1 ! '> !<Bot/ !25/! ' DB ', % :%; % * !<Bot/ , > A ( ! '> B % ( *1 % > 1 A ( A ( ,> :;%E ( '> % :%;C% H %; ( @ \MP!6/6^ F *> ! A ( > A %: ( F> AE%: ( @ \MP!6/6^ 10 kN 8 kN/m A 8 kN/m B D C 3m 1m 8 kN/m F E 1m 3m 1m Gjh/!6/79! !26/! " ! % :%;E% * !<Bot/ , > 8 ( % '> ( @ \MP!6/:^ 4 kN 2 kN + E C A 2m D 2m ! w B – B A –2 kN – 4 kN 2m 2m L Gjh/!6/7:! !27/! ' ' ', ! " % :%C?% 1 ! ! !28/! Gjh/!6/81 ! 5 1 % :%CA ( ,.1 ! % 50 Nm 50 N/m 1000 N B C D \MP!6/8^ 4 kN 10 kNm 4 kN/m A 7 \MP!6/8^ % B A C D E VA 10 m 15 m ! VB 3m 15 m Gjh/!6/82! 3m 2m Gjh/!6/83 !29/! 1 ! !2:/! ' * 2m ! ! ', % :%CD% * % A?B % :%C % \MP!6/8^ A?? ( ' , ! !<Bot/ '> A? ( ,> HA? ( @ \MP!6/6-!MP!6/8^ ɏ ŵźŽ "¬¨´ºɏ¨µ«ɏ&¹¨´¬ºɏ A B 1.5 m A B C D 100 kN 2m E 100 kNm 2m 7m 3m ! Gjh/!6/84! C Gjh/!6/85 !31/! Gps!uif!gsbnf!mpbefe!bt!tipxo!jo!Gjh/!6/85-!dbmdvmbuf!bmm!uif!gpsdft!bdujoh!po!uif!nfncfs!BCD/! !\Bot/! B!>! C!>!ċ244/44!O-! B!>!211!O-! C!>!ċ61!O-! D!>!377/77!O- D!>!Ï61!O^! \MP!6/21^ !32/! Jo!Qspc/!31-!jg!211!lO!bu!uif!qpjou!E!jt!sfqmbdfe!cz!b!npnfou!pg!211!lOn!bt!tipxo!jo!Gjh/!6/86-!xibu!xjmm!cf! uif!gpsdft!bdujoh!po!uif!nfncfs!BCD@ !\Bot/! B!>!ċ77/78!lO-! B!>!1-! C!>!77/78!lO- C!>!36!lO-! D!>!1- D!!>!ċ36!lO^! \MP!6/21^ C 0.2 m 5 kN D 0.2 m E A B B 1.5 m 0.2 m A D 100 kNm E 2m ! F C 0.3 m 2m Gjh/!6/86! Gjh/!6/87 !33/! Uif!B.gsbnf!tipxo!jo!Gjh/!6/87!jt!tvckfdufe!up!b!qpjou!mpbe!pg!6.lO!nbhojuvef!bu!uif!qpjou!E/!Dbmdvmbuf!bmm!uif! gpsdft!bdujoh!po!uif!nfncfs!BCD/ !\Bot/! B!>!ċ6!lO-! B!>!ċ7/78!lO-!! CF!>!ċ23/6!lO- D!>!28/6!lO- D!>!7/78!lO^! \MP!6/21^ ! !34/! Dbmdvmbuf!uif!sfbdujpot!bu!uif!ijohft!B-!C!boe!D!gps!uif!4.ijohfe!djsdvmbs!bsdi!tipxo!jo!Gjh/!6/88/!Uif!bsdi!jt! tvckfdufe!up!b!vojgpsnmz!ejtusjcvufe!mpbe!pg!6.lO0n!joufotjuz!pwfs!uif!foujsf!51.n!tqbo/ !\Bot/! B!>!ċ C!>!61!lO-! B!>! C!>!211!lO-! D!>!61!lO- D!>!1^! \MP!6/6^ 5 kN/m 5 kN/m B C C 2m 10 kN 4m E 20 m D A 20 m 20 m A ! B Gjh/!6/88! 6m Gjh/!6/89 !35/! B!tjohmf.tupsfz-!tjohmf.cbz!qpsubm!gsbnf!pg!ifjhiu!5.n!tupsfz!boe!7.n!cbz!xjeui!jt!mpbefe!cz!b!VEM!pg!6.lO0n! joufotjuz!bt!tipxo!jo!Gjh/!6/89/!Dpmvno!BC!pg!uif!qpsubm!gsbnf!bmtp!dbssjft!b!qpjou!mpbe!pg!21.lO!nbhojuvef! bdujoh!bu!b!qpjou!3!n!bcpwf!uif!cbtf/!Dbmdvmbuf!tvqqpsu!sfbdujpot!bu!tvqqpsut!B!boe!E/! !\Bot/! B!>!21!lO-! B!>!!29/44!lO-! E!>!22/78!lO^! \MP!6/21^ ŵŻŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº #¯¨·»¬¹ 7 Usvttft!boe!Dbcmft .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ ! ɏ ɏ ɏ .1!hrcɏ .1!hrdɏ .1!hreɏ .1!hrfɏ 7/2! $¬ķµ¬ɏ¨µ«ɏ°«¬µ»°Àɏ½¨¹°¶¼ºɏ»À·¬ºɏ¶ɏ»¹¼ºº¬ºȍ 4¬º»ɏ»¯¬ɏº»¨©°³°»Àɏ¶ɏ¨ɏ®°½¬µɏ»¹¼ººȍ $¬»¬¹´°µ¬ɏº¼··¶¹»ɏ¹¬¨ª»°¶µºɏ¨µ«ɏ¶¹ª¬ºɏ°µɏ´¬´©¬¹ºɏ¶ɏ¨ɏ»¹¼ººȍ %½¨³¼¨»¬ɏº¯¨·¬Ȏɏº¼··¶¹»ɏ¹¬¨ª»°¶µºȎɏ¨µ«ɏ¶¹ª¬ºɏ¨»ɏ½¨¹°¶¼ºɏ·¶°µ»ºɏ°µɏ¨ɏª¨©³¬ɏª¨¹¹À°µ®ɏ»¯¬ɏ·¶°µ»ɏ ³¶¨«ºȎɏ¼µ°¶¹´³Àɏ«°º»¹°©¼»¬«ɏ³¶¨«ɏ¨µ«ɏ°»ºɏº¬³Ɋ¾¬°®¯»ȍ �! JOUSPEVDUJPO Usvttft!boe!dbcmft!bsf!uif!tusvduvsbm!tztufnt-!xijdi!sftjtu!mpbet!dpnjoh!po!uifn/!Uiftf!bsf!vtfe!jo!csjehft-! tifet-!upxfst!gps!usbotnjttjpo!mjoft-!fud/!Uif!tjnjmbsjuz!cfuxffo!b!usvtt!boe!b!dbcmf!jt!uibu!cpui!dbssz!pomz! byjbm!gpsdft!boe!ofjuifs!dbo!dbssz!cfoejoh!npnfout/!Uif!ejggfsfodf!cfuxffo!uifn!jt!uibu!b!nfncfs!pg!b!usvtt! dbo!sftjtu!dpnqsfttjwf!gpsdft!xifsfbt!b!dbcmf!dboopu/ Uif!dpodfqu!pg!b!usvtt!dpnft!gspn!uif!tusvduvsbm!tubcjmjuz!pg!cbtjd!usjbohvmbs!gpsnbujpo/!B!usjbohmf!jt!uif! tjnqmftu!hfpnfusjdbm!Ýhvsf!uibu!epft!opu!dibohf!tibqf!xifo!uif!mfohuit!pg!uif!tjeft!bsf!Ýyfe/!Usvttft!bsf! xjefmz!vtfe!jo!wbsjpvt!tusvduvsft!mjlf!sbjmxbz!csjehft-!joevtusjbm!tifet-!sppgt-!bsdift-!tipqqjoh!dpnqmfyft-! uifbusft-!tubejb-!fud/!Boesfb!Qbmmbejp-!bo!Jubmjbo!bsdijufdu-!jt!cfmjfwfe!up!cf!uif!Ýstu!up!vtf!usvttft!jo!2611t/! Mbufs-!b!Txjtt!eftjhofs!Vmsjd!Hsvcfsnboo!sfwjwfe!uif!vtf!pg!usvttft!jo!2811t!jo!b!gpsn!bt!vtfe!upebz/ Uif!dbcmft!bsf!Þfyjcmf!fmfnfout!vtfe!up!sftjtu!mpbet!cz!efwfmpqjoh!ufotjpo!jo!uifn/!Dbcmft!bsf!hfofsbmmz! vtfe!jo!mpoh.tqbo!csjehft-!spqfxbzt-!fud/!Ujcfubo!bsdijufdu!boe!fohjoffs!Uibohupoh!Hzbmqp!cvjmu!fbsmz!dbcmf. csjehft!jo!Ujcfu!boe!Civubo!sftfncmjoh!uif!npefso!tvtqfotjpo.dbcmf!csjehf/!Uif!nptu!gbnpvt!fybnqmf!ebuft! cbdl!up!2541/!Bgufs!2927-!tvtqfotjpo!csjehft!xfsf!cvjmu!xjui!xjsf!dbcmft!xjui!tqbot!gspn!26!n!up!221!n/! Upebz-!tvtqfotjpo!csjehft!bsf!nbef!xjui!bt!mbshf!b!tqbo!bt!3111!n" .1!hrc $¬ķµ¬ɏ¨µ«ɏ°«¬µ»°Àɏ ½¨¹°¶¼ºɏ»À·¬ºɏ¶ɏ »¹¼ºº¬ºȍ 7/3! �! USVTTFT! B!usvtt!jt!b! /!Uiftf! vojut!bsf!gpsnfe!xjui!tusbjhiu!boe!tmfoefs!nfncfst!xjui!uifjs!foet!qjo.dpoofdufe/! Fyufsobm!gpsdft!boe!uifjs!sfbdujpot!bsf!dpotjefsfe!up!bdu!pomz!bu!uif!kpjout/!Uif!nbkps! ɏ ŵŻŵ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ gpsdft!qspevdfe!jo!nfncfst!bsf!byjbm!gpsdft!)dpnqsfttjwf!ps! ufotjmf*/! Npnfout! boe! tifbs! gpsdft! bsf! bmtp! qspevdfe! jo! uif! nfncfst/!Ipxfwfs-!cfjoh!wfsz!tnbmm!jo!nbhojuvef-!uiftf!bsf! ofhmfdufe!up!nblf!uif!bobmztjt!tjnqmfs/!Npnfout!bsf!fyqmjdjumz! fydmvefe!cfdbvtf!bmm!uif!kpjout!jo!b!usvtt!bsf!usfbufe!bt!sfwpmvuft/ Uifsf!bsf!cbtjdbmmz!tjy!ejggfsfou!dpnqpofout!xijdi!dpotujuvuf! b!usvtt/!Gjhvsf!7/2!tipxt!b!tjnqmf!usvtt!xjui!jut!nbjo!dpnqpofout! eftdsjcfe!cfmpx/ �! 9ORTHY!OF!0OTE Tmfoefs!nfncfst!ibwf! wfsz!tnbmm!dsptt.tfdujpobm! ejnfotjpot!dpnqbsfe!up!uifjs! mfohuit/ �! 9ORTHY!OF!0OTE 2/!Dipset/! Uiftf!bsf!nbjo!nfncfst!pg!b!usvtt/!Uifz!gpsn!uif! B!sfwpmvuf!kpjou-!bmtp!lopxo!bt! qjoofe!ps!ijohfe!kpjou-!bmmpxt! nfncfst!up!spubuf!boe!uivt!ibt! {fsp!npnfou/ qspÝmf!pg!uif!usvtt/!Uifsf!bsf!uxp!uzqft!pg!dipse!nfncfst!jo! b!usvttʨupq.dipse!boe!cpuupn.dipse!nfncfst/!Uif!upq!dipse! dbssjft!dpnqsfttjwf!gpsdf!xijmf!uif!cpuupn!dipse!dbssjft!ufotjmf! gpsdf/!Uifz!dbssz!b!nbkps!qbsu!pg!fyufsobm!gpsdft!boe!dpoofdu!up! puifs!dpnqpofout!pg!uif!tusvduvsf!mjlf!uif!sppg-!dpmvnot-!fud/ 3/!Wfsujdbmt/! Uiftf!bsf!uif!wfsujdbm!nfncfst!pg!uif!usvtt/ 4/!Ejbhpobmt!ps!Xfct/! Uiftf!bsf!jodmjofe!nfncfst-!xijdi!dpoofdu!uif!kpjout!ejbhpobmmz/ 5/!Pwfsiboh/! Upq.dipse!nfncfst!fyufoejoh!cfzpoe!cfbsjoht!pg!b!usvtt!bsf!dbmmfe!pwfsibohfe!nfncfst/! Uiftf!bsf!vtfe!up!fyufoe!uif!sppg!up!bdu!bt!b!tvo!tijfme!ps!sbjo!tijfme/ 6/!Hvttfu!Qmbuft/! Uiftf!bsf!tuffm!qmbuft!vtfe!up!kpjo!uxp!ps!npsf!nfncfst!uphfuifs!bu!b!kpjou/! 7/!Cfbsjoht/! Uiftf!bsf!vtfe!up!tvqqpsu!uif!usvtt!po!xbmmt!ps!dpmvnot/!Uifz!usbotgfs!uif!gpsdft!gspn!usvttft! up!uif!xbmmt!ps!dpmvnot/ 1 2 3 2 4 5 7 8 3 4 9 5 3 1. Peak 2. Top chords 3. Gusset plates 6 4. Diagonals or Webs 5. Verticals 6. Bottom chord 9 3 7. Heel 8. Overhang 9. Bearing Gjh/!7/2! Dmbttjgjdbujpo!pg!Usvttft Usvttft!nbz!cf!dmbttjÝfe!cbtfe!po!uif!gpmmpxjoh!dsjufsjb; 2/!Efqfoejoh!po!Nbufsjbm! Fbsmjfs-!uif!usvttft!xfsf!nbef!pg!xppe/!Mbufs-!xjui!uif!bewfou!pg!tuffm-! usvttft!ibwf!cffo!nbovgbduvsfe!xjui!tuffm/!Dpnqptjuf!usvttft!bsf!nbef!gspn!b!dpncjobujpo!pg!uxp!ps!npsf! ejggfsfou!nbufsjbmt!mjlf!tuffm-!dpodsfuf-!fud/ ŵŻŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 3/!Efqfoejoh!po!Nfncfs!Psjfoubujpo!jo!Tqbdf )j*! Qmbof! Usvtt/! Uiftf!bsf! usvttft/!Bmm!uif!nfncfst!mjf!jo!pof!qmbof/!Usvttft!vtfe!jo! joevtusjbm!tifet-!xpsltipqt!boe!tipsu!sbjmxbz!csjehft!bsf!qmbof!usvttft/ )jj*!Tqbdf!Usvtt/! Uiftf!bsf! usvttft/!Nfncfst!ep!opu!mjf!jo!pof!qmbof!cvu!bsf!psjfoufe!jo! tqbdf/!Usvttft!vtfe!jo!epnft-!bjsdsbgu!xjoht!boe!mbshf!tqbo!csjehft!bsf!tqbdf!usvttft/ 4/! Efqfoejoh! po! Tibqf! boe! Nfncfs! Qmbdfnfou! Uifsf!bsf!tfwfsbm!uzqf!pg!usvttft!cbtfe!po! uijt!dsjufsjpo/!Uif!usvttft!bsf!nbef!jo!tqfdjÝd!tibqft!efqfoejoh!po!uif!tusvduvsbm!gvodujpo!boe!dmjfouÔt! sfrvjsfnfout/!Gjhvsft!7/3 boe! tipx!usvttft!xijdi!bsf!nbjomz!vtfe!gps!sppgt!boe!csjehft-!sftqfdujwfmz/ (i) Belgian Truss (i) Pratt (top deck) (ii) English (Howe) Truss (ii) Howe (iii) Gentle Slope Truss-1 (iii) Warren (iv) Gentle Slope Truss-2 (iv) Pratt (bottom deck) (v) Bowstring Pratt (v) Polonceau (Fink) Truss (vi) Camel-back Pratt (vi) Sawtooth Truss (vii) Multi-piece Truss (vii) Canopy Truss (b) Various bridge trusses (a) Various roof trusses Gjh/!7/3! ɏ ŵŻŷ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ .1!hrd 7/4! �! GVOEBNFOUBMT!PG!USVTTFT! Bo! jefbmjtfe! usvtt! jt! pof! xijdi! jt! kvtu! sjhje ps! kvtu! tubcmf/! Ju! nfbot! jg! boz! pof! nfncfs!jt!sfnpwfe-!uif!usvtt!mptft!jut!sjhjejuz!)ps!tubcjmjuz*/!Jg!sfnpwbm!pg!pof!ps! npsf!nfncfst!epft!opu!nblf!uif!usvtt!votubcmf-!ju!jt!lopxo!bt!bo!pwfs.sjhje!usvtt/ Uif!nptu!fmfnfoubsz!kvtu.sjhje!usvtt!jt!gpsnfe!xjui!uisff!nfncfst!dpoofdufe!bt!b!usjbohmf/!Uijt!tjnqmf! tusvduvsf!dbo!gvsuifs!cf!fyqboefe!up!gpsn!b!mbshfs!qmbof!usvtt!ps!tqbdf!usvtt!bt!tipxo!jo!Gjh/!7/4/!B!qmbof! usvtt!jt!nbef!pg!usjbohmft-!xifsfbt!b!tqbdf!usvtt!jt!nbef!pg!ufusbifespot/!Gps!b!qmbof!usvtt-!beejujpo!pg b!ofx! usjbohmf ! -!bt!tipxo!jo!Gjh/!7/4 /!Xifsfbt!jo!dbtf!pg!b!tqbdf!usvtt-! beejujpo!pg!b!ofx!ufusbifespo -!bt!tipxo!jo!Gjh/!7/4 /!Uivt-! b!tjnqmf!sfmbujpotijq!dbo!cf!ftubcmjtife!cfuxffo!uif!ovncfs!pg!kpjout! !boe!uif!ovncfs!pg!nfncfst! !pg!b! kvtu.sjhje!usvtt/!Gps!b!qmbof!usvtt-! !>!3 !Ï!4!boe!gps!b!tqbdf!usvtt- !>!4 !Ï!7/ 4¬º»ɏ»¯¬ɏº»¨©°³°»Àɏ¶ɏ¨ɏ ®°½¬µɏ»¹¼ººȍ Tetrahedron-3 (3 members, 1 joint) B B Triangle-2 (2 members, 1 joint) Triangle-1 (3 members, 3 joints) A F C Tetrahedron-1 E Triangle-3 (2 members, 1 joint) E C A Tetrahedron-2 (3 members, 1 joint) D D (a) Plane (2D) truss (b) Space (3D) truss Gjh/!7/4! 7/4/2! Tubujd!Joefufsnjobdz!pg!Usvttft! Efhsff!pg!tubujd!joefufsnjobdz!pg!b!tusvduvsf!jt!b!nfbtvsf!pg! ipx! !ju!jt/!Uif!nfncfs!gpsdft!pg!bo!joefufsnjobuf!usvtt! dboopu!cf!efufsnjofe!cz!nfsfmz!vtjoh!frvbujpot!pg!frvjmjcsjvn/! Qsbdujdbmmz-! bmm! tusvduvsft! bsf! nbef! joefufsnjobuf! up! fotvsf! tubcjmjuz!fwfo!jg!tpnf!nfncfst!gbjm/!Bo!joefufsnjobuf!tusvduvsf! ibt!npsf!ovncfs!pg!tvqqpsu!sfbdujpot-!ps!pg!nfncfst-!ps!pg!cpui-! uibo!xibu!jt!offefe!up!nblf!uif!tusvduvsf!kvtu!tubcmf/!Efqfoejoh! po!uif!fyusb!ovncfs!pg!tvqqpsu!sfbdujpot!boe!fyusb!ovncfs!pg! nfncfst-!b!usvtt!ibt! uzqft!pg!joefufsnjobdz/! �! 9ORTHY!OF!0OTE Jo! b! tubujdbmmz! efufsnjobuf! tusvduvsf-! po! sfnpwjoh! fwfo! b! tjohmf! nfncfs-! uif! foujsf! tusvduvsf! dpmmbqtft/! Xifsfbt! jo! b! tubujdbmmz! joefufsnjobuf! tusvduvsf-! uifsf! bsf! fyusb! nfncfst! up! cfbs! mpbet! jo! uif! fwfou!pg!gbjmvsf!pg!tpnf!nfncfst! evf!up!mpbejoh!dpoujohfodz!tvdi! bt!fbsuirvblft-!upsobepft-!fud/ Joufsobm! Joefufsnjobdz! B!usvtt!jt!tbje!up!cf!joufsobmmz! efufsnjobuf!jg!ju!ibt!kvtu!tvgÝdjfou!ovncfs!pg!nfncfst!sfrvjsfe! gps!tubcjmjuz/!Tvdi!usvttft!tbujtgz!uif!sfmbujpotijqt-! >!3 Ï!4! )gps!qmbof!usvttft*!ps! >!4 !Ï!7!)gps!tqbdf!usvttft*/!Uiftf!usvttft!bsf!bmtp!lopxo!bt!qfsgfdu gsbnft/!B!usvtt! ibwjoh!fyusb!nfncfst!uibo!sfrvjsfe!gps!mjnjujoh!tubcjmjuz!jt!lopxo!bt!bo! usvtt!boe! jut!efhsff!pg!joufsobm!joefufsnjobdz!jt!hjwfo!cz!uif!fydftt!ovncfs!pg!nfncfst/!Tvdi!usvttft!bsf!bmtp!lopxo! bt!sfevoebou gsbnft boe!tbujtgz!uif!sfmbujpotijq!! ?!3 Ï!4!)ps! ! !4 Ï!7!gps!tqbdf!usvttft*/!Uif!usvttft! xjui!mftt!nfncfst!uibo!sfrvjsfe!gps!tubcjmjuz!bsf!votubcmf!usvttft!boe!bsf!lopxo!bt!efÝdjfou!gsbnft/!Gps!tvdi! gsbnft-! =!3 Ï!4/ ŵŻŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Gjhvsf!7/5!hjwft!fybnqmft!pg!uif!uisff!uzqft!pg!gsbnft/ m = (2j – 3) (a) Perfect frame m > (2j – 3) (b) Redundant frame m < (2j – 3) (c) Deficient frame Gjh/!7/5! Fyufsobm!Joefufsnjobdz! B!usvtt!jt!tbje!up!cf!fyufsobmmz!efufsnjobuf jg!uif!ovncfs!pg!tvqqpsu!sfbdujpot! jt!frvbm!up!uif!ovncfs!pg!frvjmjcsjvn!frvbujpot/!Po!uif!puifs!iboe-!jg!uif!upubm!ovncfs!pg!tvqqpsu!sfbdujpot! jt!npsf!uibo!uif!ovncfs!pg!frvjmjcsjvn!frvbujpot!)j/f/-! !gps!qmbof!usvttft!boe! !gps!tqbdf!usvttft*-! uif!usvtt!jt!tbje!up!cf!fyufsobmmz!joefufsnjobuf/!Uif! efhsff!pg!fyufsobm!joefufsnjobdz!jt!hjwfo!cz!uif! Myth Fact! ovncfs!pg!tvqqpsu!sfbdujpot!jo!fydftt!pg!uif!ovncfs! kvtu!offefe!gps!frvjmjcsjvn/ B!usvtt!jt!bmxbzt! !Ju!jt!usvf!pomz!jg!uif!efhsfft! B!usvtt!jt!tbje!up!cf!dpnqmfufmz!efufsnjobuf jg! tubcmf!jg!jut!upubm! pg!joufsobm!boe!fyufsobm! uif! efhsfft! pg! cpui! uif! joefufsnjobdjft! bsf! {fsp/! efhsff!pg!tubujd! joefufsnjobdjft!bsf!fbdi!{fsp/! Tvdi! usvttft! dbo! cf! dpnqmfufmz! bobmztfe! vtjoh! joefufsnjobdz!jt! Jg-!boz!pof!pg!uifn!jt!ofhbujwf! dpowfoujpobm!frvjmjcsjvn!frvbujpot/!Jg!uif!efhsff! {fsp/ xijmf!uif!puifs!jt!qptjujwf-!uif! usvtt!jt!tujmm!votubcmf/! pg! joufsobm! ps! fyufsobm! joefufsnjobdz! pg! b! usvtt! cfdpnft! ! -!uif!usvtt!cfdpnft!votubcmf!boe!ifodf!dpmmbqtft/! 7/4/3! Joufsobm!Gpsdft!jo!Usvttft Nfncfst! pg! b! usvtt! sftjtu! uif! fyufsobm! mpbet! cz! efwfmpqjoh! byjbm! gpsdft! xijdi! nbz! cf! ps! ! /!Uipvhi!uifz!bmtp!dbssz!tifbs!gpsdft! boe!cfoejoh!npnfout-!cvu!cfjoh!rvjuf!tnbmm!uifz! bsf!ofhmfdufe!jo!uif!bobmztjt/!Cbtfe!po!uif!obuvsf!pg! byjbm!gpsdf!dbssjfe-!uif!nfncfst!bsf!pg!uisff!uzqft; 2/!Tusvut/! Uif!nfncfst!uibu!dbssz!pomz! ! ! Myth [fsp.gpsdf! nfncfst!nbz!cf! sfnpwfe!gspn!b! usvtt-!tjodf!tvdi! nfncfst!bsf!opu! sfrvjsfe/ Fact! Sfnpwbm!pg!nfncfst!sfoefst! uif!usvtt!votubcmf!jg!uif!mpbejoh! qbuufso!dibohft!xijdi!jt!b! qifopnfopo!uibu!dbo!ibqqfo!jo! qsbdujdf!tvdi!bt!evsjoh!xjoe!ps! fbsuirvblf/! gpsdft/ 3/!Ujft/! Uif!nfncfst!uibu!dbssz!pomz! !gpsdft/ 4/![fsp.gpsdf!Nfncfst/! Uif!nfncfst!uibu!dbssz! ! / Tjho! Dpowfoujpo! Ufotjmf! gpsdf! jt! ublfo! bt! ! boe! dpnqsfttjwf!gpsdf!bt! ! /!Hsbqijdbmmz-!ufotjpo!jo!b!nfncfs!jt! tipxo!cz!bsspxt!qpjoujoh!bxbz!gspn!kpjout!bt!uif!nfncfs!ufoet!up! pqqptf!uif!fyufsobm!qvmmjoh!gpsdft!fyfsufe!bu!jut!foet/!Po!uif!puifs! iboe-!dpnqsfttjpo!jt!tipxo!cz!bsspxt!qpjoujoh!upxbset!kpjout-!bt!uif! nfncfs!ufoet!up!pqqptf!uif!fyufsobm!qvtijoh!gpsdft!fyfsufe!bu!jut!foet/!! Gjhvsf!7/6!tipxt!uif!tjho!dpowfoujpo!pg!uiftf!gpsdft/ Strut Compression (Negative force) Tie Tension (Positive force) Gjh/!7/6! " ! ɏ ŵŻŹ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ .1!hre 7/5! �! BOBMZTJT!PG!USVTTFT Uif!usvttft!xijdi!bsf!efufsnjobuf!joufsobmmz!bt!xfmm!bt!fyufsobmmz-!dbo!cf!bobmztfe! vtjoh!frvbujpot!pg!frvjmjcsjvn/!Uifsf!bsf!uxp!nfuipet!pg!bobmztjtʨhsbqijdbm!boe! bobmzujdbm/! Uif! bobmzujdbm! nfuipe! jt! bhbjo! pg! uxp! uzqftʨnfuipe! pg! kpjout! boe! nfuipe!pg!tfdujpot/!Uiftf!bsf!ejtdvttfe!jo!uif!gpmmpxjoh!tfdujpot/!Uif!bttvnqujpot! nbef!gps!uif!bobmztjt!pg!usvttft+!bsf!bt!gpmmpxt; $¬»¬¹´°µ¬ɏº¼··¶¹»ɏ ¹¬¨ª»°¶µºɏ¨µ«ɏ¶¹ª¬ºɏ°µɏ ´¬´©¬¹ºɏ¶ɏ¨ɏ»¹¼ººȍ 2/!!Uif!kpjout!bsf!gsjdujpomftt/! Ju!nfbot!uif!kpjout!bsf! / 3/!!Uif!nfncfst!bsf!tusbjhiu/! Jg!uif!nfncfst!xfsf!opu!tusbjhiu-!dpnqsfttjwf!gpsdft!xpvme!dbvtf!uifn! up!cfoe/!Tvdi!cfoejoh!jowpmwft!tfdpoebsz!npnfout!boe!offet!bewbodfe!nfuipet!pg!bobmztjt/ 4/!!Uif!efgpsnbujpot!jo!uif!usvtt!bsf!wfsz!tnbmm/! Uif!usvttft!bsf!efgpsnfe!xifo!uifz!bsf!mpbefe/! Mbshf!efgpsnbujpot-!jg!boz-!dbvtf!bqqsfdjbcmf!dibohf!jo!uif!ejnfotjpot!boe!pwfsbmm!tibqf!pg!uif!usvtt-!xijdi! offet!tqfdjbm!dpotjefsbujpot/ Myth 5/! Mpbet! bsf! bqqmjfe! bu! uif! kpjout! pomz/! Uif! dpogjhvsbujpo! jt! tvdi! uibu! uif! mpbet! bqqmjfe! po! usvttft!bsf!usbotgfssfe!pomz!uispvhi!kpjout/!Nfncfst! sftjtu!uif!mpbet!pomz!uispvhi!byjbm!gpsdftÐufotjmf!ps! dpnqsfttjwf/!Uifz!ep!opu!cfoe!mjlf!cfbnt/ Fact! Kpjout!jo!b!usvtt! bsf!qjoofe/ Jo!qsbdujdf-!uifz!bsf!sjwfufe-! ps!cpmufe-!ps!xfmefe/!Uifz!bsf! tfnj.sjhje!kpjout/!Ipxfwfs-!bt! uif!npnfout!boe!tifbs!gpsdft! qspevdfe!jo!usvttft!bsf!wfsz! 7/5/2! Nfuipe!pg!Kpjout tnbmm!dpnqbsfe!up!byjbm!gpsdft-! Tjodf! uif! usvtt! bt! b! xipmf! jt! jo! frvjmjcsjvn-! uifsfgpsf-! fbdi! kpjou! jt! jo! uif!kpjout!bsf! frvjmjcsjvn/!Ifodf-!uif!frvbujpot!pg!frvjmjcsjvn!bsf!bqqmjfe!bu!uif!kpjout! gps!nbljoh!uif!bobmztjt! pof!cz!pof!voujm!bmm!uif!nfncfst!bsf!bobmztfe/!Uif!gpmmpxjoh!tufqt!eftdsjcf! tjnqmfs/! uif!nfuipe!pg!kpjout/ ! ! 2/! Dbmdvmbuf!uif!tvqqpsu!sfbdujpot!cz!dpotjefsjoh!frvjmjcsjvn!pg!uif!usvtt!bt!b!xipmf/ 3/! Dpotusvdu! uif! gsff! cpez! ejbhsbn! pg! b! kpjou! bu! xijdi! nbyjnvn! ovncfs! pg! volopxo! gpsdft! boe0ps! sfbdujpot!jt!uxp/ ! 4/! Bqqmz!frvbujpot!pg!frvjmjcsjvn!jo!uxp!nvuvbmmz!qfsqfoejdvmbs!ejsfdujpot!)j/f/-!Ȧ# !>!1!boe!Ȧ# ! >!1*!bu! uif!kpjou!boe!pcubjo!uif!volopxo!gpsdft/ ! 5/! Xijmf!xsjujoh!uif!frvjmjcsjvn!frvbujpot-!bmm!uif!volopxo!gpsdft!nbz!cf!ublfo!bt!ufotjmf!)j/f/-!xjui! qptjujwf!tjho*/!Bgufs!uif!dbmdvmbujpot-!jg!b!gpsdf!jt!tffo!up!ibwf!ofhbujwf!tjho-!ju!xpvme!nfbo!ju!jt!b! dpnqsfttjwf!gpsdf/ ! 6/! Qspdffe! up! puifs! kpjout! tvddfttjwfmz! boe! tpmwf! gps! volopxo! gpsdft! voujm! bmm! nfncfs! gpsdft! bsf! dbmdvmbufe/ Gjhvsf!7/7 !tipxt!b!uxp.ejnfotjpobm!usvtt!voefs!uif!bdujpo!pg!uxp!qpjou!mpbet!$!boe!%/!Gjstu-!uif!tvqqpsu! sfbdujpot! bsf! dbmdvmbufe! cz! dpotjefsjoh! uif! usvtt! bt! b! sjhje! tusvduvsf/!Uifo-! xf! dpotjefs! uif! gsff! cpez! ejbhsbnt!pg!kpjout!)Gjh/!7/7 */!Xf!Ýstu!ublf!uif!kpjou!B!)ps!E*/!Uif!gpsdft!jo!nfncfst!dpoofdufe!up!uijt!kpjou! bsf!dpnqvufe!cz!bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!jo!uif!ipsj{poubm!boe!wfsujdbm!ejsfdujpot/!Uif!gpsdft!jo! ! +!Jo!uijt!cppl-!xf!tibmm!ejtdvtt!pomz!uif! !usvttft/ ŵŻźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº nfncfst!BC!boe!BF!bsf!uivt!dpnqvufe/!Uifsfbgufs-!uif!kpjou!C!jt!dpotjefsfe!boe!gpsdft!jo!nfncfst!CD!boe! CF!bsf!dbmdvmbufe/!Gjobmmz-!kpjout!F!boe!D!bsf!ublfo!up!dbmdvmbuf!uif!gpsdft!jo!uif!sftu!pg!uif!nfncfst/! �!0OTE! Jg!uif!tibqf!pg!b!usvtt!boe!jut!mpbejoh!bsf!tznnfusjdbm-!xf!offe!up!bobmztf!pomz!ibmg!uif!usvtt/!Uif!puifs! ibmg!uif!usvtt!ibt!tjnjmbs!gpsdft!jo!dpssftqpoejoh!nfncfst/ Q P B B C FAB D A E A FAE C FBC FCE FBE E FCD FDE D RD RA RA ! Q P RD (a) A simple 2D truss (b) Axial forces in various members Gjh/!7/7! 7/5/3! Nfuipe!pg!Tfdujpot Bmtp!lopxo!bt!SjuufsÔt!nfuipe-!ju!jowpmwft!dvuujoh!uif!usvtt!cz!pof!ps!npsf!tfdujpot!qbttjoh!uispvhi!uif! nfncfst!jo!xijdi!gpsdft!bsf!up!cf!efufsnjofe/!Uif!volopxo!gpsdft!jo!nfncfst!bsf!efufsnjofe!cz!dpotjefs. joh!frvjmjcsjvn!pg!pof!qbsu!pg!uif!dvu!usvtt/!Uijt!nfuipe!jt!hfofsbmmz!vtfe!xifo!xf!offe!up! /!Uif!gpmmpxjoh!bsf!uif!tufqt!pg!uijt!nfuipe/ ! ! ! ! ! 2/! Dbmdvmbuf!uif!tvqqpsu!sfbdujpot!pg!uif!usvtt/!Opu!bmm!uif!sfbdujpot!offe!up!cf!dbmdvmbufe-!sbuifs!dbmdvmbuf! pomz!uiptf-!xijdi!bsf!jodmvefe!jo!uif!tfmfdufe!dvu!qbsu!gps!gvsuifs!bobmztjt/ 3/! Esbx!b!tfdujpo-!tusbjhiu!ps!dvswfe-!tjnvmubofpvtmz!dvuujoh!uispvhi! !nfncfst!pg!uif! usvtt/ 4/! Tvjubcmz!tfmfdu!b!qbsu!pg!uif!usvtt!boe!esbx!jut!gsff!cpez!ejbhsbn!tipxjoh!bmm!uif!joufsobm!boe!fyufsobm! gpsdft/ 5/! Efufsnjof!uif!volopxo!gpsdft!cz!gpsdf!frvjmjcsjvn!)S# !>!1!boe!S# !>!1*!ps!npnfou!frvjmjcsjvn! )S&!>!1*!ps!cpui/ 6/! Bmm!uif!volopxo!gpsdft!nbz!cf!bttvnfe!ufotjmf/!Bgufs!dpnqvubujpot-!jg!b!gpsdf!jt!gpvoe!up!cf!ofhbujwf-! ju!xpvme!nfbo!b!dpnqsfttjwf!gpsdf/ Gjhvsf!7/8 !tipxt!b!tjnqmf!usvtt/!Tvqqptf!xf!bsf!joufsftufe!up!dpnqvuf!gpsdft!jo!bmm!uif!nfncfst!fydfqu! nfncfst!BC!boe!DE/!Xf!dbo!dvu!uif!usvtt!cz!uxp!tfdujpotʨ2.2!boe!3.3/!Boz!qbsu!pg!uif!usvtt!po!pof!tjef! ɏ ŵŻŻ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ pg!uif!tfdujpo!nbz!cf!dpotjefsfe!tfqbsbufmz!up!dpnqvuf!uif!gpsdft!jo!uif!nfncfst!cfjoh!dvu-!bt!tipxo!jo! Gjh/!7/8 /! 1 2 B C B FCE FBE A FAE 1 A 1 C FBC 1 2 E D FDE D 2 RA 2 RD (a) Truss being cut by two sections (b) Isolated parts of the truss Gjh/!7/8! & Tpnfujnft-!cpui!uif!bcpwf!nfuipet!bsf!vtfe!up!bobmztf!b!mbshf!usvtt/!Jo!tvdi!dbtft-!cfgpsf!dvuujoh!b! tfdujpo-!ju!nbz!cf!vtfgvm!up!Ýoe!uif!gpsdft!jo!tpnf!nfncfst!cz!uif!nfuipe!pg!kpjout/!Tfmepn-!{fsp!gpsdf! nfncfst!bsf!uifsf!jo!b!usvtt/!Ju!jt!vtfgvm!up!jefoujgz!tvdi!nfncfst!xijmf!bobmztjoh!usvttft/!Uif!gpmmpxjoh! hvjefmjoft!nbz!cf!dpotjefsfe!up!jefoujgz!{fsp.gpsdf!nfncfst; ! ) *! Jg!b!kpjou!pomz!ibt!uxp!nfncfst!boe!op!fyufsobm!mpbe!boe0ps!op!tvqqpsu-!uifo!uiptf!uxp!nfncfst!bsf! {fsp.gpsdf!nfncfst!)Gjh/!7/9 */ ! ) *! Jg!b!kpjou!pomz!ibt!uxp!nfncfst!boe!jt!mpbefe-!boe!jg!uif!mjof!pg!bdujpo!pg!sftvmubou!gpsdf!gspn!bqqmjfe! mpbet!bu!uif!kpjou!jt!dpmmjofbs!xjui!pof!pg!uif!nfncfst!uifo!uif!puifs!nfncfs!jt!b!{fsp.gpsdf!nfncfs/! Jg!uif!sftvmubou!gpsdf!bu!uif!kpjou!jt!opu!dpmmjofbs!xjui!fjuifs!nfncfs!uifo!cpui!nfncfst!bsf!opu!{fsp. gpsdf!nfncfst!)Gjh/!7/9 */ ! ) *! Jg!b!kpjou!ibt!uisff!nfncfst!boe!op!fyufsobm!mpbe!boe0ps!tvqqpsu-!boe!jg!uxp!pg!nfncfst!bsf!dpmmjofbs! uifo!uif!opo.dpmmjofbs!nfncfs!jt!b!{fsp.gpsdf!nfncfs!)Gjh/!7/9 */ P P P (a) (b) Gjh/!7/9! ' 'XAMPLE!hrc (c) ( ) &°µ«ɏ»¯¬ɏ¶¹ª¬ºɏ°µɏ»¯¬ɏ´¬´©¬¹ºɏ!"Ȏɏ!#ɏ¨µ«ɏ"#ɏ¶ɏ»¯¬ɏ»¹¼ººɏº¯¶¾µɏ°µɏ&°®ȍɏźȍŽ¨ɏ©Àɏ»¯¬ɏɏ ´¬»¯¶«ɏ¶ɏ±¶°µ»ºȍ \MP!7/4^ ŵŻżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 200 kN FAB B VB 200 kN 200 kN A A 60° 30° C VC 5m (a) Triangular truss B 60° A FBC 100 173.21 FAC 30° VB C VC (b) FBD of joints A, B and C B 60° 30° 86.6 VB C VC 5m (c) Analysed truss (forces in kN) Gjh/!7/: 5OLUTION! Jo!uif!usjbohvmbs!usvtt-!–CBD!>!:1¡/!Uifsfgpsf-!BD!>!CD!dpt!41¡!>!5/44!n/ Frvbujoh!uif!tvn!pg!npnfout!pg!bmm!gpsdft!bcpvu!uif!tvqqpsu!D!up!{fsp-!xf!hfu S&}D!>!1;! Ï!*C!¥!6!,!311!¥!)5/44!dpt!41¡*!>!1! fi! *C!>!261!lO Frvbujoh!uif!tvn!pg!wfsujdbm!gpsdft!up!{fsp-!xf!hfu S# !>!1;! *C!Ï!311!,!*D!>!1! fi! *D!>!311!Ï!261!>!61!lO Mfu!vt!bqqmz!uif!nfuipe!pg!kpjout/!Gsff!cpez!ejbhsbnt!pg!bmm!uif!kpjout!bsf!tipxo!jo!Gjh/!7/: /!Uif!gpsdft! jo!bmm!uif!nfncfst!bsf!bttvnfe!ufotjmf/ Kpjou!C;!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!jo!wfsujdbm!boe!ipsj{poubm!ejsfdujpot-!xf!hfu -150 !>!Ï284/23!lO!>!284/32!lO!)D*+ sin 60∞ S# !>!1;! #BC!dpt!71¡!,!#CD! fi! #CD!>!Ï )Ï284/32!dpt!71¡*!>!97/7!lO!)U* S# !>!1;! *C!,!#BC!tjo!71¡!>!1! fi! #BC!>! Kpjou!D;!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!jo!wfsujdbm!boe!ipsj{poubm!ejsfdujpot-!xf!hfu 50 *C !>!Ï!211!lO!>!211!lO!)D* =sin 30∞ sin 30∞ Uif!bobmztfe!usvtt!jt!tipxo!jo!Gjh/!7/: /!Opuf!uibu!uif!gpsdft!xjui!ofhbujwf!tjho!bsf!tipxo!bt!dpnqsfttjwf/ S# !>!1;! #BD!tjo!41¡!,!*D!>!1! fi! #BD!>!Ï! 'XAMPLE!hrd &°µ«ɏ»¯¬ɏ¨¿°¨³ɏ¶¹ª¬ºɏ°µɏ¨³³ɏ´¬´©¬¹ºɏ¶ɏ»¯¬ɏ»¹¼ººɏº¯¶¾µɏ°µɏ&°®ȍɏźȍŵŴ¨ȍ \MP!7/4^ 5OLUTION! Frvbujoh!uif!tvn!pg!wfsujdbm!gpsdft!up!{fsp-!xf!hfu! S# !>!1;! +B!,!+E!Ï!3!Ï!5!>!1! fi! +B!,!+E!>!7! )* Opx-!frvbujoh!uif!tvn!pg!npnfout!pg!bmm!gpsdft!bcpvu!uif!tvqqpsu!B!up!{fsp-!xf!hfu S&}B!>!1;! +E!¥!7!Ï!3!¥!2/6!Ï!5!¥!5/6!>!1! fi! +E!>!4/6!lO! Gspn!Fr/!) *-! +B! >!7!Ï!+E!>!7!Ï!4/6!>!3/6!lO Mfu!vt!bqqmz!uif!nfuipe!pg!kpjout/!Gsff!cpez!ejbhsbnt!pg!bmm!uif!kpjout!bsf!tipxo!jo!Gjh/!7/21 <!gpsdft!jo! bmm!nfncfst!bsf!bttvnfe!ufotjmf/ ! +!B!nfncfs!gpsdf!gpmmpxfe!cz!)D*!jt!dpnqsfttjwf!gpsdf-!boe!uibu!gpmmpxfe!cz!)U*!jt!ufotjmf!gpsdf/! ɏ ŵŻŽ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ 4 kN 2 kN B B C FAB A 60° 60° 60° 60° D A E RA 3m 4 kN 2 kN 3m C FBC FCE FBE FAE E FCD FDE 2.5 kN RD (a) 2D truss carrying loads D 3.5 kN (b) Free body diagrams of all joints Gjh/!7/21 Kpjou!B;!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn-!xf!hfu 2.5 !>!Ï!3/9:!lO!>!3/9:!lO!)D* sin 60∞ S# ! >!1;! #BF!,!#BC!dpt!71¡!>!1! fi! #BF!>!Ï!1/6!#BC!>!Ï!1/6!¥!)Ï!3/9:*!>!2/55!lO!)U* S# ! >!1;! #BC!tjo!71¡!,!+B!>!1! fi! #BC!>!!- Kpjou!C;!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn-!xf!hfu S# ! >!1;! Ï!#BC!tjo!71¡!Ï!#CF!tjo!71¡!Ï!3!>!1 - 2 - #AB sin 60∞ - 2 - (- 2.89) sin 60∞ !>!1/69!lO!)U* !>! sin 60∞ sin 60∞ S# ! >!1;! Ï!#BC!dpt!71¡!,!#CF!dpt!71¡!,!#CD!>!1 fi! #CD!>!)Ï!3/9:*!¥!1/6!Ï!1/69!¥!1/6!>!Ï2/84!lO!>!2/84!lO!)D* fi! #CF!>! Kpjou!F;!Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn-!xf!hfu S# ! >!1;! #CF!tjo!71¡!,!#DF!tjo!71¡!>!1 - #BE sin 60∞ !>!Ï!1/69!lO!>!1/69!lO!)D* sin 60∞ S# ! >!1;! #EF!Ï!#BF!Ï!#CF!dpt!71¡!,!#DF!dpt!71¡!>!1 fi! #EF!>!2/55!,!1/69!¥!1/6!Ï!)Ï!1/69*!¥!1/6!>!3/13!lO!)U* fi! #DF!>! Kpjou!E;!Bqqmzjoh!uif!frvbujpo!pg!frvjmjcsjvn!jo!uif!ipsj{poubm!ejsfdujpo-!xf!hfu S# ! >!1;! Ï!#EF!Ï!#DE!dpt!71¡!>!1 2.02 fi! #DE!>! !>!Ï!5/15!lO!>!5/15!lO!)D* cos 60∞ Uif!bobmztfe!usvtt!jt!tipxo!jo!Gjh/!7/22/!Opuf!uibu!uif!gpsdft!xjui!ofhbujwf!tjho!bsf!tipxo!bt!dpnqsfttjwf/ ŵżŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 4 kN 2 kN B C 1.73 2.89 0.58 4.04 0.58 A D 1.44 2.02 E 3m 3m 2.5 kN 3.5 kN ) Gjh/!7/22! 'XAMPLE!hre ( lO* !µ¨³Àº¬ɏ»¯¬ɏ»¹¼ººɏº¯¶¾µɏ°µɏ&°®ȍɏźȍŵŴ¨ɏș%¿¨´·³¬ɏźȍŶȚɏ¼º°µ®ɏ»¯¬ɏ´¬»¯¶«ɏ¶ɏº¬ª»°¶µºȍ \MP!7/4^ 5OLUTION! Ibwjoh!efufsnjofe!uif!tvqqpsu!sfbdujpot!jo!Fybnqmf!7/3-!mfu!vt!dvu!uif!usvtt!xjui!b!tfdujpo!2.2! qbttjoh!uispvhi!nfncfst!CD-!CF!boe!BF-!boe!bopuifs!tfdujpo!3.3!qbttjoh!uispvhi!CD-!DF!boe!EF!bt!tipxo! jo!Gjh/!7/23 /!Xf!dpotjefs!gsff!cpez!ejbhsbnt!pg!uif!uxp!qbsut!pg!uif!usvtt/! 4 kN 2 kN 4 kN 2 kN 1 2 1 B 2 B C C FBC FBE A 60° 60° 60° E 1 RA 60° D A FCE 60° 60° FAE 2 3m FBC FDE 1 33m m RD (a) Truss being cut by two sections D 2 2.5 kN 3.5 kN (b) Part of truss left of 1-1 (c) Part of truss right of 2-2 Gjh/!7/23 # )j*!!Qbsu!pg!uif!usvtt!tipxo!jo!Gjh/!7/23c; S& (() * !" ¥ #!" $ # ¥%¥ fi & ' # 2.5 ¥ 1.5 3 ¥ sin 60∞ 2/55!lO!)U* * ) S# $# S# # & '$ +# fi # , fi ++ & '+# $#!4% 7 , # fi 2/84!lO!)D* - 2 + 2.5 1/69!lO!)U* sin 60∞ # , $ !" ¥ !"- $ #!// ɏ ŵżŵ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ )jj*!Qbsu!pg!uif!usvtt!tipxo!jo!Gjh/!7/23d;! (() S# +8 $ #, # $ !"- 7 #,8 2.5 sin 60∞ $ #8 $ #,8 fi & ' (() ) $ !-; 7 3.5 ¥ 1.5 3 ¥ sin 60∞ #8 3/13!lO!)U* 8 fi & ' #,8 - 2.02 cos 60∞ $ /! / 7 5/15!lO!)D* !ɏ¹¶¶ɏ»¹¼ººɏ°ºɏº¯¶¾µɏ°µɏ&°®ȍɏźȍŵŷȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏµ¨»¼¹¬ɏ¨µ«ɏ´¨®µ°»¼«¬ɏ¶ɏ»¯¬ɏ¶¹ª¬ºɏ °µɏ´¬´©¬¹ºɏ#$Ȏɏ#&ɏ¨µ«ɏ&'Ȏɏ¼º°µ®ɏ»¯¬ɏ´¬»¯¶«ɏ¶ɏº¬ª»°¶µºȍ \MP!7/4^ 5OLUTION! ! < ( ) # = 7 ) C 10 kN # >$ > & ' >$? > & '@ & ' > ?# $ & '@ ?# $ * & '@ #!" )) S& ( C RA Gjh/!7/24 C )) 1 60° 30° F 2m 14 kN (a) Truss being cut by Section 1-1 E RE Gjh/!7/25 FFG ( #/ 7 FCD FCF 1 60° 60° G 2m 6 kN 14 kN # D 30° 60° 2m 60° 30° F 2m 6 kN = + B A 60° 60° G 2m #=# ! &!#/ ! : ( 10 kN 30° 60° 2m A RA + ¥ & $ #/ ¥ / $ & ¥ $ # ¥ fi + #%!-% 7 >@ ! &!#/ ! : # >! D B A #,8 #, 3/9:!lO!)D* ! &!##! 'XAMPLE!hrf B ? ! ! ,8 , 1/69!lO!)D* , +8 ¥ #!" $ #8 ¥ % ¥ S# - # * ) S& , : fi & ' + !" #8 : 3.5 - 4 sin 60∞ #, (() S# : * ) fi & '$/ # : * 60° F ) C ) 1 D 1m 60° 30° E 2m RE 14 kN (b) FBD of right-hand portion 1 E RE ŵżŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº < ( #,8 8 + #,8 ¥ # & ' + #,8 fi #,8 $#%!-% ¥ % ' + + $ #/ ) = S& S# & ' # !, * ) = ( + ¥ #, 38/77!lO!)D* - (- 27.66) ¥ 0.5 - 13.83 + 14 27/27!lO!)U* sin 60∞ $ # > $ #,8 % ' $ #, & ' fi # > $ ?$ 4!&&@ ¥ !-&& $ #&!#& ¥ !" 26/98!lO!)U* fi #, S# 7/6! .1!hrf , ) ) ) D %½¨³¼¨»¬ɏº¯¨·¬Ȏɏ º¼··¶¹»ɏ¹¬¨ª»°¶µºȎɏ¨µ«ɏ ¶¹ª¬ºɏ¨»ɏ½¨¹°¶¼ºɏ·¶°µ»ºɏ °µɏ¨ɏª¨©³¬ɏª¨¹¹À°µ®ɏ»¯¬ɏ ·¶°µ»ɏ³¶¨«ºȎɏ¼µ°¶¹´³Àɏ «°º»¹°©¼»¬«ɏ³¶¨«ɏ¨µ«ɏ°»ºɏ º¬³Ɋ¾¬°®¯»ȍ ( �! DBCMFT! ) ( )) E C ) E ) ) ? !, ) ) ! &!#"@ ( (( ) D !: ) ) ( ( I D !: D ) ! ) D ! :F (( ) ) ) D C ) ) , ) D ( ) ) ! =D ) ) D D !, ) )) )) ) ) ( )) ) (( ( !G ) ( !, H ( !, ) ) �! 9ORTHY!OF!0OTE Cvdlmjoh ( D ) D C ! Tower Tower Steel cables Suspenders Deck Piers Piers Gjh/!7/26! !: D ) ) ! ɏ ŵżŷ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ Bttvnqujpot!Nbef!jo!uif!Bobmztjt!pg!Dbcmft , #! ( ) ! ! ! " %!! Fwfsz!qpjou!jo!b!dbcmf!jt!ijohfe ! ! ! 7/6/2! ) ) ) ) D ) )) ) * ) ( ) !: * ! ! ))! Dbcmft!Tvckfdufe!up!Dpodfousbufe!Mpbet! J ) D ) &!#& ) )( ) ( ( ## )) ) ) (( @ * 8! : , * ) ( ( ) # !: # (( H ? (() * K , 8! : ! ! )) % * ) !L ( D ) ! L A HA RA HB D F2 C F1 TAC VC VD a1 RB D C H l3 l2 l1 h B yD yC a3 H TDB F2 F1 (b) Tensions in segments AC and DB (a) Cable subjected to point loads Gjh/!7/27! Gpsdft!jo!uif!Dbcmf : ) ) ( , uisvtu! ) !: A ) C ) ) *, M a# - D ) ) a#! : , ! &!#& ! : !: A D ! * ) !8 ) C )) ! &!#& ) ) D )D ipsj{poubm! - ( ) ( , ) ( D *D D H 2 + VC2 , *, ) ?&!#@ ( ) *! ?&!#@ ) ) , - 2 + ( - tan a1 ) 2 ( A - 1 + tan 2 a1 ,! ) C( D ) , ŵżŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº - 2 + ( - tan a 3 ) 2 - 1 + tan 2 a 3 a - 1 + tan 2 a !"# 'XAMPLE!hrg Two loads of 20 kN each are supported by a flexible cable ACDB as shown in Fig. 6.17a. The span of the cable between supports is 15 m and the sag of both the loads is 2.5 m. Determine the tensile force developed in all the three segments of the cable. 5m 5m 5m A B 2.5 m C D 20 kN 20 kN (a) Cable carrying symmetrical loading RA H RB a1 a1 A TAC C TCD TAC a1 H B 2.5 m C TDB D 20 kN 20 kN 20 kN TCD (b) Free body diagram of cable (c) FBD of point C Gjh/!7/28 5OLUTION! * ++ $ $ + $ ", - ",#." 4 S&64 ,7 4 * $ ", /! 5 +4 - 1 + tan 2 a1 40 1 + 0.52 4 - 1 + tan 2 a 0 40 1 + 02 - 1 + tan 2 a1 40 1 + 0.52 $ $ fi a& 4 - $ $ ! 20 ¥ 5 2.5 $ :, / $ +4 $ 55/83!lO 51!lO 55/83!lO < 5 " !9'; $ 0 8 ++ ¥ 9 - - ¥ "!9 , fi a, ,;#! a& "!9.9 ,!9! Bmufsobujwfmz ! # a& ,!9 a&7 % ! !&' ! % = 4 % ! !&' ! > 0 ! ɏ ŵżŹ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ + < = 4 AC CD sin 90∞ sin (90∞ + a1 ) 20 sin (180∞ - a1 ) * 55/83!lO % 7/6/3! +4 fi 55/83!lO< +4 51!lO 4 Dbcmf!Tvckfdufe!up!Vojgpsnmz!Ejtusjcvufe!Mpbe! 4 $ . $ % ! !&? ! 4 !< * @A! < * - / D* / D* * $ @ A! D ! @A $ * $ D E + $ B @A! wDx V x H h B Dx y !&? $ /D $ w A $ !% P Dx P q Dy ds Dy Q Q H + DH V + DV L (a) The cable AB (b) FBD of the element PQ Gjh/!7/29! / 5 * $ 5 S# S# ,7 ,7 S&6A ,7 * @A 8 - - - - D-# , fi D- , - * 8 * - D*# 8 D , fi D* - D , D , fi -¥D 8*¥D , -¥D 8*¥D - D ¥ " 5 D #" D 5 D Æ, Ï DH ¸ lim Ì = 0˝ fi x Æ 0 Ó Dx ˛ dH dx , !F# Ï DV ¸ lim Ì + w = 0˝ fi Dx ˛ dV dx 8 !:# xÆ0 Ó BG * # * / D* $ /D ! . * $ H * $ ŵżźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Ï H Dy ¸ lim Ì - V = 0˝ x Æ 0 Ó Dx ˛ fi dy dx H * fi * - q dy dx q ! " # $ H% +V% - 1 + tan 2 q Nbyjnvn!Ufotjpo!jo!uif!Dbcmf/! 0 nbyjnvn nbyjnvn & " Njojnvn!Ufotjpo!jo!uif!Dbcmf/! ' * ! {fsp ) ! Uif!Dbcmf!Frvbujpo! * $ ' d%y dx % dV dx 4 - dy dx ! #! ! ! njojnvn ! ( ( ! ! $ / ( fi 3 + d%y - 3 dx % 5 $ ,-. 4 6 % - ' 6 $ 3 % 5 6 5 7 % . % " $ " $ $8 7 8 < 7 " $ @ qbsbcpmjd 9: 9; - ¥ 9 .: ; -¥ 3 3 02 5 2 .% 5 % 6 6 ¥95 ¥.5 % % fi fi % 6 9 Hh 1 + L 2 . # 3 x 2 È Hh 1 ˘ + + wL ˙ 5 9 fi 2 ÍÎ L 2 ˚ dbcmf!frvbujpo $ $ y= wx ( L - x) hx + 2H L ! @ + $ ,-. ɏ ŵżŻ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ * ! ( 9 $ wx ( L - x) 2H 69 69 .A% !$ "!! wL2 8H w( L /2){L - ( L /2)} 2H C Mfohui! pg! uif! Dbcmf/! G H = dx 1 + (dy /dx)2 - @ ! * ª ! ! J $ 66 ! dx % + dy % I w h ( L - 2 x) + 2H L ' ( $ ( " ! L Ú ds Ú dx 5 9 9 L x0 fi L+ lc = L + ( " ! ! ! 5 $ J L 1/2 2 ÏÔ Ê w h ˆ ¸Ô ( L x ) 1 + 2 + Ì Á ˜ ˝ L ¯ Ô˛ ÔÓ Ë 2 H 2 $ ! 2 ÏÔ 1 Ê w h ˆ ¸Ô ( L x ) 1 + 2 + Ì ÁË ˜ ˝ L ¯ Ô˛ ÓÔ 2 2 H $ wL2 8 yC - ! hˆ Ê w dx 1 + Á ( L - 2 x) + ˜ Ë 2H L¯ B fi B 67 dy dx < $ $ ! 6 < ( " ! H ! 1 Ê w2 wh h2 ˆ 2 2 ( L + 4 x 4 Lx ) + ( L 2 x ) + ˜ dx 2 ÁË 4 H 2 HL L2 ¯ ! !9 . L 1 ÏÔ w2 wh h 2 ¸Ô 2 2 L 4 x 4 Lx L 2 x ( + ) + ( ) + Ì ˝ dx 2 Ú0 ÔÓ 4 H 2 HL L2 Ô˛ 1 w2 Ê 2 4 x3 x 2 ˆ wh h2 2 + + 4 + ( ) + L x L Lx x x 2 4 H 2 ÁË 3 2 ˜¯ HL L2 L 0 1 È w2 Ê 3 4 L3 4 L3 ˆ wh 2 h2 ˘ 2 L + + ( L L ) + ◊ L˙ Í 2 ÍÎ 4 H 2 ÁË 3 2 ˜¯ HL L2 ˚˙ w2 L3 h2 + 2 2L 24 H # 6% $ ! ! !$ - C − .% A 7 = 9 ŵżżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº H $ $ .5 7/6/4! $ w2 L3 24 ( wL2 /8 yC ) 2 ! L+ ( 9 .%A7 - $ 6% C 8 yC2 3L 6 Dbcmf!Tvckfdufe!up!jut!Pxo!Xfjhiu ' ! ! $ + $ C " " J $ $ $ . 8 + H 6@ ( ,-. M C < " ! !"$ $ ' $ $ @ 1 ! N @ < ! ( $$ $ $ # $ we A P weDx Q B Ds g x O y Dx P Ds g L Dy Q l1 gDs l2 (a) The cable AB (b) Cable element PQ Gjh/!7/2:! Uif!Dbcmf!Qspgjmf! . H 6@ H ! $ ! D <J fi + Ds Dx ! ! " ! g Dx % + Dy % Dx Ê dy ˆ g 1+ Á ˜ Ë dx ¯ D Æ9 ! < ! Ê Dy ˆ g 1+ Á ˜ Ë Dx ¯ I D 2 2 6/ 4 - < D $ ! " ( d%y dx % $N $ dy dx fi - 3 $ d%y dx % Ê dy ˆ -g 1+ Á ˜ Ë dx ¯ 2 6 ! 6 ɏ ŵżŽ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ ( < d dx fi 6 - g 1 + (sinh u ) 2 du dx du H dx ◊ - fi ' ! 3 3 % O∵ du dx fi - % q3 q 6P g H ( - gx + C6 H 64 Q 6 Ê gx ˆ + C6 ˜ ÁË ¯ H dy dx ' 6 ( - 67 # ( Ê gx ˆ + C1 ˜ + C2 ÁË ¯ H H g 6@ % < ! ! $ 6 " % R H 9 ! 9 R 9 - ( H g fi $ 67 $ 6@ R $ fi % % H g 6@ % H Ê gx ˆ H cosh Á - ˜ + Ë H¯ g g + fi y=- ( HÏ gx ¸ - 1˝ Ìcosh g Ó H ˛ %9 O∵ 67 dbufobsz < 6@ C 9 6 39 5 9 5 6 - 6 9 6 $ ) 67 95 J $ " 6@ ( $ , Mfohui!pg!uif!Dbcmf! G ! I ( dx % + dy % Myth H 6@ Ê dy ˆ dx 1 + Á ˜ Ë dx ¯ 2 Dbufobsz!qspÝmf!jt! tbnf!bt!qbsbcpmjd! qspÝmf/ Fact! 3q qP ŵŽŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº !" #$% & gx gx Êg ˆ - 0˜ ' - sinh ÁË sinh ¯ H H H dy H 'dx g !" #*% & gx ˆ Ê 1 + Á - sinh ˜ Ë H¯ ' + 2 ' 1 + sinh 2 gx gx gx ◊ dx ' cosh ◊ dx ◊ dx ' cosh 2 H H H , l2 Ú -2 l2 gx Ú cosh H dx ds ' - l1 - l1 l2 fi #& ' H sinh ( gx /H ) ' g g /H -l 1 lc = H g gl2 gl ˆ Ê + sinh 1 ˜ ÁË sinh H H¯ Tmpqf!pg!uif!Dbcmf! 4 q' gl2 - gl1 ˆ Ê - sinh ÁË sinh ˜ H H ¯ .∵ !- q% ' - !" ##% q3 !" #*%& dy ' dx Ê gx ˆ ÁË - ˜¯ ' H gx H !" #5% Gpsdft!jo!uif!Dbcmf Wfsujdbm!Dpnqpofou!pg!Dbcmf!Gpsdf-!W/! 4 *'- q ' -- !" 6%& gx H !" #7% Ufotjmf!Gpsdf!jo!uif!Dbcmf-!U/! ! '! H # + V # !' - 1 + tan 2 q !' H 1 + sinh 2 gx H '4 !" #$% gx H !" #6% !" #6%& '- H g '-- gx H gx H T H Ï ¸ - 1˝ ' - cosh + =- + Ìcosh g H g g g H Ó ˛ !" #"% ɏ ŵŽŵ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ 0% ! nbyjnvn!ufotjmf!gpsdf , & , 8 , 'XAMPLE!hrh A uniformly distributed load of 9 kN/m acts over a length of 4 m from the left-hand support A of a cable (assumed weightless), whose both supports are at the same level, as shown in Fig. 6.20a. At the support B, the cable runs over a frictionless pulley of negligible dimensions and suspends a weight of 20 kN. Determine (a) the support reactions, (b) the horizontal component of cable tension, (c) the sag of the point C and maximum sag in the cable, and (d) the maximum and minimum tensile forces in the cable. \MP!7/5^ " #$ 5OLUTION! !9 ! % 8 S&;: ' $< :& - +8 ¥ " > !? ¥ 7% ¥ !# > #% ' $ fi +8 ' 35!lO & +: & S# ' $< +8 > +: - ? ¥ 7 - #$ ' $ fi @: & @: ' #$ A * @ ! % S# ' $< B & @: ' +8 - ? ¥ 7 > * ' $ H# +V# fi : @: 8@ 202 - 122 2 fi - ' TCB -V2 ' RA HA B x & * ' - #7 > 5" ' *# 9 kN/m A +: ' 43!lO - ' 27!lO RB 9 kN/m A y fi B HB x yC yD y C C D 20 kN 4m 20 kN xD 2m (a) The cable AB (b) FBD of the cable Gjh/!7/31 ! % B E , F & @& G S&;@ ' &@ ' $< - +8 ¥ 7 > - ¥ @ @ > !? ¥ 7% ¥ 4 2 '$ fi H @ ' & 24 ¥ 4 - 72 ' 2/6!n 16 A H & H A G @: ŵŽŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº @ 8 H * ' $< - +8 > ? ¥ '$ fi & ' # ""I H - +8 > # ""I > - ¥ S&; ' & ' $< ! % 8 > ? ¥ # ""I ¥ , , ' 8' # H + RA# 8& ' , , ' 3/1!n & 2 H ' fi ' 16 + 24 ' 39/95!lO 2 8 ' 2.667 '$ 2 & H 2 + VD2 ' & & - 2 + 02 ' - ' 27!lO 'XAMPLE!hri A cable of 150-m span and 30-m sag has its supports A and B at the same level as shown in Fig. 6.21a. The cable is carrying only its dead weight of 0.15 kN/m. Determine (a) the horizontal force in the cable, (b) the maximum tensile force in the cable, (c) the support reactions, and (d) the length of the cable. \MP!7/5^ RB RA 150 m H B A A B 30 m H 30 m O x 0.15 kN/m 0.15 kN/m y 75 m 75 m Tmax RA A H (a) The cable AB under its own weight Cable (b) FBD of cable and the joint A Gjh/!7/32 J 5OLUTION! !A 9 " #* ! % H : ! 8%& '- 9: - & ! HÏ gx ¸ - 1˝ Ìcosh g Ó H ˛ B !% : ! ' I6 - 5$ ' - " #$% - Ï 0.15 ¥ 75 ¸ - 1˝ Ìcosh 0.15 Ó ˛ fi & ' - 5$ 1+ 4.5 ' - % ! %& 11.25 - ! % ɏ ŵŽŷ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ - ! %& B %& & * G G $# "* -& G *K !*A% L* G & &-'*$ ! !*K% *A !L* ' *K - *A% -'$ 6 & Ubcmf!7/2 Tufq!tj{f!>!6!lO - Tufq!tj{f!>!2!lO *S *M ș* Tufq!tj{f!>!1/3!lO - *M *S ș* - *M *S ș* * 6 6$$ 5M 77$ >5M 756 ** * 7$? * 6I$ >$ *"* *7 # * 5*I * 55$ >$ $*5 6 * ?$$ 7 I?$ ># M?$ *# * 5I6 * 7I" >$ *$* *7 7 * 5*# * 5#* >$ $$? *$ * 76$ * I$# >$ #"# *5 * 57" * 5?M >$ $6# *7 " * 5$M * 5*# >$ $$7 *6 * 5$$ * #?6 N$ $$6 *7 * 5#* * 57$ >$ $*? 25/9 2/415 2/415 !!1/111 *6 * 5$$ * #?6 N$ $$6 *6 $ * 5$$ * #?6 N$ $$6 O & I!>!25/9!lO ! % ! % !" #"% '-- ! % , :% P , ! ! Difdl;! ! % , , ' - 5$ ! ! 8% & ! %& 8 ' *7 M - $ *6 ¥ !- 5$% ' 2:/4!lO , , ' H# +V# ' 14.82 + 12.37 2 ' 2:/4! lO& H H & -8 ' -: ' - ' 25/9!lO +8 Q +: & 8! :% F !" #7% & *& +8 ' +: ' * ' - ! % A # ' I6 0.15 ¥ (- 75) ' 23/48!lO 14.8 gx ' -*7 M H !" ##% & - 3 *7 M & ' $ *6 R & *' N I6 & ' H g gl2 gl ˆ 14.8 Ê 0.15 ¥ 75 0.15 ¥ 75 ˆ Ê sinh + sinh + sinh 1 ˜ ' Á ÁË sinh ˜ ' 275/98!n H H¯ 0.15 Ë 14.8 14.8 ¯ ŵŽŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! #&&+6+10#.!51.8'&!':#/2.'5 'XAMPLE!hrj For the truss given in Fig. 6.22a, find the forces in members BC, CD and BD. \MP!7/4^ S 5OLUTION! !@ S @& 8 : @ S 9 & H " ## 8 & #:@ ' #@ ' 1 : S S# ' $< - #: - 6$ ' $ fi #: ' - 6$ , : ^ 8@& ' 61!lO!)D* 50 kN A C B 50 kN D C FBC B FAB FBD FCD E (a) Truss carrying 50-kN load (b) FBDs of joints B and C Gjh/!7/33 'XAMPLE!hrk Find the axial forces in all the members of the truss shown in Fig. 6.23a. Also, compute the support reactions.! ! ! \MP!7/4^ RF F F B 5m B C C FBC 30° 5m A 30 kN 5m 5m 5m 5m E 20 kN 5m D FAB A 60° 30 kN FAE FBE FCE 60° 60° E HF FCF 90° 60° RD FCD FDE 60° D HD 20 kN (b) FEBs of all joints (a) The truss Gjh/!7/34 5OLUTION! Bttvnjoh!bmm!uif!nfncfs!gpsdft!bt!ufotjmf-!uif!gsff!cpez!ejbhsbnt!pg!bmm!uif!kpjout!bsf!tipxo!jo! Gjh/!7/34 /!Mfu!vt!opx!dpotjefs!uif!frvjmjcsjvn!pg!kpjout!pof!cz!pof/ Kpjou!B;! 30 !>!45/75!lO!)U* S# ! >!1;! #BC!tjo!71¡!Ï!41!>!1! fi! #BC!>! sin 60∞ ɏ ŵŽŹ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ S# ! >!1;! #BC!dpt!71¡!,!#BF!>!1! fi! #BF!>!Ï!45/75!¥!1/6!>!Ï28/43!lO!>!28/43!lO!)D* Kpjou!C;! S# ! >!1;! Ï!#BC!tjo!71¡!Ï!#CF!tjo!71¡!>!1! fi! #CF!>!Ï!#BC!>!Ï!45/75!lO!>!45/75!lO!)D* S# ! >!1;! Ï!#BC!dpt!71¡!,!#CF!dpt!71¡!,!#CD!>!1 fi! #CD!>!45/75!¥!1/6!Ï!)Ï!45/75*!¥!1/6!>!45/75!lO!)U* Kpjou!F; S# ! >!1;! #CF!tjo!71¡!,!#DF!tjo!71¡!Ï!31!>!1 20 - (- 34.64) ¥ 0.866 !>!68/83!lO!)U* 0.866 S# ! >!1;! Ï!#BF!Ï!#CF!dpt!71¡!,!#DF!dpt!71¡!,!#EF!>!1 fi! #EF!>!Ï28/43!Ï!45/75!¥!1/6!Ï!68/83!¥!1/6!>!Ï!74/6!lO!>!74/6!lO!)D* fi! #DF!>! Kpjou!D;! Bu!uijt!kpjou-!uxp!volopxo!gpsdft!#DE!boe!#DG!bsf!qfsqfoejdvmbs!up!fbdi!puifs/!Tp-!ju!jt!bewjtbcmf! up!dpotjefs!uif!frvjmjcsjvn!pg!gpsdft!jo!uif!ejsfdujpo!pg!uiftf!gpsdft!pof!cz!pof/!UivtS#}DG! >!1;! #DG!Ï!#DF!dpt!41¡!Ï!#CD!dpt!41¡!>!1 fi! #DG!>!68/83!¥!1/977!,!45/75!¥!1/977! fi! #DG!>!91!lO!)U* S#}DE! >!1;! #DE!,!#DF!dpt!71¡!Ï!#CD!dpt!71¡!>!1 fi! #DE!>!Ï!68/83!¥!1/6!,!45/75!¥!1/6!>!Ï22/65!lO!>!22/65!lO!)D* Kpjou!E;! S# ! >!1;! +E!,!#DE!tjo!71¡!>!1! fi! +E!>!Ï!)Ï22/65*!¥!1/977!>!21!lO!)≠* S# ! >!1;! -E!Ï!#EF!Ï!#DE!dpt!71¡!>!1! fi! -E!>!Ï!74/6!Ï!22/65!¥!1/6 fi! -E!>!Ï!7:/39!lO!>!7:/39!lO!)¨* Kpjou!G; S# ! >!1;! +G!Ï!#DG!dpt!71¡!>!1! fi! +G!>!91!¥!1/6!>!51!lO!)≠* S# ! >!1;! -G!Ï!#DG!tjo!71¡!>!1! fi! -G!>!91!¥!1/977!>!7:/39!lO!)Æ* 'XAMPLE!hrcl Find the forces in all members of a truss as shown in Fig. 6.24a which carries a horizontal load of 12 kN at the point D and a vertical load of 18 kN at the point C. \MP!7/4^ D 12 kN HA q A RA q 2m C 18 kN B 2m FCD FAD 1.5 m q HA A (a) Truss carrying two point loads q FAC RA RB FBD C FBC 18 kN B RB (b) FBDs of all the joints Gjh/!7/35 5OLUTION! Gspn!hfpnfusz-!q!>!uboÏ2)2/603*!>!47/98¡/!Dpotjefsjoh!uif!frvjmjcsjvn!pg!uif!usvtt!bt!b!xipmf-! xf!ibwf S# ! >!1;! Ï!-B!,!23!>!1! fi! -B!>!23!lO S&}B! >!1;! +C!¥!5!Ï!29!¥!3!Ï!23!¥!2/6!>!1! fi! +C!>!24/6!lO ŵŽźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº S# ! >!1;! +B!,!+C!Ï!29!>!1! fi! +B!>!29!Ï!+C!>!5/6!lO Gjhvsf!7/35 !tipxt!gsff!cpez!ejbhsbnt!pg!uif!kpjout!B-!D!boe!C/!Mfu!vt!dpotjefs!uif!frvjmjcsjvn!pg!uiftf! kpjout!pof!cz!pof!up!dbmdvmbuf!uif!nfncfs!gpsdft/ Kpjou!B; - 4.5 -+A !>!Ï!8/6!lO!>!8/6!lO!)D* S# ! >!1;! #BE!tjo!q!,!+B!>!1! fi! #BE!>! !>! sin q sin 36.87∞ S# ! >!1;! #BD!,!#BE!dpt!q!Ï!-B!>!1 fi! #BD!>!-B!Ï!#BE!dpt!q!>!23!Ï!)Ï!8/6*!¥!dpt!47/98¡!>!29!lO!)U* Kpjou!D;! S# ! >!1;! #DE!Ï!29!>!1! fi! #DE!>!29!lO!)U* S# ! >!1;! #CD!Ï!#BD!>!1! fi! #CD!>!#BD!>!29!lO!)U* Kpjou!C;! - +B S# ! >!1;! #CE!tjo!q!,!+C!>!1! fi! #CE!>! !>!Ï!33/6!lO!>!33/6!lO!)D* sin 36.87∞ 'XAMPLE!hrcc For the truss shown in Fig. 6.25a, find the forces in the members. Given that all the horizontal and vertical members are of the same length.! \MP!7/4^ B B D FBD q FAB A C E RA F A RF 100 N q FBC FAC C D q q FCD FDE FDF E q F CE RA 100 N FEF q F RF 100 N 100 N (b) FBDs of all joints (a) The truss Gjh/!7/36 5OLUTION! Mfu! cf!uif!mfohui!pg!fbdi!ipsj{poubm!boe!wfsujdbm!nfncfs/!Gjhvsf!7/36 !tipxt!uif!GCEt!pg!bmm! kpjout/!Gspn!uif!hfpnfusz!pg!uif!usvtt-!xf!ibwf q!>!56¡/!Uif!tvqqpsu!sfbdujpot!+B!boe!+G!bsf!dbmdvmbufe!cz! dpotjefsjoh!frvjmjcsjvn!pg!uif!foujsf!usvttS&}G! >!1;! Ï!+B!¥!4 !,!211!¥!3 !,!211!¥! !>!1! fi! +B!>!211!O S# ! >!1;! +B!,!+G!Ï!211!Ï!211!>!1! fi! +G!>!311!Ï!+B!>!211!O Opx-!mfu!vt!dpotjefs!uif!frvjmjcsjvn!pg!kpjout!pof!cz!pof/ Kpjou!B; S# ! >!1;! #BC!tjo!56¡!,!+B!>!1! fi! #BC!>! -100 !>!Ï252/53!O!>!252/53!O!)D* sin 45∞ S# ! >!1;! #BD!,!#BC!dpt!56¡!>!1! fi! #BD!>!Ï!)Ï252/53*!dpt!56¡!>!211!O!)U* ŵŽŻ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ Kpjou!C; S# ! >!1;! Ï!#BC!tjo!56¡!,!#CE!>!1 fi!!!#CE!>!Ï252/53!tjo!56¡!>!Ï211!O ! ! ! ! ! !!!!!!!!!!!!!!!!!>!211!O!)D* S# ! >!1;! Ï!#BC!dpt!56¡!Ï!#CD!>!1 ! fi! #CD!>!Ï!)Ï252/53*!dpt!56¡! ! ! ! >!211!O!)U* ! ! ! ! 100 B 0 100 141.42 D C A 141.42 100 ɏ E 100 100 100 N 100 N F 100 100 N 100 N DC is a zero-force member Kpjou!D;! ) Gjh/!7/37! S# ! >!1;! Ï211!,!#CD!,!#DE!tjo!56¡!>!1! O* 100 - 100 !>!1 sin 45∞ S# ! >!1;! Ï!#BD!,!#DE!dpt!56¡!,!#DF!>!1! fi! #DF!>!#BD!>!211!O!)U* Cz!tznnfusz-!xf!ibwf #EF!>!#CD!>!211!O!)U*<!#FG!>!#BD!>!211!O!)U*<!#EG!>!#BC!>!Ï252/53!O!>!252/53!O!)D* Gjhvsf!7/37!tipxt!uif!bobmztfe!usvtt!xjui!nfncfs!gpsdft!nbslfe/ ! fi! #DE!>! !! 'XAMPLE!hrcd Determine support reactions and forces in all the members of the truss shown in Fig. 6.27a. \MP!7/4^ 15 kN B B q1 4m FAB q2 FAC 4m D 4m FBC C A 15 kN q1 HA A q1 q2 C q2 FBD FCD q2 4m q1 D RA 4m 4m 4m RD 4m (b) FBDs of all joints (a) Truss Gjh/!7/38 5OLUTION! Gsff!cpez!ejbhsbnt!pg!bmm!uif!kpjout!bsf!tipxo!jo!Gjh/!7/38 xjui!nfncfs!gpsdft!boe!tvqqpsu! sfbdujpot!+B-!-B!boe!+E/!Dpotjefsjoh!frvjmjcsjvn!pg!uif!usvtt!bt!b!xipmf-!xf!ibwf S&}B! >!1;! +E!¥!9!,!26!¥!9!>!1! fi! +E!>!Ï26!lO!>!26!lO!)Ø* S# ! >!1;! +B!,!+E!>!1! fi! +B!>!Ï!+E!>!26!lO!)≠* S# ! >!1;! -B!Ï!26!>!1! fi! -B!>!26!lO!)Æ* Bohmft!q2!boe!q3 bsf!efufsnjofe!bt!! q2!>!uboÏ2!)905*!>!74/54¡! boe-! q3!>!uboÏ2!)505*!>!56¡ Mfu!vt!opx!dpotjefs!uif!frvjmjcsjvn!pg!kpjout!pof!cz!pof/ ŵŽżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Kpjou!B;! S# ! >!1;! #BC!tjo!q2!,!#BD!tjo!q3!,!+B!>!1! fi! #BC!tjo!74/54¡!,!#BD!tjo!56¡!,!26!>!1 )* fi 1/9:!#BC!,!1/818!#BD!>!Ï26! S# ! >!1;! #BC!dpt!q2!,!#BD!dpt!q3!,!-B!>!1! fi! #BC!dpt!74/54¡!,!#BD!dpt!56¡!,!26!>!1 fi! 1/558!#BC!,!1/818!#BD!>!Ï26! ) * Tpmwjoh!Frt/!) *!boe!) *-!xf!hfu!#BC!>!1! boe! #BD!>!Ï!32/33!lO!>!32/33!lO!)D* Kpjou!C;! S# ! >!1;! Ï!#BC!dpt!q2!,!#CE!dpt!q2!Ï!26!>!1! fi! #CE!>!44/65!lO!)U*! S# ! >!1;! Ï!#CD!Ï!#BC!tjo!q2!Ï!#CE!tjo!q2!>!1 15 kN B fi! #CD!>!Ï!#CE!tjo!74/54¡ ! !! ! >!Ï!41!lO!>!41!lO!)D* 30 Zero-force member Kpjou!E; S# ! >!1;! Ï!#DE!dpt!q3!Ï!#CE!dpt!q2!>!1 33.54 0 C -#BD cos q1 !!>!Ï!32/33!lO!! fi! #DE!>! cos q 2 21.22 21.22 ! ! >!32/33!lO!)D* A Gjhvsf!7/39!tipxt!uif!usvtt!xjui!nfncfs!gpsdft!nbslfe/ 'XAMPLE!hrce For the bridge truss shown in Fig. 6.29a, calculate the forces in members DF, CE, CF, EF and FH using the method of sections.! \MP!7/4^ D 15 kN 15 kN Gjh/!7/39! 15 kN ) lO* 5OLUTION! Mfu!vt!Ýstu!efufsnjof!uif!tvqqpsu!sfbdujpot!cz!dpotjefsjoh!frvjmjcsjvn!pg!uif!usvtt!bt!b!xipmf/! S&}B! >!1;! Ï211!¥!7!Ï!66!¥!:!,!+N!¥!29!>!1! fi! +N!>!71/94!lO S# ! >!1;! +B!,!+N!Ï!211!Ï!66!>!1! fi! +B!,!+N!>!266!lO fi! !!+B!>!266!Ï!71/94!>!:5/28!lO Mfu!vt!dpotjefs!uxp!tfdujpot!2 2!boe!3 3!dvuujoh!uif!usvtt!uispvhi!nfncfst!EG-!DG-!DF!boe!GI-!FG-!DF-! sftqfdujwfmz-!bt!tipxo!jo!Gjh/!7/3: /!!Gjhvsft!7/3: boe! !tipx!gsff!cpez!ejbhsbnt!pg!uif!mfgu iboe!qpsujpot! pg!uif!usvtt/ Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!tfdujpo!2 2!pg!usvtt-!tipxo!jo!Gjh/!7/47 S&}D! >!1;! Ï!#EG!¥!4!Ï!:5/28!¥!4!>!1! fi! #EG!>!Ï!:5/28!lO!>!:5/28!lO!)D* S# ! >!1;! :5/28!,!#DG!tjo!56¡!>!1! fi! #DG!>!Ï244/2:!lO!>!244/2:!lO!)D* S# ! >!1;! #EG!,!#DG!dpt!56¡!,!#DF!>!1! fi! Ï!:5/28!,!)Ï244/2:*!dpt!56¡!,!#DF!>!1 fi! #DF!>!296/46!lO!)U* Dpotjefs!opx!uif!frvjmjcsjvn!pg!uif!tfdujpo!3 3!pg!uif!usvtt-!tipxo!jo!Gjh/!7/3: S# ! >!1;! :5/28!Ï!211!,!#FG!!1! fi! #FG!>!6/94!lO!)U* S# ! >!1;! #GI!,!#DF!>!1! fi! #GI!,!296/46!>!1 fi! #GI!>!Ï296/46!lO!>!296/46!lO!)D* ɏ ŵŽŽ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ 100 kN D B F J H L N 3m M A C E 3m G 55 kN 3m 3m I 3m K 3m 3m (a) The bridge truss 100 kN 1 B D 2 F J H L N 3m A C 94.17 kN 3m 2 E G 55 kN 1 I M K 60.83 kN 3m 3m 3m 3m 3m (b) Truss being cut by Sections 1-1 and 2-2 100 kN 1 B D B FDF FCF D 2 F FFH FFE A A FCE C C 1 94.17 kN 3m FCE 2 94.17 kN 3m (c) FBD of LHS portion to Section 1-1 3m (d) FBD of LHS portion to Section 2-2 Gjh/!7/3: 30 kN B 60° 30 kN C 60° 5m 4m A F 15 kN 5m Gjh/!7/41! + 4m D E 4m ŶŴŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!hrcf Figure 6.30 shows an industrial roof truss carrying loads due to wind. Find the forces in members BC, CF, EF, CE and DE. \MP!7/4^ 5OLUTION! Mfu!vt!sftpmwf!uif!41.lO!gpsdft!joup!ipsj{poubm!boe!wfsujdbm!dpnqpofout!bt!41!dpt!71¼!>!26!lO! boe!41!tjo!71¼!>!36/:9!lO-!sftqfdujwfmz/!Uif!41.lO!gpsdft!bsf!sfqmbdfe!cz!uifjs!dpnqpofout!bt!tipxo!jo! Gjh/!7/42 /!Dpotjefsjoh!gsff!cpez!ejbhsbn!pg!uif!usvtt-!xf!xsjuf S# ! >!1;! -B!Ï!26!Ï!26!>!1! fi! -B!>!41!lO S&}B! >!1;! E!¥ ¥ ¥ ¥ ¥ ¥ fi + S# + + fi + – ! Ê ˆ ÁË ˜¯ "# –$ % –$ % 25.98 kN ! Ê ˆ ÁË ˜¯ " !& q ! (5 - 4) 4 " ./ & &, 0 1 25.98 kN B 15 kN 60° 15 kN C q 5m 4m 45° A 45° 45° F HA D E 15 kN RA RD 1 5m 4m 4m (a) Section 1-1 cutting through the truss 1 25.98 kN FBC C q 60° 15 kN FCE 45° 4m FCF 45° FEF E D FEF E FDE RD 1 4m (b) FBD of right-hand part (c) FBD of the joint E Gjh/!7/42 * $' * '++ , * + - , ! . * ' * , * .* !& 1 0 * '++ + +* ! ,! , / + $ $ !& % !& - !+,& * 0 ɏ ŶŴŵ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ %2' ,! * +' 0 ! + 0 33 * 0 - + / ' $ 6 S&7$ #% ¥ + ¥ fi #% + 34/47!lO!)U* 113 ,! 2' , !+ 0 2',3,/ ,' ,! 8 ,- 3 !& * ,6 ! 3 &, - , !+ S# # $ +,! q #$ - + " + fi # $ ; ;#$ fi # $ # $ - + q #$ +,! " #% S# fi ;# $ ; ;#$ fi # $ < 38,! %2+ 9 : !& 9 : #$ 24/94!lO!)D* !& # $ = & ,! 0 - + ,! / + $% !& % - !+,& * 0 / & &, , S# # % #% fi # % #% 34/47!lO!)U*! #$% 1 S# 'XAMPLE!hrcg ; 9∵ p #$ ; ": 9: #$ 9 : 3:/57!lO!)D* 0 * > ,! % + ,8 ! ,! For the simply supported truss shown in Fig. 6.32, find forces in members BD, DE, EG and CE. \MP!7/4^ F 10 kN q D 10 kN 2.25 m q B q A H C 1m E 1m = '++ - G 1m 1m ,! 3 &+ Gjh/!7/43 5OLUTION! !$ !+,& ,! S# S&7 S# * 0 / & &, -? +? ¥ ¥ + +? 0 * '++ +* ¥ fi fi + ! ,! , +? ; ; F 10 kN q D 10 kN 1 10 kN FBD 2.25 m q B A H q C RA 1m E 1m q B 1 1m G RH HH q A RA C 1m (a) Section 1-1 cutting through the truss FDE 1m E FEG q FCE FDE E FEG 1m (b) FBD of left-hand part Gjh/!7/44 FBE (c) FBD of joint E ŶŴŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! q $' * 2',3,/ ,' 2.25 = 36.87∞ 3 tan -1 '++ , * + - , ! 0 * 3 0 * !& 1 * ' * 0 * '++ / + S&7 # S# # +,! q fi # #%@ # fi #%@ 21!lO!)U* S# = & =*'+ FG AG ,! 0 - ,! S# % ¥ ¥ fi #$% % ! ,! , !& - !+,& 6!lO!)U*# fi # +,! ;" 23/6!lO!)D* fi - +q # #%@ fi #$% # + % / + $% - !+,& # % +,! q fi # % S# # % !& %@ + +* #%@ * 0 / & &, fi # % +,! 9/44!lO!)D* % # % - +q - + fi ;" 0 * > ,! % + ,8 ! ,! , ;" #$% 9 :- + ;" 34/44!lO!)U* 'XAMPLE!hrch Two weights of 15 kN and 40 kN are supported by a wire, which is fixed at the two points A and D as shown in Fig. 6.34a. Inclinations of segments AB and CD with the vertical are 25º and 45º, respectively. Determine tensions in all segments of the wire and inclination of BC with horizontal. \MP!7/5^ 5OLUTION! A 0 / * ,!-3,! , ! 0 * + - ! 113 A ,B+ * * 1 ,! + 8 3' + q =*'+ 0 + 0 1 ,! ! $ , * * * ,6 ! 3 <,!- * + + ,+ ,! 2',3,/ ,' !& $ ,! + 0 ! 3 q !& * ! - 1 * $ !& $ 9 , : * 8 Qpjou!C; BC sin(90∞ + 65∞) AB sin(90∞ - q ) fi $ 15 sin(180∞ - 65∞ + q ) 15 ¥ sin 155∞ sin(115∞ + q ) 6.34 sin(115∞ + q ) 9: 9 : Qpjou!D; BC sin(90∞ + 45∞) CD sin(90∞ + q ) fi $ 40 sin(180∞ - 45∞ - q ) 40 ¥ sin 135∞ sin(180∞ - 45∞ - q ) 28.28 sin(135∞ - q ) 9 : 9 !: ɏ ŶŴŷ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ D A TAB 45° 25° 65° B q B TBC q 15 kN TCD TBC C 15 kN 45° q C 40 kN 40 kN (a) Concentrated loads supported by wire (b) FBDs of points B and C Gjh/!7/45 - 1 ,! %2+ 9 : !& 9 !: fi +,! fi fi C' ,! "- +q 6.34 sin(115∞ + q ) 28.28 sin(135∞ - q ) - + 28.28 9+,! 6.34 ; ;- +q 9 - +q * / 8 8 3' " +,! q ; ;: +,! q +,! q 6.34 sin(115∞ + q ) 'XAMPLE!hrci " +,! q: - +q +,! q q 63/26¡ 15 ¥ sin(90∞ - 52.15∞) sin(180∞ - 65∞ + 52.15∞) 6.34 sin(115∞ + 52.15∞) 40 ¥ sin(90∞ + q ) sin(180∞ - 45∞ - q ) ! - + 0 q ,! %2+ 9 : 9 : !& 9 : 15 ¥ sin(90∞ - q ) sin(180∞ - 65∞ + q ) $ fi "- +q 52/49!lO 39/62!lO 40 ¥ sin(90∞ + 52.15∞) sin(180∞ - 45∞ - 52.15∞) 35/85!lO A cable is suspended between the two points at the same level 270 m apart. The cable carries a deck, which supports a uniformly distributed load of 100 N per metre of horizontal length as shown in Fig. 6.35a. If the sag is 50 m, determine the horizontal thrust, support reactions and the maximum cable force \MP!7/5^ ŶŴŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº A 0.1 kN/m B 270 m HA 50 m Cable C HB x A B yC = 50 m RA y 100 N/m Deck RB C 270 m (a) Cable carrying a deck (b) FBDs of cable Gjh/!7/46 . 5OLUTION ! - ,- , " ! /7 :& wL2 8 yC < + 7 ,? , " $ %! &' * + , " ! 29/336!lO " -= - 7 , > = $ A B+ ¥ += D $ + ¥ C + H 2 + RA2 - ,! += ! & fi + wL B+ ¥ " += 0.1 ¥ 270 2 F A + 24/6!lO # 18.2252 + 13.52 . C- ¥ , 33/79!lO " - ,D - ,- , "F D D F - ?, " 24/6!lO FF - fi B ' 'XAMPLE!hrcj 270 2 - ?, # Bmufsobujwfmz-! , " ! ¥ 24/6!lO -- \ $ 7 0.1 ¥ 2702 8 ¥ 50 "= - ? S&@= % D E # " # ; - ! ¥ . C ¥ ' C- ¥ , FG ¥ C " ? " + $ . H ¥ 270 270 ¥ 2 4 fi - 29/336!lO Figure 6.36a shows the sectional view of a shelter. The vertical load on the 3-m long ridge cable is 125 N/m. Determine the sag of the ridge and horizontal component of cable force, if the tension in each guy cable is 600 N. \MP!7/5^ ɏ ŶŴŹ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ 125 N/m 125 N/m Ridge cable T T T H Guy cable Guy cable 1.5 m RA T RB A B yC C H 1.5 m (a) Section of the shelter with guy cables (b) FBD of the ridge cable Gjh/!7/47 . ' $ 5OLUTION! %! & '& # ", " ! $ + $ # "! - ?, * "= #3& - ! D - ?, % D D F - ?, > ! H 2 + RA2 # * $ 125 ¥ 3 2 wL += & F F ? "D " ! "! - ?, ! ! " wx ( L - x) 2H Bmufsobujwfmz-! " ? ! fi - D , ! - ?, 7 :/7 & 125 ¥ 1.5 ¥ (3 - 1.5) 2 ¥ 570 ? - ,- , 6002 - 187.52 2 Tmax - RA2 " ?D 7 ; 681!O " : ; 1/357!n ! F FF - - ! , FG + S&@ & A B+ ¥ . fi B > 'XAMPLE!hrck C-¥ ¥ C C ¥ ¥ . . ¥ 2 4 C: ¥ ;¥ fi 1/357!n A cable AB spanning 75 m supports a horizontal deck as shown in Fig. 6.37a. The deck carries a uniformly distributed load of 30 kN/m throughout its span. The support A is 15 m above the support B. The lowest point C of the cable is 5 m below the support B. Determine the horizontal component of the cable force, support reactions and the maximum cable force. \MP!7/5^ ŶŴźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº RA 75 m A A l1 HA 15 m RB 20 m B C 5m C 30 kN/m H HB C 30 kN/m (a) Cable AB carrying the deck B l2 5m 30 kN/m (b) FBDs of the parts AC and CB Gjh/!7/48 A. 5OLUTION " ! ' " ? F - ,- /7 + ,, ! F " " = $ %! &' I F -? ! F F ,, F - S&@ I , ,D !:; - wl22 10 - = ? F ? "D - ?, $ wl12 40 :; =! fi C: ¥ ;¥ 30 ¥ 502 40 - - wl22 10 : ; * " # " S# " &# '& &# H 2 + RA2 ( % ) & ! fi + +, ¥ &# '& ( + +, ¥ % &. $ % + +, ¥ $ % * 2986!lO 2986!lO " # " S# &. 2 - + " , F fi wl12 40 ! -% fi 1 ,D + ": ; $ ! - ! B- ¥ A wl12 40 ( F - - ?, + ,- ? B: ¥ ;¥ 7 ,? S&@= /7 -¥ A = % ) 18752 + 15002 fi + 2611!lO fi + 861!lO & ! fi + +, ¥ " & % ' %&) $ &. " 3512/28!lO ' % ' % & -%" ɏ ŶŴŻ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ 'XAMPLE!hrdl Figure 6.38a shows a chain connecting a boat with its anchor at the sea bottom, 35 m below the surface of water. The boat exerts a horizontal force of 5 kN on the chain. Self-weight of the chain is 18 N/m. The buoyant force on the chain in water is 2 N/m. Determine the horizontal span of the chain and the maximum force in the chain. \MP!7/5^ RB Water surface Boat B B 5 kN Chain 35 m 35 m Anchor A RA q A x H L L y (a) Chain connecting the boat and anchor (b) FBD of the chain AB Gjh/!7/49 5OLUTION! !/ ) * , 6 9 6 : ; 6 #" <& $ " = ,: % % $ # !< ! & & $ % %& -% ' > "& $ % " % $ $ #" <& < -%" $ % %& 9 -&9 ' & & !" - H Ê gx ˆ H cosh Á - ˜ + Ë H¯ g g = $ & ' % %& % B Bmufsobujwfmz-! % -+ . $ fi % - &. % &. " " $ gx H & ' % fi $ & + = ¥ +, &. ) = $ & gx H - gy H % :? . % ' 5000 Ê 16 ¥ (- 35) ˆ cosh -1 Á1 ˜ Ë 16 5000 ¯ fi . - = ; = ?, ; %& & -% % @ %&) H gy ˆ Ê cosh -1 Á1 - ˜ Ë q H¯ fi 257/67!n % #& %& ¥ % ' !& &. " 16 ¥ 146.56 5000 #< = = -%" 6/67!lO ) & % ' = % -%" " 6/67!lO "& $ % ' & ŶŴżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! 57//#4; M& &9 & difdl! zpvs!voefstuboejohN!O & % &!G& PD ! .1!hrc! Define and identify various types of trusses. usvtt " % & &!C# & & C! & " " " C! -% & ' & " )& " <' & "& & & ! $ 455 6 ( 5 5278 .1!hrd! Test the stability of a given truss. jefbmjtfe kvtuCsjhje " % % % E '& " pwfs.sjhje!usvttft Joefufsnjobdz $ & # & &< !" < % "& $ " # " D " " )& $ ) & &" # &9 $% % " & ! % % &' & .1!hre! Determine support reactions and forces in members of a truss. -% # %& & ! {fsp.gpsdf! F % ! $G F % ! $ & < ! $ & & ! tusvut # ! % " # " $ % G &9 ! ) !"& < ) ) &'' < " # " "& '& $ % $ & " & ! ujft , & " .1!hrf! Evaluate shape, support reactions, and forces at the various points in a cable carrying the point loads, uniformly distributed load and its self-weight. Dbcmft & % % %&) ) < & # ! & ! < Nbyjnvn ufotjmf! gpsdf! & &# ' !" ! & % ' $ Njojnvn!ufotjmf!gpsdf! & &# " & % ' % ' 1 -% &# ' > " ! HI & ! " ! $C % ! ' -% < & $ ' $ % &# % &! % " % & % "'' +/2146#06!(14/7.#' J -% J & &# & &# & < & < HI & K > qbsbcpmjd L & $ @ I J & &# " ! K > & % - 1 + tan 2 a \MP!7/5^ \MP!7/5^ wx ( L - x) hx + 2H L wL2 8 yC . % $ &# & ! &! @ & '& * $C ! dbufobsz $ "'' w2 L3 h 2 + L 24 H 2 & & & % ) % ! $$ ) $ "'' %* - H g gx ¸ Ï - 1˝ Ìcosh H Ó ˛ \MP!7/5^ ɏ I HÊ gl2 gl ˆ + sinh 1 ˜ Á sinh gË H H¯ % $ &# * - ! ŶŴŽ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ gx H - gx H - 5*146 #059'4!37'56+105 ! ! 2/! Xibu!bsf!uif!tjnjmbsjuz!boe!ejggfsfodf!cfuxffo!b!usvtt!boe!b!dbcmf@! ! ! 3/! Xiz!bsf!uif!kpjout!pg!b!usvtt!dpotjefsfe!qjoofe@! ! \MP!7/2^ ! " ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 4/! Obnf!uif!nbjo!qbsut!pg!b!usvtt/! ! # 5/! Xibu!jt!uif!ejggfsfodf!cfuxffo!b!kvtu.sjhje!boe!bo!pwfs.sjhje!usvtt@! $ % % ! " " 6/! EfÝof!uif!efhsfft!pg!joufsobm!boe!fyufsobm!joefufsnjobdz!pg!usvttft/! ! \MP!7/2^ \MP!7/3^ $ % \MP!7/3^ & \MP!7/3^ 7/! Dbo!xf!dbmm!b!usvtt!up!cf!dpnqmfufmz!efufsnjobuf!jg!uif!tvn!pg!jut!joufsobm!boe!fyufsobm!joefufsnjobdjft!jt! {fsp@! \MP!7/3^ ! ' * + 8/! Xibu!jt!uif!nbyjnvn!ovncfs!pg!nfncfst!pg!b!qmbof!usvtt-!xijdi!tipvme!cf!dvu!cz!b!tfdujpo!jo!uif!nfuipe! pg!tfdujpot@! \MP!7/4^ ! 9/! Xibu!jt!uif!ejggfsfodf!cfuxffo!frvjmjcsjvn!frvbujpot!vtfe!jo!uif!nfuipe!pg!kpjout!boe!nfuipe!pg!tfdujpot! xijmf!dbmdvmbujoh!gpsdft!jo!nfncfst@! \MP!7/4^ ! & ,# ,# -! & ,& -! :/! Xibu!jt!uif!qspÝmf!pg!b!dbcmf!pg!ofhmjhjcmf!tfmg.xfjhiu!dbsszjoh!b!ovncfs!pg!qpjou!mpbet@! \MP!7/5^ ! / 21/! Xibu!bsf!uif!qspÝmft!pg!b!dbcmf!voefs!jut!pxo!xfjhiu!boe!uibu!dbsszjoh!VEM!po!b!ipsj{poubm!tqbo@! \MP!7/5^ ! / ŶŵŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº -';!6'4/5 .1!hrc .1!hrd 7 $ .1!hre % ! .1!hrf 9 9 # # 4'8+'9!37'56+105 ; ! 2/!: \MP!7/5^ ;# ! 3/!: \MP!7/2^ ! 4/!< \MP!7/3^ ! 5/!< \MP!7/3^ ;$ ! 6/!$ ; \MP!7/3^ ! 7/!< * \MP!7/5^ < ! 8/!: \MP!7/3^ : ! 9/!# ; \MP!7/4^ & ! :/!< ! ! * ! \MP!7/5^ 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS = ! 2/! > \MP!7/2^ ! ! ! ! ! 3/! ? \MP!7/3^ ! ! @ ! ! ! 4/! $ \MP!7/3^ ! ! @ ! ! 5/! $ ! * \MP!7/5^ ! ! % ! ! ! 6/! / \MP!7/3^ ! ! ! ! A ɏ Ŷŵŵ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ $! (ILL $LANKS!3UESTIONS # ( = ! 2/! / BBBBBBBB BBBBBBBB \MP!7/3^ BBBBBBBBBBB ! 3/! ! 4/! + @ \MP!7/5^ BBBBB ! 5/! # \MP!7/5^ BBBBBBBBBBB ! 6/! / \MP!7/5^ BBBBBBBB ! 7/! $ BBBBBBBBBB \MP!7/3^ BBBBBBBBB \MP!7/3^ ! 8/! / BBBBBBBBB D ! 9/! $ E! \MP!7/3^ BBBBBBB BBBBBBBBB \MP!7/3^ ! :/! $ BBBBBBB !21/! $ BBBBBBBBB \MP!7/4^ ! & & BBBBBB BBBBBBBBBB F \MP!7/4^ %! /ATCH %OLUMNS!3UESTIONS & = ! 2/! Dpmvno!J! Dpmvno!JJ! ! 9 ! H G! > I! J ! 3/! Dpmvno!J! ! \MP!7/5^ Dpmvno!JJ! ! K ! < A ! G G! I! K! \MP!7/4^ LD ME D ME ND ME &! 5TATEMENT %ONFIRMATION!3UESTIONS ! ! 2/! / O ! = * MO ! $! $$! / ! 3/! $! " $ ! $$ \MP!7/3^ ! $ ! $$ $ $$ $ $$! $ \MP!7/4^ ŶŵŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! $ ! $$ ! $ ! $$ $ $$ #NSWERS!TO!1BJECTIVE!3UESTIONS )B*! Nvmujqmf.Dipjdf!Rvftujpot! ! 2/ 3/ 4/ 5/ 6/ 3/! 6/ 9/! - ! ! ! )C*! Gjmm.Cmbolt!Rvftujpot 2/ 5/! 8/! - S# S# 21/! - S& 4/! 7/ :/! ! ! ! )D*! Nbudi.Dpmvnot!Rvftujpot 2/! ! I! ! G! 3/! ! K! ! S / G! ! I! )E*! Tubufnfou.DpoÝsnbujpo!Rvftujpot 2/ ! ! 3/ ! 24#%6+%'!241$.'/5 ! 2/! / P /'# P Q ER TBot/!#/' 20 kN D- "? O- "? #! #/# ! #'# S QQ "? B 25 kN OU ED "? #!V C \MP!7/4^ D 20 kN B 3m 60° 30° q q A A E F C 25 kN 8m ! 3m Gjh/!7/4:! ! 3/! P Q W- 3m Gjh/!7/51 P TBot/ +/ OX "? ++ O- "? -/ X "? #/' OX "? #! #/P X "? #! #'P DO DO "? ! #'# ##< O- "? ! ##P #+P - #<P OW OW "? ! #<+ O- "? #!V \MP!7/4^ ɏ Ŷŵŷ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ ! 4/! P P Q WO DO QX "? #! #/+ O- SE "? ! ##< DD X "? #! #<+ OR WR "? ! ##+ S QQ "? #! #'# OU X "? #! #'+ S QQ "? !V \MP!7/4^ TBot/ #/' 1m 20 kN B 4m 1m C B 25 kN 10 kN A 60° 60° D A 30° 60° D E 12 m ! 6m Gjh/!7/52! P ! 5/! Gjh/!7/53 Q WD <+ '# #< % / TBot/!!#'#! Q D "? #! ##< ! 6/! < TBot/!#/' #'# #+< #<# B C 20 kN B C D E F F K 30 kN 30 kN J I H 30 kN 30 kN 60 kN 6 ¥ 3 m = 18 m Gjh/!7/54! Gjh/!7/55 ! 7/! $ P ! 8/! \ / Q WW TBot/!##< OX- "? #! #<[ #< <[ 7[ WD W "? #! #7[ OS- "? !V A TBot/!#/# ##+ ##< XEW ? C #<+ OSU XE ? #! #'+ 6m A D 4m Gjh/!7/56! X-- ? #!V \MP!7/4^ B C D 30 kN Q WX 6m A 500 N 4m ! #/' 6m E 3m \MP!7/4^ P #'# B ! E G L 4 @ 3 m = 12 m ! \MP!7/4^ A A G !V 3m D 3m H % < < OQ WW "? #! #<+ Q OO "? P Q WE O-- X "? #! #/Y #+P SR SQ "? ##Z - #'Y #<P D- "? #! ##Y ##P DS DS "? ! #ZY #ZP QR SQ "? !V \MP!7/4^ 50 kN 20 kN 3m E C 60 kN Gjh/!7/57 3m ŶŵŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! 9/! / / # ' P Q WQ $ E- "? < < TBot/!- ! :/! / D-- ? P E Q- "? * # / O-- "? /# O-U U "? #< O-- X "? '< OOO S "? +/ W- "? +' X- "? -/ -' O-- "?V \MP!7/5^ E-% Q WU < / W ?] * TBot/!DQE X ?V \MP!7/5^ 200 N 250 N Balloon D B 3m Cable A C 25° ! 3m 3m Gjh/!7/58! Gjh/!7/59 !21/! # \Bot/!!#/' ! 22/! P 500 N P Q WS XE- EE ? #! #/# EUX ? ! ##< ODX ? #! #'< X-- ? #! #'# OUQ US ? !V \MP!7/4^ Q WR < /' 'P +P '+ '# TBot/!-P W- RS "? Æ! +/ QQ RQ "? ≠! +P XO RQ "? Ø! #/' QQ RQ "? #! #'P XU RS "? ! #+P XO RQ "? ! #'+ W- RR "? ! #'# E- DD "? #!V \MP!7/4^ 30 kN D C 30° 3m 2 kN E B D 15 kN 4 kN B F 3m 2 kN A F 3m ! Gjh/!7/5:! A 30° 30° C 10 m E 10 m Gjh/!7/61 2 kN 10 m G ɏ ŶŵŹ 4¹¼ºº¬ºɏ¨µ«ɏ#¨©³¬ºɏ ! 23/! / P Q X- P '< #< #+ D RS "? +Z X RX "? -Z W "? #'< X RX "? #! ##< - ##+ X OX "? TBot/!+/ ! 24/! / "? E-^ * P E- "? ! TBot/! !!-Z P Q XO !V * \MP!7/4^ O- ! '< <+ +Z D ED "? ¨! +Z DX UX "? ≠! +/ O- DE "? Ø!F ! #'< OW DE "? #! #<+ Q OE "? ! #+Z OR XR "? #!V \MP!7/4^ 30 kN F J I 10 kN 5m 10 kN G 10 kN G 10 kN 4m D B 4m 30° D 20 kN E H E F 2m 4m C 2m A B A C 2m 4m ! Gjh/!7/62! Gjh/!7/63 ! 25/! / S-% X-- "? $ R * ! ! ! TBot/! !!-!>!X-- "? + !26/! P !27/! P 4m Q XD E% <Z <Y +Y / TBot/!#<Z!>!O- "? ! #<Y DDX "?F ! X-- "? XWS E "?F * * DS E "? % ! #+Y E- "? #! '# ! SD U V \MP!7/5^ P * % V \MP!7/4^ & P Q XE TBot/!#/' E WQ "? ! #/# O UE "? #! #'# Q RD "? #! #'< X OR "? ! ##< Q EQ "? #! ##+ D -O "? #! #<+ D R "? ! #<P - XQ "? ! #+P D R "? #! #+Z - SR "? ! #PZ O UE "? #!V \MP!7/4^ Ŷŵźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 4 kN 1 kN/m D B 20 kN/m F B A 3m 6m A 6m C 6m C G E 4m 3 kN ! Gjh/!7/64! D 2m 2m 8m Gjh/!7/65 !28/! B!5.n!mpoh!vojgpsnmz!ejtusjcvufe!mpbe!pg!31.lO0n!joufotjuz!jt!bqqmjfe!po!b!dbcmf!bt!tipxo!jo!Gjh/!7/65/!Uif! tbh!pg!uif!dbcmf!jt!4!n!bu!uif!njeqpjou!pg!uif!mpbe/!Efufsnjof!) *!uif!ipsj{poubm!dpnqpofou!pg!uif!dbcmf!gpsdf-! ) *!tbht!bu!uif!qpjout!D!boe!E-!) *!uif!nbyjnvn!tbh!jo!uif!dbcmf-!) *!uif!nbyjnvn!ufotjmf!gpsdf!jo!uif!dbcmf-! boe!) *!uif!mfohui!pg!uif!dbcmf/ \Bot/!) *!97/78!lO-!) *!3/42!n-!3/88!n-!) *!4/14!n-!) *!211!lO-!) *!28/39!n^! \MP!7/4^! !29/! Uxp!71.n!mpoh!dbcmft!svo!qbsbmmfm!up!fbdi!puifs!boe!tvqqpsu!b!tvtqfotjpo!csjehf!xjui!b!ipsj{poubm!efdl/!Uif! foet!pg!uif!dbcmf!bsf!bu!uif!tbnf!mfwfm!boe!uif!nbyjnvn!tbh!jo!uif!dbcmft!jt!7!n/!Efufsnjof!uif!ipsj{poubm! tqbo!pg!uif!dbcmft/!Jg!uif!nbyjnvn!ufotjpo!bmmpxfe!qfs!dbcmf!jt!411!lO-!Ýoe!uif!nbyjnvn!joufotjuz!pg!uif! vojgpsnmz!ejtusjcvufe!mpbe!uibu!uif!csjehf!dbo!tvtubjo/! \Bot/!69/46!n-!8/:3!lO0n^! \MP!7/5^! !2:/! B!dbcmf!jt!tvtqfoefe!cfuxffo!uxp!tvqqpsut!B!boe!C!xjui!ipsj{poubm!ejtubodf!pg!29!n!bqbsu/!Tvqqpsu!C!jt!3!n! bcpwf!uif!tvqqpsu!B/!Uif!dbcmf!dbssjft!gpvs!qpjou!mpbet!bt!tipxo!jo!Gjh/!7/66/!Ejq!pg!uif!dbcmf!bu!mpdbujpo!pg! 21.lO!mpbe!jt!6!n!xjui!sftqfdu!up!tvqqpsu!C/!Efufsnjof!) *!ipsj{poubm!dpnqpofou!pg!dbcmf!gpsdf-!) *!ufotjpo!jo! fbdi!tfhnfou-!boe!) *!mfohui!pg!uif!dbcmf/ \Bot/!) *!8/49!lO-!) *!Mfgu!up!sjhiu!44/9!lO-!2:/64!lO-!25/16!lO-!38/97!lO-!48/74!lO-! ) *!63/98!n^! \MP!7/5^ 18 m A B 2m 5m 16 m 10 kN 15 kN B A 4m 15 kN 30 kN 2m ! 6m 6m Gjh/!7/66! 3 m 1m 2 kN/m Gjh/!7/67 !31/! B!dbcmf!pg!27.n!tqbo!boe!5.n!tbh!ibt!jut!tvqqpsut!B!boe!C!bu!uif!tbnf!mfwfm!bt!tipxo!jo!Gjh/!7/67/!Uif!dbcmf! jt!dbsszjoh!b!vojgpsnmz!ejtusjcvufe!mpbe!pg!41!lO0n!bmpoh!jut!qspÝmf!jodmvejoh!jut!efbe!xfjhiu/!Efufsnjof!) *! uif!ipsj{poubm!dpnqpofou!pg!uif!gpsdf!jo!uif!dbcmf-!) *!uif!tvqqpsu!sfbdujpot-!boe!) *!uif!nbyjnvn!ufotjmf!gpsdf! jo!uif!dbcmf/! \Bot/!) *!28/3!lO-!) *!+B!>!+C!>!29/5!lO-!-B!>!-C!>!28/3!lO-!) *!36/3!lO^! \MP!7/5^ ɏ ŶŵŻ &¹°ª»°¶µɏ 8 #¯¨·»¬¹ Gsjdujpo .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ ! ɏ ɏ ɏ ɏ ɏ .1!ircɏ .1!irdɏ .1!ireɏ .1!irfɏ .1!irgɏ .1!irhɏ $¬ķµ¬ɏ¹°ª»°¶µȎɏº»¨»¬ɏ°»ºɏ»À·¬ºɏ¨µ«ɏ¬¿·³¨°µɏ°»ºɏ»¯¬¶¹Àȍ ,°º»ɏ»¯¬ɏ³¨¾ºɏ¶ɏ¹°ª»°¶µȍɏ %´·³¶Àɏ»¯¬ɏª¶µª¬·»ɏ¶ɏ¹°ª»°¶µɏ»¶ɏ·¹¨ª»°ª¨³ɏ·¹¶©³¬´ºȍɏ %½¨³¼¨»¬ɏ·¹¶©³¬´ºɏ°µ½¶³½°µ®ɏ©³¶ª²ºȎɏ³¨««¬¹ºɏ¨µ«ɏ¾¬«®¬ºȍ 5µ«¬¹³°µ¬ɏ»¯¬ɏ¨ª»¶¹ºɏ»¯¨»ɏ¨Ĺ¬ª»ɏ»¯¬ɏ¹¶³³°µ®ɏ¹°ª»°¶µȍɏ 2¬ª¶¼µ»ɏ»¯¬ɏ¨«½¨µ»¨®¬ºɏ¨µ«ɏ«°º¨«½¨µ»¨®¬ºɏ¶ɏ¹°ª»°¶µɏ°µɏ¶¼¹ɏ«¨°³Àɏ³°¬ȍ .1!irc 8/2! �! JOUSPEVDUJPO! Xifo!uxp!tvsgbdft!tmjef!pwfs!fbdi!puifs-!uifjs!npujpo!jt!sftjtufe!cz!b!gpsdf!efwfmpqfe! bu!uif!qmbof!pg!uifjs!dpoubdu/!Uijt!sfubsejoh!gpsdf!jt!lopxo!bt!gsjdujpo Ju!jt!efÝofe! bt!uif! /!Gps!qfsgfdumz! �! 9ORTHY!OF!0OTE tnppui! tvsgbdft-! gsjdujpo! jt! bttvnfe! {fsp/! Tvdi! b! tztufn! jt! ufsnfe!jefbm-!bt!ju!epft!opu!fyjtu!jo!qsbdujdf/!Jg!ju!xfsf!qpttjcmf!up! Gsjdujpo!jt!cfmjfwfe!up!cf!dbvtfe! ibwf!qfsgfdumz!tnppui!tvsgbdft-!qfsqfuvbm!npujpo!dpvme!cfdpnf! cz!joufsmpdljoh!pg!njdsptdpqjd! b!sfbmjuz"!! qspkfdujpot! qsftfou! po! uif! Gsjdujpo!jt!voeftjsbcmf!jo!nptu!fohjoffsjoh!tztufnt!cfdbvtf! tvsgbdft! jo! dpoubdu/! Npmfdvmbs! ju!dbvtft!mptt!pg!fofshz/!Cvu-!ju!jt!fttfoujbm!gps!dpnnpo!bdujwjujft! buusbdujpo!jt!bmtp!dpotjefsfe!bt! mjlf! xbmljoh-! esjwjoh-! nbjoubjojoh! frvjmjcsjvn-! fud/! Ju! jt! b! b!qspcbcmf!dbvtf!pg!gsjdujpo/ dpnnpo! fyqfsjfodf! uibu! pof! dboopu! xbml! po! b! tnppui! pjmz! tvsgbdf!xjuipvu!tmjqqjoh/!! $¬ķµ¬ɏ¹°ª»°¶µȎɏº»¨»¬ɏ°»ºɏ »À·¬ºɏ¨µ«ɏ¬¿·³¨°µɏ°»ºɏ »¯¬¶¹Àȍ 8/2/2! Dmbttjgjdbujpo!pg!Gsjdujpo Gsjdujpo!dbo!cf!cspbemz!ejwjefe!joup!uxp!dbufhpsjft;! 2/!Esz!)DpvmpncÕt*!Gsjdujpo! Uif!gsjdujpobm!gpsdf!uibu!sftjtut!sfmbujwf!mbufsbm!npujpo!pg!uxp!vomvcsjdbufe! tpmje!tvsgbdft!jo!dpoubdu!jt!dbmmfe!DpvmpncÔt!esz!gsjdujpo/!Ju!jt!gvsuifs!tvcejwjefe!joup!uxp!dbufhpsjft;! Ŷŵżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº )j*! Tubujd! Gsjdujpo/! Ju!jt!uif!gsjdujpo!cfuxffo!uxp!tubujpobsz!tvsgbdft!xijdi!ibwf!b!ufoefodz!pg!sfmbujwf! npujpo!evf!up!fyufsobm!gpsdft/! )jj*!Ljofujd!Gsjdujpo!)Ezobnjd!Gsjdujpo*/! Ju!jt!uif! gsjdujpo!cfuxffo!uxp!npwjoh!tvsgbdft!jo!dpoubdu/!Ju! jt!pg!uxp!uzqftÐtmjejoh!gsjdujpo!fyqfsjfodfe!xifo! b! cpez! tmjeft! pwfs! bopuifs! cpez! ps! tvsgbdf-! boe! spmmjoh!gsjdujpo!fyqfsjfodfe!xifo!b!cpez!spmmt!po! bopuifs!cpez!ps!tvsgbdf/ 3/! Gmvje! Gsjdujpo! Gmvje! gsjdujpo-! bmtp! dbmmfe mvcsjdbufe!gsjdujpo-!sftjtut!sfmbujwf!mbufsbm!npujpo! pg!uxp!tpmje!tvsgbdft!tfqbsbufe!cz!b!mbzfs!pg!hbt!ps! mjrvje/!Gmvje!gsjdujpo!efqfoet!po!uif!sfmbujwf!wfmpdjuz! pg!Þvje!mbzfst!boe!uif!wjtdptjuz!pg!Þvjet!jo!dpoubdu/! 8/2/3! Myth Fact! Gsjdujpo!gpsdf! cfuxffo!uxp! cpejft!jo!dpoubdu! jt!bmxbzt!qsftfou! vomftt!uif!uxp! dpoubdu!tvsgbdft! bsf!qfsgfdumz! tnppui/ Op/ Gsjdujpo!jt!ofwfs!efwfmpqfe! vomftt!uif!cpejft!ufoe!up!npwf! sfmbujwf!up!fbdi!puifs!evf! tpnf!fyufsobm!bhfodz!tvdi! hsbwjubujpo!qvmm-!bqqmjfe!gpsdf-! fud/! Uifpsz!pg!Gsjdujpo Uif!nfdibojtn!pg!esz!gsjdujpo!dbo!cf!voefstuppe!cz!b!tjnqmf!fybnqmf/!Dpotjefs!b!cmpdl!pg!xfjhiu! !sftujoh! po!b!ipsj{poubm!spvhi!tvsgbdf/!Jut!xfjhiu! !bdut!epxoxbse!uispvhi!jut!dfousf!pg!hsbwjuz!boe!jt!cbmbodfe!cz!uif! opsnbm!sfbdujpo! -!xijdi!bdut!qfsqfoejdvmbs!up!uif!qmbof!pg!dpoubdu!)Gjh!8/2 */!Uifsf!jt!op!puifs!gpsdf!bdujoh! po!uif!cmpdl/!Uif!gsjdujpo!jt!{fsp/!Uif!cmpdl!jt!jo!frvjmjcsjvn/ Opx-!jg!uif!cmpdl!jt!hfoumz!qvtife!cz!b!tnbmm!gpsdf! -!ju!epft!opu!npwf!)Gjh!8/2 */!Ju!nfbot!uibu!bo! pqqptjoh!gpsdf!nvtu!ibwf!efwfmpqfe!uibu!cbmbodft!uif!bqqmjfe!gpsdf/!Uijt!efwfmpqfe!gpsdf!jt!lopxo!bt! ps!tjnqmz uibu!bmxbzt!pqqptft!ps!ufoet!up!pqqptf!uif!npujpo/!Jg!xf!qvti!uif!cmpdl!b!mjuumf! ibsefs-!ju!tujmm!epft!opu!npwf!)Gjh/!8/2 */!Uif!gsjdujpo!xpslt!mjlf!b!efnpo-!xijdi!bekvtut!jutfmg!up!kvtu!cbmbodf! uif!bqqmjfe!gpsdf/!Ju!jt!pvs!dpnnpo!fyqfsjfodf!uibu!vmujnbufmz!uif!bqqmjfe!gpsdf!xjot!boe!uif!cmpdl!tubsut! npwjoh!)Gjh!8/2 */!Bgufs!bmm-!uifsf!jt!b! !up!xijdi!gsjdujpobm!gpsdf!dbo!jodsfbtf/!Cfzpoe!uijt!mjnju-!ju!hjwft! vq!uif!Ýhiu-!cvu!opu!dpnqmfufmz/!Ju!cfdpnft!b!mjuumf!xfblfs!cvu!dpoujovft!up!pqqptf!uif!bqqmjfe!gpsdf/!Uijt! tfmg.bekvtujoh!obuvsf!pg!uif!gsjdujpobm!gpsdf!jt!jut!nbjo!dibsbdufsjtujd-!bt!tipxo!jo!Gjh/!8/3/ Bt!uif!bqqmjfe!gpsdf! !jt!jodsfbtfe-!uif!gsjdujpobm!gpsdf! !upp!jodsfbtft!bu!uif!tbnf!sbuf/!Bu!jnqfoejoh! npujpo!)uif!qpjou!B*-!uif!gsjdujpobm!gpsdf!bttvnft!jut! ps! -! nby!)dpssftqpoejoh!up! Gjh/!8/2 */!Bgufs!uijt-!uif!cmpdl!kvtu!tubsut!npwjoh!boe!uif!gsjdujpobm!gpsdf!efdsfbtft!b!cju!gspn! nby!up!b!wbmvf! l!)dpssftqpoejoh!up!Gjh/!8/2 * /!Uif!ofu!ipsj{poubm!gpsdf!) !Ï! l*!npwft!uif!cpez/!Jo!gbdu-!xifo!uif!bqqmjfe! W W W P P W P W W P F N (a) W P P N a (b) R Motion started W Fmax N fs (c) R Fk N fk (d) R ɏ ŶŵŽ &¹°ª»°¶µɏ gpsdf! !jt!jodsfbtfe!ujmm!uif!qpjou!B-!uif!npujpo!pg!uif!cmpdl!cfdpnft!jnnjofou/!Uivt-!uif!qpjou!B!sfqsftfout! jnqfoejoh!npujpo!pg!uif!cmpdl/!Jg! jt!gvsuifs!jodsfbtfe-!uif!wfmpdjuz!pg!uif!cmpdl!jodsfbtft!boe!uif!gsjdujpobm! gpsdf! l!)voefs!ljofujd!dpoejujpo*!cfdpnft!fwfo!xfblfs/ Impending motion F Kinetic friction (motion) Static friction (no motion) Fmax = msN A Fk = mkN F=P P Myth Uif! mjnjujoh! ps! nbyjnvn! gsjdujpo! jt! !Uibu!jt-! nby!μ! ! ps! nby!>!mt )8/2* Gsjdujpo!jodsfbtft! xjui!jodsfbtf!jo! bsfb!pg!dpoubdu/ xifsf-! uif! dpotubou! mt! jt! dbmmfe! uif! dpfggjdjfou! pg!tubujd!gsjdujpo/!Uif!wbmvf!pg!mt!efqfoet!po!uif! dpoejujpot!pg!uif!tvsgbdft!jo!dpoubdu/!Uif!gsjdujpobm!gpsdf!cfgpsf!jnqfoejoh! npujpo!jt!bmxbzt!mftt!uibo!uijt!mjnjujoh!wbmvf-!j/f/!=! nby!! )8/3* Ljofujd!Gsjdujpo! Ju dpnft!joup!qjduvsf!bgufs!uif!npujpo!tubsut/!Ljofujd! gsjdujpobm!gpsdf!dbo!cf!xsjuufo!bt l!>!ml ! )8/4* xifsf-!uif!dpotubou!ml!jt!dbmmfe!uif!dpfgÝdjfou!pg!ljofujd!gsjdujpo/!Gps!b! hjwfo!qbjs!pg!tvsgbdft-!ml!=!mt/!Ubcmf!8/2!hjwft!bqqspyjnbuf!wbmvft!pg!mt! boe!ml!gps!wbsjpvt!tvsgbdft/ Bohmf!pg!Gsjdujpo! Uif!sftvmubou!pg!uif!gsjdujpo! !boe!opsnbm!sfbdujpo! !jt!b!gpsdf!!"!bt!tipxo!jo! Gjh/!8/2 /!Uif!bohmf!a!nbef!cz!uif!sftvmubou!!!xjui! opsnbm!sfbdujpo! -!jt!hjwfo!cz ! ubo!a!>! F ! N )8/5* Myth DpfgÝdjfou!pg! tubujd!gsjdujpo!jt! bmxbzt!mftt!uibo! vojuz/ Uijt!bohmf!a!jt!lopxo!bt!bohmf!pg!gsjdujpo/!Ju!sfbdift!jut!nbyjnvn!wbmvf! ft!xifo!uif!gsjdujpobm!gpsdf!jt!nbyjnvn!bu!jnqfoejoh!npujpo!bt!tipxo!jo! Gjh/!8/2 /!Uivt- Fact! Dpvmpnc!xbt!Ýstu!up!dpodmvef! gspn!nboz!fyqfsjnfout!uibu! uijt!qpqvmbs!cfmjfg!jt! /! Uif!gbdu!jt!uibu!uif!nbyjnvn!ps! mjnjujoh!gsjdujpobm!gpsdf-! nby-! gps!uif!uxp!tvsgbdft!jo!dpoubdu! efqfoet!po! !boe!uif! # /! ! Tmjejoh!gsjdujpo!jt! joefqfoefou!pg!bsfb!pg!dpoubdu-! xifsfbt!uif!spmmjoh!gsjdujpo! jodsfbtft!xjui!jodsfbtf!jo!bsfb! pg!dpoubdu/! Fact! Gps!nptu!pg!uif!tvsgbdft-!uijt! jt!usvf/!Cvu-!gps!tpnf!tvsgbdft-! dpfgÝdjfout!dbo!cf!npsf!uibo! vojuz-!f/h/-!gps!dpqqfs.dpqqfs! tvsgbdft-!ju!jt!2/32!boe!svccfs!jo! dpoubdu!xjui!puifs!tvsgbdft!dbo! zjfme!gsjdujpo!dpfgÝdjfout!gspn! 2!up!3/ ŶŶŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Fmax N f m a f f !" m " f £f #! Dpof!pg!Gsjdujpo! $ ! " " !! ( % " ) ) % *f % ( dpof!pg!ljofujd!gsjdujpo ' ' *f ( ! % ( ! ! ) , m " m . / . . . .. ' .0 ./ 1 . + . +0 )2 . ./ . ./ . *. . - " " - % " 3 . . . /. . +. . . 5. . 6. . 5. ! . /. . +. % . * $. . . *. % . / . . % 3 . ./ 7 . 6/ . /. $ . . . .+ . ./ . ./ * 3 4 !! % 4 !! 4 !! " '! ( % ( % )2 1 " % " 2 *f % $ ! ( - " ' ! ! ' % & + ) ! ! % ! ! ! & ( $ ( dpof!pg!tubujd!gsjdujpo $ ! ! !" % % ɏ ŶŶŵ &¹°ª»°¶µɏ Cone of static friction R R W 90° Cone of kinetic friction F= a 2fk 2fs mN N f (b) Angle of repose (a) Cone of friction Bohmf!pg!Sfqptf! % ' & & ' & + % ! " " ! , ) a% a % " ! 8 f ' 9 % f : ( ; ( ( m m ) f f f f % 8/3! .1!ird $ ,°º»ɏ»¯¬ɏ³¨¾ºɏ¶ɏ¹°ª»°¶µȍ & * ) + = �! MBXT!PG!GSJDUJPO 5 1 ! mbxt!pg!gsjdujpo< % % " " : / & ! % > ! ! % ! % 0 & ! " ? 8/4! .1!ire �! DPOEJUJPOT!PG!GSJDUJPO!EFWFMPQNFOU < 2/!Dpoejujpo!pg!Tubujd!Frvjmjcsjvn/ ) ! ( 3/!Dpoejujpo!pg!Jnqfoejoh!Npujpo/ ) ( " ) %´·³¶Àɏ»¯¬ɏª¶µª¬·»ɏ ¶ɏ¹°ª»°¶µɏ»¶ɏ·¹¨ª»°ª¨³ɏ ·¹¶©³¬´ºȍ m ) : m ( '! m " & ) ) @ ( ) " m ŶŶŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 4/!Dpoejujpo!pg!Sfmbujwf!Npujpo! $ ! m' ' ( 8 ! " ) ! A ! ! " !" "! % ! )j*!!Gps!Ipsj{poubm!Qmbof; $ ( B )jj*!Gps!Jodmjofe!Qmbof; B S S . . $ ( 8 S S . $ ( . $ ( 'XAMPLE!irc A body of 350-N weight is resting on a rough horizontal surface (Fig. 7.4a). Find the magnitude of the pulling force acting on the body at an angle of 25° with the horizontal, which will just make the body move. Take m = 0.3. ! " 5OLUTION! 7 < ' ! % & S S - + .9 m .+ m / % .< 3 .< E % . +9 ' * D * D " ! . fi .+ 3.6 + . fi E . /* &?C . + . W = 350 N P 25° N P 25° F = mN F = mN W = 350 N N (b) Force diagram (a) Block on horizontal surface n 20° n 50 N n 50 N N 50 N t 14° t 14° mN t 14° mN 20° 100 N N 100 N 100 N 20° (a) (b) (c) Force diagram ɏ ŶŶŷ &¹°ª»°¶µɏ A block weighing 100 N is resting on a rough plane inclined at 20° to the horizontal. It is acted upon by a force of 50 N directed upwards at an angle of 14° above the plane as shown in Fig 7.5a. If the block is about to move up the plane, calculate friction and coefficient of friction. ! " 'XAMPLE!ird 5OLUTION! Hjwfo;! !>!211!O-! !>!61!O/ Bt!uif!cmpdl!jt!bcpvu!up!npwf!vqxbset-!gsjdujpo!bdut!epxo!uif!qmbof!bt!tipxo!jo!Gjh/!8/6 /!Frvbujpot!pg! frvjmjcsjvn!bsf!bqqmjfe!up!uif!gpsdft-!xijdi!bsf!sftpmwfe!opsnbm!boe!ubohfoujbm!up!uif!jodmjofe!qmbof/ S ! >!1;! !,!61!tjo!25¡!Ï!211!dpt!31¡!>!1! fi! !>!92/98!O S ! >!1;! 61!dpt!25¡!Ï!211!tjo!31¡!Ï!m !>!1! fi! m!>! ! Gsjdujpo-! >!m !>!1/28!¥!92/98!>! # A body resting on a horizontal rough surface requires a pull of 150 N inclined at 30° to the horizontal to initiate the motion, as shown in Fig. 7.6a(i). Also, it requires a push of 250 N inclined at 40° to the horizontal to just start the motion, as shown in Fig. 7.6a(ii). Calculate the weight W of the body and the coefficient of friction. ! " 'XAMPLE!ire 5OLUTION! $ %j&'! ( 2 /!Uif!261$O!gpsdf!jt!sftpmwfe!joup!uxp!dpnqpofout!>!261!dpt!41¡!>!23:/:!O<! ! 2 !>!261!tjo!41¡!>!86!O 160.7 N 75 N 30° 30° 40° 129.9 N 191.5 N F2 = mN2 F1 = mN1 (i) N1 W N1 75 N 40° N2 P1 30° 129.9 N F1 = mN1 W F2 = mN2 P2 160.7 N 40° W 191.5 N (i) (a) Block on horizontal surface N2 W P2 = 250 N (ii) P2 P1 P1 = 150 N (ii) (b) Free body diagrams and force diagrams ( Bqqmzjoh!uif!frvbujpot!pg!frvjmjcsjvn!)tff!uif!GCE!jo!Gjh/!8/7 ) **-!xf!hfu S ! >!1;! 23:/:!Ï!m 2!>!1! fi! m 2!>!23:/: boe! S ! >!1;! 2!,!86!>! ! fi! 2!>! !Ï!86 ŶŶŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Ejwjejoh!uif!uxp-! m!>! 129.9 ! - 75 !) * %jj&;! ( !Uif!361.O!gpsdf!jt!sftpmwfe!joup!uxp!dpnqpofout!>!361!dpt!51¡!>!2:2/6!O<! ! ! 3 !>!361!tjo!51¡!>!271/8!O 3 Bqqmzjoh!uif!frvbujpot!pg!frvjmjcsjvn!)tff!uif!GCE!pg!Gjh/!8/7 ) **-!xf!hfu $ S ! >!1;! m 3!Ï!2:2/62!>!1! fi! m S ! >!1;! 3!Ï! !,!271/8!>!1! fi! boe! Ejwjejoh!uif!uxp-! m!>! F3 !>! N3 3!>!2:2/62 3!>! !,!271/8 191.5 ! + 160.7 !) * Frvbujoh!Frt/!) *!boe!) *23:/:!) !,!271/8*!>!2:2/6!) !Ï!86*! fi! jo!Fr/!) *m! >! .1!irf 129.9 !>! 572 - 75 !>! ( 8/5! �! MBEEFS!GSJDUJPO!BOE!XFEHF!GSJDUJPO 8/5/2! Mbeefs!Gsjdujpo! %½¨³¼¨»¬ɏ·¹¶©³¬´ºɏ °µ½¶³½°µ®ɏ©³¶ª²ºȎɏ ³¨««¬¹ºɏ¨µ«ɏ¾¬«®¬ºȍ B! mbeefs! dpotjtut! pg! uxp! mpoh! vqsjhiut! pg! xppe! ps! nfubm! dpoofdufe! cz! dsptt! cbst/! Uiftf! dsptt! cbst-! lopxo!bt!svoht-!bdu!bt!tufqt/!Gjhvsf!8/8!tipxt!b! mbeefs!BC!xjui!jut!foe!B!sftujoh!po!uif!hspvoe!boe! uif!foe!C!mfbojoh!bhbjotu!uif!xbmm/!Uif!gpmmpxjoh! gpsdft!bdu!po!uif!mbeefs; Myth Bu!uif!dpoubdu! qpjou!xjui!uif! xbmm!ps!uif!Þpps-!b! mbeefs!fyqfsjfodft! uxp!gpsdftÐ!%j&!uif! opsnbm!sfbdujpo-! boe!%jj&!uif! gsjdujpobm!gpsdf/ ! )j*! Xfjhiu! !bdujoh!epxoxbset!bu!uif!njeqpjou! pg!uif!mbeefs/ ! )jj*! Opsnbm!sfbdujpo! C!boe!gsjdujpo! C!bu!uif!foe! C/!Tjodf!uif!foe!C!ibt!b!ufoefodz!up!tmjq!epxoxbset-!uif! gsjdujpo! C!bdut!vqxbset/ ! )jjj*! Opsnbm! sfbdujpo! B! boe! gsjdujpo! B! bu! uif! foe!B/! Tjodf! uif!mbeefs!ibt!b!ufoefodz!up!tmjq!bxbz!gspn!uif!xbmm-!uif! gsjdujpo! B!bdut!upxbset!uif!xbmm/! Uif! qspcmfn! pg! mbeefs! gsjdujpo! jowpmwft! b! tztufn! pg! opo. dpodvssfou!gpsdft/!Uifsfgpsf-!xf!vtf!gpmmpxjoh!uisff!frvbujpot! pg!frvjmjcsjvn/ S !>!1<! S !>!1! boe! S)!>!1 Fact! Op/!Uifsf!jt!pomz!pof!jodmjofe! sfbdujpo-!xiptf!dpnqpofout! bsf!opsnbm!sfbdujpo!boe!uif! gsjdujpo/! FB = mNB NB B Rough wall ! Tvctujuvujoh! G q A FA = mNA W Rough floor NA % C ɏ ŶŶŹ &¹°ª»°¶µɏ 'XAMPLE!irf Determine the minimum angle q at which a uniform ladder can be placed against a wall without slipping under its own weight. The coefficient of friction for all surfaces is 0.2. ! " 5OLUTION! Sfgfs!up!Gjh/!8/8/!Bqqmzjoh!uif!frvbujpot!pg!frvjmjcsjvn-! S ! >!1;! C!>!m B! fi! boe! S !>!1;! B!,!m )m B*!>! ! fi! B!,!m C!>! B!>! (1 + m 2 ) Jg! !jt!uif!mfohui!pg!uif!vojgpsn!mbeefs-!ubljoh!npnfout!bcpvu!uif!foe!C-!xf!hfu S)}C! >!1;! Ï dpt!q!,! !¥! !dpt!q!,!m B !tjo!q >!1 3 Wl ! !tjo!q >!1 ! !dpt!q!,! !dpt!q!,!m! fi! Ï! 1 + m2 3 1 + m2 8/5/3! B fi!! ÏÔ 2 - 1 - m 2 ¸Ô ÏÔ 1 1 ¸Ô !tjo!q!>! !dpt!q!>! !dpt!q ˝ Ì Ì 2 ˝ 2 2 ˛Ô 1 + m2 ÓÔ1 + m ÓÔ 2 (1 + m ) ˛Ô fi ubo!q!>! m 2 Ê1 - m2 ˆ 1 - m2 Ï2 Ê 1 - 0.2 ˆ ! fi! q!>!uboÏ2! Á !>!ubo ! ˜ Á 2 ¥ 0.2 ˜ !>!( 2m Ë 2m ¯ Ë ¯ )* Xfehf!Gsjdujpo B!xfehf!jt!pof!pg!uif!tjnqmftu!boe!nptu!vtfgvm!nbdijoft/!Ju!jt!b!xppefo!ps!nfubmmjd!cmpdl!xjui!usjbohvmbs!ps! usbqf{pjebm!dsptt!tfdujpo!bt!tipxo!jo!Gjh/!8/9/!Ju!jt!vtfe!up!sbjtf!ifbwz!cmpdlt!ps!up!dibohf!uifjs!qptjujpot/! Uif!xfjhiu!pg!b!xfehf!jt!wfsz!tnbmm!bt!dpnqbsfe!up!uif!xfjhiu!mjgufe/!Ifodf-!ju!jt!vtvbmmz!ofhmfdufe!jo!uif! dbmdvmbujpot/!B!xfehf!efqfoet!po!gsjdujpo!gps!jut!xpsljoh/ Gjhvsf!8/9 a $ !"# ! $% " sin(90∞ + 2f + a ) & !1 !2 & sin(180∞ - a - f ) sin(90∞ - f ) ! $% !2 !3 & & sin(180∞ - 2f - a ) sin(90∞ + f ) sin(90∞ + f + a ) '$ *+ !"# , - '$ *+ '$ $+ a '$ $+ ŶŶźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Block R1 f R2 a f W a f R3 f R2 R2 Block (90° + 2f + a) a Wedge P (180° – a – f) (90° – f) R1 (90° + f) R3 P (180° – 2f – a) R2 (90° + f + a) W (a) P Wedge (b) (c) ) 'XAMPLE!irg A 1500-N block overlying a 10° wedge on a horizontal floor and leaning against a vertical wall, is to be raised by applying a horizontal force P as shown in Fig. 7.9a. Determine the force P necessary to just start the motion, if the coefficient of friction is 0.3. ! " 1500 N R2 R1 f 10° f O P O1 f f R3 10° 1500 N f = 16.7° 10° P R2 f = 16.7° R2 R3 (90° + 2f + 10°) (90° + f) (180° – 10° – 2f) P (90° – f) R1 1500 N (a) Wedge pushed by P R2 (c) FBD of wedge (b) FBD of block # f& 5OLUTION! !"# ' /4 m& /4 !4 !: ! 5 6 & 4* $7 !6 $; + 1500 !2 & sin(90∞ + 2 ¥ 16.7∞ + 10∞) sin(90∞ - 16.7∞) fi !: & 4;$$ < = $; ɏ ŶŶŻ &¹°ª»°¶µɏ sin(180∞ - 10∞ - 2 ¥ 16.7∞) .1!irg 8/6! & !2 sin(90∞ + 16.7∞) fi & 5 $: ¥ 4;$$ < & �! SPMMJOH!GSJDUJPO! % 5µ«¬¹³°µ¬ɏ»¯¬ɏ¨ª»¶¹ºɏ »¯¨»ɏ¨Ĺ¬ª»ɏ»¯¬ɏ¹¶³³°µ®ɏ ¹°ª»°¶µȍ W spmmjoh!gsjdujpo/ r > O ! P f $ 45 ? A B ' @ ! + p @ ! A R a B ! fi f& m D a & r cosf &m dpfgÝdjfou!pg!spmmjoh!gsjdujpo" ' E + - '$ %+ m " ? fi a a P ª & m & r cosf r W ' f B ? ' $ :+ @ + B $ $ , 5 555: D 5 554 5 55F 5 55FF A 5 54 5 54F A 5 5FF 5 5*F A 56 >G B m Hm Hm m '$ %+ C f ª 4+ ŶŶżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Gps!b!wfijdmf!po!uif!spbe-!uif!ejtubodf! )jo!Gjh/!8/21*!jt!b!gvodujpo!pg!fmbtujd!boe!qmbtujd!qspqfsujft!pg! tvsgbdft!jo!dpoubdu-!sbejvt!pg!xiffm-!tqffe!pg!usbwfm!boe!spvhioftt!pg!tvsgbdft/!!Uif!nbhojuvef!pg!spmmjoh! gsjdujpo!efqfoet!po!uif!gpmmpxjoh!gbdupst;! 2/!Nbufsjbm/!Uzsft!xjui!ijhi!tvmqivs!dpoufou!ufoe!up!ibwf!mpxfs!spmmjoh!gsjdujpo/!Cjuvnfo!spbet!pggfs!npsf! spmmjoh!sftjtubodf!uibo!dpodsfuf!spbet/ 3/!Ejnfotjpot/!Xjefs!uzsft!ibwf!npsf!spmmjoh!gsjdujpo/ 4/!Jogmbujpo/!Mpxfs!qsfttvsf!jo!uzsft!sftvmut!jo!npsf!spmmjoh!gsjdujpo/ 5/!Tj{f/!Tnbmmfs!xiffmt!ibwf!ijhi!spmmjoh!gsjdujpo/ 6/!Usfbe/!Uijdlfs!usfbe!pg!ujsft!hjwft!ijhifs!spmmjoh!sftjtubodf/!Uivt-!uif! !npcjlf!uzsft!ibwf!wfsz!mjuumf! usfbe!boe!ifbwz!evuz!usvdlt!hfu!uif!cftu!gvfm!fdpopnz!bt!uif!uzsf!usfbet!xfbs!pvu/! .1!irh 8/7! �! BEWBOUBHFT!BOE!EJTBEWBOUBHFT!PG!GSJDUJPO Gsjdujpo!qmbzt!b!wjubm!spmf!jo!pvs!ebjmz!mjgf/!Dpousbsz!up!qpqvmbs!cfmjfg-!gsjdujpo!jt!wfsz! jnqpsubou!boe!cfofÝdjbm!jo!tpnf!tjuvbujpot/!Uif!bewboubhft!pg!gsjdujpo!bsf!ejtdvttfe! cfmpx/ 2/! Dpnnpo! bdujwjujft! mjlf! xbmljoh-! xsjujoh! po! b! qbqfs-! fsbtjoh! up! svc! njtublft! xsjuufo!xjui!qfodjm!xpvme!cf!jnqpttjcmf!xjuipvu!gsjdujpo/ 3/! Gsjdujpo!qmbzt!bo!jnqpsubou!spmf!jo! /!Ju!jt!opu!qpttjcmf! gps! b! wfijdmf! up! tubsu! ps! tupq! xjuipvu! gsjdujpo/! Ju! jt! jnqpsubou! gps! uif! wfijdmft! up! ibwf! b! tuspoh! hsjq! po!uif!spbe!xijmf!ubljoh!b!dvswf/!Spbet!bsf! eftjhofe!up!ibwf!tvgÝdjfou!gsjdujpo!up!rvjdlmz! Myth Fact! tupq!uif!wfijdmft/! 4/! Objmt!boe!tdsfxt!bsf!ifme!jo!xppe!cfdbvtf!pg! gsjdujpo/ Spbe!gsjdujpo! Op/!Spbe!gsjdujpo!bdut!jo!uif! bdut!jo!pqqptjuf! tbnf!ejsfdujpo!bt!uif!npujpo!pg! 5/! Uif! sjehft! jo! uif! tljo! pg! pvs! Ýohfst! boe! ejsfdujpo!up! uif!wfijdmf/!Jo!gbdu-!ju!jt!cfdbvtf! qbmnt!fobcmf!vt!up!hsbtq!boe!ipme!pckfdut!evf! npwfnfou!pg!uif! pg!spbe!gsjdujpo!uibu!uif!wfijdmf! up!foibodfe!gsjdujpo/ 2¬ª¶¼µ»ɏ»¯¬ɏ ¨«½¨µ»¨®¬ºɏ¨µ«ɏ «°º¨«½¨µ»¨®¬ºɏ¶ɏ ¹°ª»°¶µɏ°µɏ¶¼¹ɏ«¨°³Àɏ ³°¬ȍ ! ! wfijdmf/ npwft!gpsxbse/!Bduvbmmz-!uif! Cvu-!gsjdujpo!jt!opu!bmxbzt!hppe/!!Uifsf!bsf!nboz! npujpo!pg!uif!tvsgbdf!pg!uif! ejtbewboubhft!pg!gsjdujpo!mjtufe!cfmpx/ uzsft!po!uif!spbe!jt!pqqptjuf! ! 2/! Gsjdujpo!qspevdft!ifbu!boe!opjtf!jo!wbsjpvt!qbsut!pg!nbdijoft/!Uivt-! up!uibu!pg!uif!wfijdmf-!ifodf! tpnf!pg!uif!vtfgvm!fofshz!jt!xbtufe!bt!ifbu!boe!tpvoe/ uif!gsjdujpo!gpsdf!bdut!jo!uif! ! 3/! Ju!pqqptft!npujpo/ gpsxbse!ejsfdujpo/!Uif!spmmjoh! ! 4/! Boz! efwjdf! uibu! ibt! npwjoh! qbsut! dbo! xfbs! pvu! sbqjemz! evf! up! gsjdujpo!jt!uif!pof!uibu!pqqptft! gsjdujpo/ uif!npujpo!pg!uif!wfijdmf/! ! 5/! Ju! jt! jnqpttjcmf! up! bdijfwf! 211&! fgÝdjfodz! pg! b! nbdijof! evf! up! gsjdujpo!jo!uif!npwjoh!qbsut/ Jo!tqjuf!pg!uiftf!ejtbewboubhft-!gsjdujpo!jt!offefe!up!qfsgpsn!wbsjpvt!bdujpot/!Uivt-!gsjdujpo!jt!b!ofdfttbsz!fwjm/ Uifsf!bsf!b!ovncfs!pg!nfuipet!up!sfevdf!gsjdujpo/!Tpnf!bsf!ejtdvttfe!cfmpx/ 2/! B!dpnnpo!xbz!up!sfevdf!gsjdujpo!jt!cz!vtjoh!b!mvcsjdbou-!tvdi!bt!pjm-!xbufs!ps!hsfbtf/!Uif!mvcsjdbou!jt! bqqmjfe!cfuxffo!uif!uxp!tvsgbdft/!Uijt!esbnbujdbmmz!sfevdft!uif!dpfgÝdjfou!pg!gsjdujpo/ ! 3/! Efwjdft!tvdi!bt!xiffmt-!cbmm!cfbsjoht-!spmmfs!cfbsjoht!boe!bjs!dvtijpot!ps!puifs!uzqft!pg!Þvje!cfbsjoht! dbo!dibohf!tmjejoh!gsjdujpo!joup!b!nvdi!tnbmmfs!spmmjoh!gsjdujpo/ ! 4/! Gsjdujpo!dbo!cf!sfevdfe!cz!dibohjoh!uif!eftjho!pg!gbtu$npwjoh!pckfdut/!Uif!gspout!pg!wfijdmft!boe! bjsdsbgu!bsf!nbef!pcmpoh!up!njojnjtf!bjs!gsjdujpo/ ! ɏ ŶŶŽ &¹°ª»°¶µɏ ! #&&+6+10#.!51.8'&!':#/2.'5 A body of 400-N weight is lying on a rough plane inclined at an angle of 25° with the horizontal. It is supported by a force P parallel to the plane as shown in Fig. 7.11a. Calculate maximum and minimum values of P, for which the equilibrium can exist, if the angle of friction is 20°. ! " 'XAMPLE!irh n n P P t 25° 25° F 25° F 25° 400 N N 400 N N n N t n 25° N t t 25° P P 25° F 25° F 400 N (a) Block tending to slip upwards ( 400 N (b) Block tending to slip downwards ' 5OLUTION! Hjwfo;! !>!511!O-!q!>!36¡-!f >!31¡/ Uif!dpfgÝdjfou!pg!gsjdujpo-!m!>!ubo!f!>!ubo!31¡!>!1/47 ) *! . / . . Q'!Uif!cpez!jt!po!uif!wfshf!pg!tmjejoh!vqxbset/!Uif!gsjdujpo!bdut!epxoxbset!bt!tipxo! jo!Gjh/!8/22 /!Gpsdft!bsf!sftpmwfe!opsnbm!boe!ubohfoujbm!up!uif!jodmjofe!qmbof/!Bqqmzjoh!frvbujpot!pg! frvjmjcsjvnS ! >!1;! !Ï!511!dpt!36¡!>!1! fi! !>!473/63!O S ! >!1;! !Ï! !Ï!511!tjo!36¡!>!1! fi! !Ï!1/47 !Ï!27:!>!1 fi! !>! ## ) * . . . Q '!Uif!cpez!jt!po!uif!wfshf!pg!tmjejoh!epxoxbset/!Uif!gsjdujpo!bdut!vqxbset-!bt!tipxo!jo! Gjh/!8/22 /!!Uif!wbmvft!pg! !boe! !sfnbjo!tbnf!bt!jo!) *!bcpwf/!Bqqmzjoh!uif!frvbujpot!pg!frvjmjcsjvn-! S ! >!1;! 'XAMPLE!iri !,! !Ï!511!tjo!36¡!>!1 fi! !,!1/47 !Ï!27:!!>!1! fi! !>! ) A horizontal force P is applied on a block of 2000-N weight kept on a rough inclined plane, as shown in Fig. 7.12a. Determine whether the block is in equilibrium, if q = 30° and P = 400 N. Take m s = 0.3 and m k = 0.2. ! " ŶŷŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 2000 N n 2000 N n P t N t 30° 400 N F 30° F 400 N q 2000 N N (a) Block on an inclined plane (b) FBD of block (c) Force diagram 5OLUTION! Uif!cmpdl!dbo!ibwf!b!ufoefodz!fjuifs!up!hp!epxo!ps!up!hp!vq!uif!qmbof/!!Gjstu-!mfu!vt!bttvnf! uibu!uif!cmpdl!jt!jo!frvjmjcsjvn!boe!ibt!b!ufoefodz!up!tmjef!epxo/!Sfgfs!up!uif!GCE!pg!uif!cmpdl!tipxo!jo! Gjh/!!8/23 /! Sftpmwjoh!uif!gpsdft!bmpoh! .byjt!boe! .byjt-!boe!bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!)Gjh/!8/23 *-! xf!hfu S ! >!1;! !Ï!3111!dpt!41¡!Ï!511!tjo!41¡!>!1! fi! !>!2:43!O S ! >!1;! !,!511!dpt!41¡!Ï!3111!tjo!41¡!>!1! fi! !>!764/69!O!>! fr Cvu-! nby!>!m !>!1/4!¥!2:43!>!68:/7!O/!Tjodf!uif!gsjdujpo! fr!dbo!ofwfs!cf!hsfbufs!uibo! nby-!uif! ./!Ju!jt! 1 1 2 3 Ifodf-!uif!bduvbm!wbmvf!pg!uif!gsjdujpobm!gpsdf!jt!hjwfo!bt '!>!m' !>!1/3!¥!2:43!>! )( Tjodf!ju!jt!dpoÝsnfe!uibu!uif!cmpdl!jt!tmjejoh!epxo!uif!qmbof-!uifsf!sfnbjot!op!offe!up!dpotjefs!uif!puifs! qpttjcjmjuz!pg!uif!cmpdl!hpjoh!vq!uif!qmbof/ 0 'XAMPLE!irj A uniform ladder of 5-m length and 20-N weight is placed against a smooth vertical wall with its lower end 4 m away from the wall. If the ladder is just to slip, determine the coefficient of friction between the ladder and floor, and the frictional force acting on the ladder at the point of contact with the floor. ! " 5OLUTION! Wbsjpvt!gpsdft!bdujoh!po!uif!mbeefs!bsf!tipxo!jo!Gjh/!8/24/ ! DB!>!5!n<!!!!BC!>!6!n! fi! DC!>! 52 - 42 !>!4!n! fi tjo!q!>!406!boe!dpt!q!>!506 Sftpmwjoh!bmm!uif!gpsdft!bmpoh!ipsj{poubm!boe!wfsujdbm!ejsfdujpot!B!>! !>!31!O! boe! !C!>! Ubljoh!npnfout!bcpvu!uif!foe!B- B!>!m!B !C!¥!DC!>!31!¥!BH!dpt!q! fi! !C!>! boe!uivt! m!>! RC 13.33 ! >! W 20 >!m 20 ¥ 2.5 ¥ (4 / 5) !>!24/44!O 3 (( m! ¥ ɏ Ŷŷŵ &¹°ª»°¶µɏ B FB = 0.2RB RB B 20 N 30 5mG 250 N x q FA = mRA A 800 N C Rough floor Rough wall G RB ° Smooth wall 5m RA FA = 0.2RA 4m A Rough RA floor C 'XAMPLE!irk A 5-m long ladder and of 250-N weight is placed against a rough vertical wall in a position where its inclination to the vertical is 30°. A man weighting 800 N climbs the ladder. At what position will he induce slipping? The coefficient of friction for both the contact surfaces of the ladder, viz., with the wall and the floor is 0.2. ! " 5OLUTION! % $ S S 9 ! 8 9 <= $ & ! ' !* & ! !* ' 6 ' 7 # : ; !* :; < fi ! - # !* & !* ¥ 6 ? @!* ¥ 6 ? @'7 ¥ fi ??!* - 6!* ' '? 6 fi : ¥ ?? - 6 ¥ :' '? 9 $ $ 'XAMPLE!ircl # $ +, + , 6 q 6 S)> S)>* # S ? @' 6 ¥ 6 6 fi ? @ (( . Determine the force P required to move the uniform 50-kg plank from its position of rest (Fig. 7.15a). Take the coefficient of friction at both the contact surfaces as 0.5. ! " 6 ¥:7 '!! " " $ $ S)> + ! ! ' : ; $ 6 + 7A , ? 7 @ * 2.42 + 1.82 ? $ *B = <= $ $ & ' : ¥ ? 7 @¥? fi ? ? & : ¥ +? ' , ? 7 @- 6 ¥? ? 7 @' fi 6 7; # $ = & ' ' : ? 7 @- 6 - 6 ? 7 @fi #( * ; ¥? ? 7 @ ? 7 @ ŶŷŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº P P C 36.87° C 490 N B 4.8 m B 1.8 m F1 = 0.5N1 2.4 m 1.8 m A 3m F2 = 0.5N2 q A 2.4 m N1 36.87° N2 (a) (b) 'XAMPLE!ircc Find the least horizontal force P required to just start the motion of any part of the system resting on one another as shown in Fig. 7.16a. The weights of blocks A, B and C are 3000 N, 1000 N and 2000 N, respectively. Coefficient of friction between the blocks A and B is 0.3, between B and C is 0.2 and between the block C and ground is 0.1. ! " A WA P A B A WA P A WA P WB B FA NA WB B FB C P WC C NB FC NC NC NB FC NA FA FB A P A (b) Block A A WA WB WA (a) Block A being pulled P P WA WB WC (c) Block A and B (d) Block A, B and C ( 5OLUTION C9 & $ ? ; !% &'! * * ' ; * ; m D = * D $ = $ # S S ? m m * $ & & ? m ; ?¥? = $ : ; 9 * < m E E # $ ɏ Ŷŷŷ &¹°ª»°¶µɏ % &'! ( * $ ' * $ S S % &'! + $ 'D D m * * & $ * & * * - * m * ? - # S S F % 7 = D $ & & m D 9 * - 9 - m? D - ¥ D $ E $ ? D * # ; $ D = # ; ¥ ' * < $ E E $ E D = # ; ; $ 9 ( = 'XAMPLE!ircd Two blocks A and B, each of weight W, are placed on a rough inclined plane. The blocks are connected by a light string. If mA = 1/2 and m B = 1/3, show that both the blocks will be on the point of impending motion when the plane is inclined at an angle q = tan–1 (5/12). ! " T A B FB A q W NB n B NA FB T q B =* < = W $ = $ 8$ E E S S q q ' m* * % + & & = m* =*+ 9 * $ & & (c) $ 8 = * x A (b) m* G m FA T (a) S S q q W 5OLUTION 8 q W NA n x NB q q FA T m * $ 9 I H =* =* 9 J , q ' m* q K q ' + A?, qL +, q' q K+ A , q' qL + , , q % m ' q m ŶŷŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº M# M# + , + , q ' + A?, fi 5 12 q q fi q q' + A , 4 q fi q ' K+ A?, - + A ,L q 5 12 'XAMPLE!irce A 108-N block is held on a 40° incline by a bar attached to a 150-N block on a horizontal plane as shown in Fig. 7.18a. The bar which is fastened by smooth pins at each end is inclined at 20° to the horizontal. The coefficient of friction between each block and the planes is 0.325. For what horizontal force P applied to the 150-N block, will the motion to the left be impending? ! " N1 C 20° P 2 F2 N2 C 108 N 1 F 150 N 1 2 N1 C 108 N F2 = 0.325N2 1 20° 40° 40° N2 40° P P 20° F1 = 0.325N1 20° C 1 C 108 N 150 N (a) 150 N (c) (b) ) $ 5OLUTION $ = = $ 9 E 8 9 9 E S # & S & M# + , S S + , & & 'XAMPLE!ircf < *B $ # = @' ? 6 @fi :? 76 @- ? 6 @' fi 7: ' : 7; E # ' @' 6 fi ? 6 @' fi ? 6 ¥ 7: 7¥ ? 6 9 E = @' ? 6 7 = N 7 +, @ + , $ # 7: ; : = ( A block of weight W1 = 1000 N rests on a horizontal surface and supports, on top of it, another block of weight W2 = 250 N as shown in Fig. 7.19a. The 250-N block is attached to a vertical wall by the inclined string AB. Find the magnitude of the horizontal force P applied to lower block that will be necessary to cause slipping to impend. The coefficient of friction for all contact surfaces is 0.3. ! " ɏ ŶŷŹ &¹°ª»°¶µɏ q T N2 F2 = 0.3N2 N1 A P 4 q 3 q F2 = 0.3N2 F1 = 0.3N1 250 N W2 B 250 N W1 1000 N T P q N1 N2 F2 = 0.3N2 P F2 = 0.3N2 F1 = 0.3N1 250 N (a) 1000 + N2 1000 + N2 (b) (c) # ' 5OLUTION! q S S 8 9 # J; =+ + A?, 6? ?@ E # $ # -% 6? ?@ ' 6 ? '% 6? ?@ +, + , 7; : , S S *B 6 J; =+ : , & & & & '+ '+ ? - , - ? , +, + , % 6? ; fi E # $ # 7; fi 'XAMPLE!ircg Two identical blocks A and B are connected by a rod and rest against vertical and horizontal planes, respectively, as shown in Fig. 7.20a. If sliding impends when q = 45°, determine the coefficient of friction m, assuming it to be same at the floor and wall. ! " F1 = mN1 A A N1 C W 45° q 45° N2 C (b) B B F2 = mN2 W (a) 5OLUTION N # # S S = * $ *B = + & ' 6@ fi & m ' 6@ fi (c) $ 9 E , + - m, +, Ŷŷźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!GCE!pg!uif!cmpdl!C!)Gjh/!8/31 *-!xf!hfu S ! >!1;! !tjo!56¡!Ï!m 3!>!1! fi! 3!>!1/818 0m S ! >!1;! 3!Ï! !Ï! !dpt!56¡!>!1! fi! !>!1/818 |)20m*!Ï!2~! Frvbujoh!Frt/!) *!boe!) *-!xf!hfu ! )2!,!m*!>!|)20m*!Ï!2~! fi! m3!,!3m!Ï!2!>!1 Tpmwjoh!uijt!rvbesbujd!frvbujpo-!xf!hfu!m!>! ! ! )uif!ofhbujwf!wbmvf!jt!jhopsfe* ) * 'XAMPLE!irch Two boxes are placed on an inclined plane, in contact with each other as shown in Fig. 7.21a, and released from rest. The coefficient of static friction between the box A and the plane is 0.4 and that between box B and the plane is 0.3. Describe what happens. ! " B A 20 kg 10 kg 20° RAB A B mA N A mBNB RAB 98 N NB 196 N 20° NB 20° mBNB (a) 20° B RAB NA RAB NA 20° 20° mA N A 20° A 98 N 196 N (b) (c) 5OLUTION! Hjwfo;! B!>!21!¥!:/9!>!:9!O-! C!>!31!¥!:/9!>!2:7!O-!mB!>!1/5- mC!>!1/4/ Mfu!vt!Ýstu!Ýoe!xibu!ibqqfot!up!uif!uxp!cpyft-!jg!uifz!bsf! !qmbdfe!po!uif!jodmjofe!qmbof/! ( !B;! Uif!opsnbm!sfbdujpo-! ! >! !dpt!31¡!>!:9!dpt!31¡!>!:3/1:!O B B ! Uif!mjnjujoh!gsjdujpo!bdujoh!vq!uif!qmbof-! B! >!mB B!>!1/5!¥!:3/1:!>!47/95!O ! Uif!gpsdf!bdujoh!epxo!uif!qmbof-! B! >! B!tjo!31¡!>!:9!tjo!31¡!>!44/63!O ! Tjodf! B!=! B-!uif!cpy!B!epft!opu!tmjef!epxo/ ( !C;! Uif!opsnbm!sfbdujpo-! C! >! C!dpt!31¡!>!2:7!dpt!31¡!>!295/29!O ! Uif!mjnjujoh!gsjdujpo!bdujoh!vq!uif!qmbof-! C! >!mC C!>!1/4!¥!295/29!>!66/36!O ! Uif!gpsdf!bdujoh!epxo!uif!qmbof-! C! >! C!tjo!31¡!>!2:7!tjo!31¡!>!78!O ! Tjodf! C!?! C-!uif!cpy!C!tmjeft!epxo!uif!qmbof/ Uivt-!xf!Ýoe!uibu!jg!qvu!uphfuifs-!uif!cpy!C!qvtift!uif!cpy!B!boe!uif!uxp!cpyft!uphfuifs!tmjef!epxo! uif!qmbof/!Mfu!!BC! cf!uif!sfbdujpo!cfuxffo!uif!cpyft!B!boe!C/!Uif!GCEt!pg!uif!uxp!cpyft!bsf!tipxo!jo! Gjh/!8/32 !boe! ɏ ŶŷŻ &¹°ª»°¶µɏ Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!cpy!C!)Gjh/!832 *-!xf!hfu S ! >!1;! C!Ï!2:7!dpt!31¡!>!1! fi! C!>!295/29!O S ! >!1;! !BC!,!mC C!Ï!2:7!tjo!31¡!>!1! fi! !BC!>!22/89!O Uif!sfbdujpo!gpsdf!!BC!jt!uif!qvtijoh!gpsdf!bqqmjfe!po!uif!cpy!B!cz!uif!cpy!C/!Uifsfgpsf-!uif!ofu!gpsdf!bdujoh! po!uif!cpy!B!epxo!uif!qmbof!jt!hjwfo!bt )ofu*!>! B!tjo!31¡!,!!BC!Ï! B!>!:9!tjo!31¡!,!22/89!Ï!47/95!>!9/57!O Uijt!jt!uif!ofu!gpsdf!bdujoh!po!uif!tztufn!pg!uxp!cpyft!epxo!uif!qmbof-!uif!tztufn!tmjeft!xjui!bo!bddfmfsbujpo! hjwfo!bt P( net ) 8.46 !>! !>! ) .8 ! >! mA + mB 10 + 20 'XAMPLE!irci Two rectangular blocks of weights W1 and W2, connected by a flexible cord, rest upon a horizontal and inclined plane, respectively, with the cord passing over a pulley as shown in Fig. 7.22a. In a particular case, where W1 = W2 and the coefficient of static friction m is same for the continuous surface, find the angle a of inclination of the inclined plane at which motion of the system will impend. Neglect friction in the pulley. ! " T W mN1 A T B T N1 B N2 mN2 a T W N2 A mN1 a N1 T a a A T W W (a) B mN2 (b) 5OLUTION! Mfu! 2!>! 3!> /!!Uif!GCEt!pg!uif!uxp!cmpdlt!bsf!tipxo!jo!Gjh/!8/33 !boe! ( '!B;!Sftpmwjoh!uif!gpsdft!opsnbm!boe!ubohfoujbm!up!uif!qmbof-!xf!hfu S ! >!1;! 2!Ï! !dpt!a!>!1! fi! 2!>! !dpt!a S ! >!1;! %!Ï! !tjo!a!,!m 2!>!1! fi! %!>! !)tjo!a!Ï!m!dpt!a*! (c) )* Ŷŷżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ( '!C;!Sftpmwjoh!gpsdft!jo!ipsj{poubm!boe!wfsujdbm!ejsfdujpot-!xf!hfu S ! >!1;! 3!Ï! !>!1! fi! 3!>! ! S ! >!1;! m 3!Ï!%!>!1! fi! %!>!m ! Frvbujoh!Frt/!) *!boe!) *-!xf!hfu m!! >!)tjo!a!Ï!m!dpt!a* fi! m! >! ) * sin a 2 sin(a / 2) cos(a / 2) !>! !>!ubo!)a03*! fi! a!>! (1 + cos a ) 2 cos 2 (a / 2) 4 m 'XAMPLE!ircj Two blocks, connected with a horizontal link AB, are supported on two rough planes as shown in Fig. 7.23a. If fC = 15° and mA = 0.4, find the smallest value of W required for the equilibrium of the system. ! " 400 N W 400 N A W FB C A B 30° NB 30° B NA FB NA C 400 N (a) Two blocks connected with a tie rod FA NB B 30° C 30° (b) FBD of block B C A FA W (c) FBD of block A 5OLUTION Hjwfo;!mB!>!1/5-!mC!>!ubo!fC!>!ubo!26¡!>!1/378/ Cmpdl!C!ibt!b!ufoefodz!up!tmjef!epxo/!Mfu! !cf!uif!dpnqsfttjwf!gpsdf!jo!uif!dpoofdujoh!mjol/!Jg!uif!cmpdl!B! jt!mjhiufs!uibo!uif!njojnvn!xfjhiu! !offefe!gps!frvjmjcsjvn-!ju!xjmm!cf!qvtife!upxbset!mfgu/!Dpotjefs!uif! tztufn!jo!frvjmjcsjvn!cvu!bu!uif!qpjou!pg!jnqfoejoh!npujpo/!Uif!GCEt!pg!C!boe!B!bsf!hjwfo!jo!Gjh/!8/34 ! boe! -!sftqfdujwfmz/ Uif!gsjdujpobm!gpsdft!gps!uif!uxp!cmpdlt!bsf!hjwfo!bt C! >!mC C!>!1/378 C! boe! B!>!mB B!>!1/5 B Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!gps!uif!cmpdl!C!)Gjh/!8/32 *S ! >!1;! C!dpt!41¡!,! C!tjo!41¡!Ï!511!>!1 fi! 1/378 C!dpt!41¡!,! C!tjo!41¡!Ï!511!>!1! fi! C!>!658/13!O S ! >!1;! C!tjo!41¡!Ï! C!dpt!41¡!,! !>!1! fi! !>!511/8!O Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!cmpdl!B!)Gjh/!8/34 *400.7 !>!2112/9!O S ! >!1;! B!Ï! !>!1! fi! mB B!>! ! fi! B!>! !>! mB 0.4 S ! >!1;! B!Ï! !>!1! fi! !>! B!>! ) ɏ ŶŷŽ &¹°ª»°¶µɏ 'XAMPLE!irck A semicircular right cylinder of radius r and weight W rests on a horizontal surface and is pulled at right angles to its geometric axis by a horizontal force P applied at the point B of the front edge as shown in Fig. 7.24a. Find the angle a that the flat face will make with the horizontal plane just before the sliding begins, if the coefficient of friction at the point of contact A is m. The weight W must be considered as acting at the centre of gravity G of the cylinder. ! " O 4r 3p O r a a G B P W A B¢ G¢ a B P A mN N (a) (b) 5OLUTION! Uif!dfousf!pg!hsbwjuz!H!jt!bu!b!ejtubodf!pg!5 04ʪ!gspn!uif!qpjou!P/!Sfgfs!up!uif!GCE!pg!uif!dzmjoefs! tipxo!jo!Gjh/!8/35 -!Gspn!DHPH¢HH¢!>!)5 04p*!tjo!a! boe!!!BC¢!>!PB!Ï!PC¢!>! !Ï! !tjo!a!>! !)2!Ï!tjo!a* Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!up!uif!GCE!pg!uif!tfnjdzmjoefs!bt!tipxo!jo!Gjh/!8/35 -!xf!hfu S ! >!1;! ! !>! ! boe! S !>!1;! S)}B! >!1;! !¥!HH¢!>! !¥!BC¢ fi! fi ! !>!m !>!m !¥!)5 04p*!tjo!a!>! !)2!Ï!tjo!a*!>!m !)2!Ï!tjo!a* 3ol 4 m !tjo!a!,!m!tjo!a!>!m! fi! tjo!a!>! !>! 3p (4 / 3p ) + m 4 + 3ol 'XAMPLE!irdl Referring to Fig. 7.25a, determine the least value of the force P to cause motion to impend rightward. Assume the coefficient of friction under the blocks to be 0.2 and the pulley to be frictionless. ! " 5OLUTION! Gsff!cpez!ejbhsbn!pg!uxp!cmpdlt!bsf!tipxo!jo!Gjh/!8/36 !boe! Uif!gsjdujpobm!gpsdft!1/3 1/3 3!bdu!pqqptjuf!up!uif!ejsfdujpo!pg!jnqfoejoh!npujpo/ 2!boe! ŶŸŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº T 1000 N A P T B q 0.2N1 1000 N T N1 60° 0.2N2 T N1 A 1500 N N2 0.2N2 T 60° P q B A 0.2N1 1000 N 60° ( N2 1500 N T (a) Two blocks connected with a tie P q B 1500 N (b) FBD of the block A (c) FBD of the block B '!B;! Sftpmwjoh!uif!gpsdft!opsnbm!boe!ubohfoujbm!up!uif!qmbof-!xf!hfu S ! >!1;! 2!Ï!2611!dpt!71¡!>!1! fi! 2!>!861!O S ! >!1;! %!Ï!1/3 2!Ï!2611!tjo!71¡!>!1 fi! %!>!1/3!¥!861!,!23::/15!>!255:/15!O '!C;! Sftpmwjoh!gpsdft!jo!ipsj{poubm!boe!wfsujdbm!ejsfdujpot-!xf!hfu S ! >!1;! !dpt!q!Ï!1/3 3!Ï!%!>!1! fi! 6 !dpt!q!Ï! 3!>!6%! S ! >!1;! !tjo!q!,! 3!Ï!2111!>!1! fi! !tjo!q!,! 3!>!2111! ( )* ) * Beejoh!Frt/!) *!boe!) *-!boe!tvctujuvujoh!uif!wbmvf!pg!%-!xf!hfu !>! 1000 + 5% 8245.2 !>! 5 cos q + sin q 5 cos q + sin q Pcwjpvtmz-! !xjmm!cf!njojnvn!xifo!uif!efopnjobups!)6!dpt!q!,!tjo!q*!jt!nbyjnvn-!j/f/-!xifo! ! q fi \! !)6!dpt!q!,!tjo!q*!>!1! fi! Ï!6!tjo!q!,!dpt!q!>!1 ubo!q!>!206! fi! q!>!22/4¡ njo!>! 'XAMPLE!irdc 8245.2 5 cos q + sin q 8245.2 5 cos 11.3∞ + sin 11.3∞ ( A smooth circular cylinder of weight Q and radius r is supported by two semicircular cylinders each of the same radius r and weight Q/2 as shown in Fig. 7.26a. If the coefficient of static friction between the flat faces of the semi-circular cylinder and the horizontal plane on which they rest is μ = 0.5 and the friction between the cylinders themselves is neglected, determine the maximum distance b between the centres B and C for which equilibrium will be possible without the middle cylinder touching the horizontal plane. ! " ɏ ŶŸŵ &¹°ª»°¶µɏ A A q q q q Q 2 N1 N1 Q D B N3 N2 C q Q B Q 2 Q 2 b (a) (b) mN3 (c) ( 5OLUTION! S S % & ' ! ! ( q# q$ q q , , " 2 cos q + , , , , $ " $ q , q 2 cos q , q fi q fi -, " 2 cos q " " ) * ) S ! S ! ) \ , m , q (& 7 ! fi " q /-6 /-6 ¥7 + ( q ) s 57//#4; ( ( & ( ( ( ( Tubujd!gsjdujpo ) ) ) (& ( ( & Ljofujd! gsjdujpo ) ( Spmmjoh!gsjdujpo 9: ) ( Gsjdujpo ) ( 9 ) ( ( & (> ( 1 1 CD -.. / 2 B% ( ' ( . .012 ( List the laws of friction. .1!ird ( & ( .1!irg A( ; ( <( Define friction, state its types and explain its theory. .1!irc ( :: : < (( (:: = : : ( > ) ( dpfgÝdjfou!pg!gsjdujpo ; ( ( : : ( ( ( ( Underline the factors that affect the rolling friction. Spmmjoh!gsjdujpo ? : ( ( ( ) ( ( ( ) ( ( @ 9 ) ( & ( : ) ( ) ( = ( ( ( ŶŸŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! +/2146#06!(14/7.#' � E � F � � A m m> ) & 3 (> P m W (9 > ( � � m> I m I m ! m dpfgÝdjfou!pg!tubujd!gsjdujpo m> dpfgÝdjfou!pg!ljofujd!gsjdujpo/! ( a G &( f>H ( f> m> a r ) ! ! ! ! " " " " ! " ! " ! ( " ! " ! " ! " 5*146 #059'4!37'56+105 <2 %( ( > , J > , = 2 1 1 & , 3 1 3 : ( <2 J = ( C3 2 Ȼ= 2 M ) <2 = ( ( ( ( ? ( ( 1 1 ) (9 & :( ( ( ( ( 1 (:: & F D ( > : ( & ( 2 = ( . & ( ( ) O ( 1 , ! " ! " ! " ! ( ( " ( & ( 1 : ( ( ( 1 3 1 3 = & : ( ( .1!irg ( 2 B ) = :: -';!6'4/5 .1!irc ) ( < A ? ( ? 3 1 . (9 ( ) %( ( 2 ( .3 1 ( ( = ( 11 1 1 2 2 ;= ( ) ( ( (> = <2 2 ( ) ( ) ( ( ( ( J ( = J 2 1 B & : 1 ( (9 m . 2 11 K L) ( ( ( & F 2 ( ( 2 & ( 1 ( (9 . ) ) ? ( : @ 4 ( ? : > = ( 2D ( ? . )( ( ( ( ( ( ; ( ( ( ɏ ŶŸŷ &¹°ª»°¶µɏ ! 4'8+'9!37'56+105 '9: ( : 7 ( ( %( (> ) ( ) 9( : ( > >:( ( % ( %( ( ( ! " ! " ! " ! ! " " ( ( ( ! " ! " ! " ! " ! " ! " ! " ! " ! " ! " ! " ! ( ( : () 7 ? ) '9: ( &( E : ( '9: ( ) '9: ( ! ) > ( ) ( 9( : & & ( ( ( :( : ( ! & ( )( ( M ( 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS 5 ! ( ( ( (& ( ? ( : : ( ( N ( ( ( > ( (: ( ( ) ( M O ( 9( ( P 6 ( ( ; ( ( ( ( ( ? ( ( ( F ( > " * ( (& > ) ) ( ( ( @ ) J m ( :( , ) @ , * , >* , * ( : : ) *( ( # * > (:: / /6 ( *) :( > = ( @ ( :( = > ( ) ( ( ," Q 6 "Q /,6 - 6 ( @ ( ŶŸŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº $! (ILL $LANKS!3UESTIONS ' ! = ? : = : : ( ( ( ( = &( ( (9 ( ) RRRRRRRRRR RRRRRRRRR RRRRRRR ( ( RRRRRRRRRR &( ? ( S RRRRRRRRRRRR ) ( ( ( ( ( ( ( ( ( ( ( ( RRRRRRRRR ! " ! " ! " ! " ! " ! " ! " ! " RRRRRRRR ( ( %! /ATCH %OLUMNS!3UESTIONS ) ! $ . E % $ ( & T 7 : C 7 D & 7 & . EE :: A ) (& 9: > ( ( % ( = M ( ( ( ( :( ( ( #NSWERS!TO!1BJECTIVE!3UESTIONS %C& 3 F$2 G ( %H& %$& FH G ( ( @ > ( ( ) ( : : ( 2F 4D # . G 4% 4= ! & #T & #C 24#%6+%'!241$.'/5 > ( L* ) ( > : : &( ( ( :( ( ( @ -6 ( ( (:: m , UC " ( " *V ) ! " ɏ ŶŸŹ &¹°ª»°¶µɏ P b 400 N 1 kN P P F 30° q 200 N 25° ) 7 ) ( W& ( ? ( : ! > ) ,-6 ( 6/ q ) Q * =(> m ) &( &( # ( ,( / L* ) b/!Ublf!mt!>!1/4!boe!ml!>!1/3/! ? ( ( m> UC >( :( / *V ! - > : : \C 389/17-!25/15¡^! " P ( ! " Bo!jodmjofe!qmbof!jt!vtfe!up!vompbe!b!cmpdl!pg!611.O!xfjhiu!gspn!b!ifjhiu!pg!3!n!bt!tipxo!jo!Gjh!8/41/!Tubuf! xifuifs!ju!jt!ofdfttbsz!up!qvti!uif!cpez!epxo!uif!jodmjofe!qmbof!ps!ipme!ju!cbdl!gspn!tmjejoh!epxo/!Xibu!jt! uif!njojnvn!wbmvf!pg!gpsdf!sfrvjsfe!gps!uijt!qvsqptf@!Ublf!m!>!1/4!cfuxffo!uif!cmpdl!boe!jodmjofe!qmbof \C Op!qvti!sfrvjsfe- 263/73!O^! ! " B W2 6m G b W1 2 3 W A 500 N a O a B!711.O!cmpdl!jt!jo!frvjmjcsjvn-!xifo!lfqu!po!b!qfsgfdumz!tnppui!jodmjofe!qmbof!boe!bdufe!vqpo!cz!b!gpsdf! pg!211!O!bu!bo!bohmf!pg!41¡!up!uif!jodmjofe!qmbof/!Xifo!uijt!cmpdl!jt!lfqu!po!b!spvhi!jodmjofe!qmbof!pg!tbnf! jodmjobujpo-!efufsnjof!uif!gpsdf! !sfrvjsfe!up!cf!bqqmjfe!qbsbmmfm!up!uif!qmbof!up!npwf!ju!vq!uif!qmbof/!Ublf! m!>!!1/36!gps!uif!spvhi!qmbof/! \C !!346!O^! ! " ! ( B! vojgpsn! mbeefs! pg! 6.n! mfohui! boe! 411.O! xfjhiu! mfbot! bhbjotu! b! tnppui! wfsujdbm! xbmm/! Jut! mpxfs! foe! jt! qmbdfe!3!n!bxbz!gspn!uif!xbmm!po!spvhi!Þpps/!Uif!dpfgÝdjfou!pg!gsjdujpo!cfuxffo!uif!mbeefs!boe!Þpps!jt!1/4/! Dbmdvmbuf!uif!gsjdujpobm!gpsdf!bdujoh!bu!uif!qpjou!pg!dpoubdu!pg!uif!mbeefs!boe!Þpps!boe!tipx!uibu!uif!mbeefs!jt!jo! frvjmjcsjvn!jo!uijt!qptjujpo/! \C !76/6!O^! ! " B!7.n!mbeefs!BC mfbot!bhbjotu!b!xbmm-!tvdi!uibu!uif!sbujp! 0 !jt!frvbm!up!3-!bt!tipxo!jo!Gjh/!8/42/!Bttvnjoh!uibu! uif!dpfgÝdjfou!pg!tubujd!gsjdujpo!mt!jt!uif!tbnf!bu!uif!xbmm!boe!uif!Þpps-!efufsnjof!uif!tnbmmftu!wbmvf!pg!mt!gps! xijdi!frvjmjcsjvn!jt!nbjoubjofe/!! \C 1/35^! ! " ŶŸźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ) Uxp!cmpdlt!pg!xfjhiu! 2!boe! 3!sftu!po!b!spvhi!jodmjofe!qmbof/!Uif!cmpdlt!bsf!dpoofdufe!cz!b!tipsu!qjfdf!pg! tusjoh!bt!tipxo!jo!Gjh/!8/43/!!Jg!m2!>!1/3!boe!m3!>!1/4-!sftqfdujwfmz-!Ýoe!uif!bohmf!pg!jodmjobujpo!pg!uif!qmbof!gps! xijdi!tmjejoh!xjmm!jnqfoe/!Bttvnf! 2!>! 3!>!6!O/! \C !a!>!25/15¡^! ! "! # Gjoe!uif!ipsj{poubm!gpsdf! sfrvjsfe!up!kvtu!tubsu!uif!npwfnfou!pg!b!611.O!cpy!po!bo!jodmjofe!tvsgbdf!bt!tipxo! jo!Gjh/!8/44/!!Hjwfo!uibu!q 6 31¡!boe!m!>!1/36/! \C 63/36!O^! ! " C P q A 50 N B q ! ! Bo!9.lh!cmpdl!B- buubdife!up!uif!mjol!BD- sftut!po!uif!23$lh!cmpdl!C!bt!tipxo!jo!Gjh/!8/45/!!Lopxjoh!uibu!uif! dpfgÝdjfou!pg!tubujd!gsjdujpo!jt!1/3!cfuxffo!bmm!tvsgbdft!pg!dpoubdu!boe!ofhmfdujoh!uif!nbtt!pg!uif!mjol-!efufsnjof! uif!wbmvf!pg!q!gps!xijdi!npujpo!pg!uif!cmpdl!C jt!jnqfoejoh/! \C 54¼^! ! " B!311$O!cmpdl!jt!qvmmfe!vq!bo!jodmjofe!qmbof!cz!b!gpsdf! -!bt!tipxo!jo!Gjh/!8/46/!Efufsnjof!xifuifs!uif!cmpdl! jt!jo!frvjmjcsjvn-!boe!Ýoe!uif!nbhojuvef!boe!ejsfdujpo!pg!uif!gsjdujpo!gpsdf!xifo! >!61!O!boe!q!>!36¡/!Bttvnf! uif!qvmmfz!up!cf!gsjdujpomftt-!boe!ublf!m!>!1/4/! \C ' Jo frvjmjcsjvn-!34!O^! ! " q W P 30° A 20° P q B P = 100 N ( Uxp!cmpdlt!B!boe!C!pg!6$lO!boe!21$lO!xfjhiut-!sftqfdujwfmz-!bsf!jo!frvjmjcsjvn!bt!tipxo!jo!Gjh/!8/47/!Jg!uif! dpfgÝdjfou!pg!gsjdujpo!cfuxffo!bmm!tvsgbdft!jo!dpoubdu!jt!1/4-!Ýoe!uif!gpsdf !sfrvjsfe!up!npwf!uif!cmpdl!C/! \C 6/67!lO^! ! " Efufsnjof!uif!tnbmmftu!wbmvf!pg!bohmf!q!gps!xijdi!npujpo!pg!uif!cmpdl-!tipxo!jo!Gjh/!8/48-!up!uif!sjhiu!jt! jnqfoejoh!xifo!) *! >!211!O-!) *! >!411!O-!boe!) *! >!511!O-!dpotjefsjoh!pomz!uif!wbmvft!pg!q!mftt!uibo! :1¡/!Ublf!m!>!1/36/! \C !) *!39/17¼<!) *!71/79¼<!) *!9:/9:¼^! ! " B!vojgpsn!mbeefs!pg!21.n!mfohui!xfjhijoh!311!O!jt!qmbdfe!bhbjotu!b!tnppui!wfsujdbm!xbmm!xjui!jut!mpxfs!foe! 5!n!bxbz!gspn!uif!xbmm!bt!tipxo!jo!Gjh/!8/49/!Uif!dpfgÝdjfou!pg!gsjdujpo!cfuxffo!uif!mbeefs!boe!Þpps!jt!1/4/! Difdl!xifuifs!uif!mbeefs!xjmm!sfnbjo!jo!frvjmjcsjvn!jo!uijt!qptjujpo!ps!opu/! \C Jo!frvjmjcsjvn^! ! " ! B!26¼!xfehf!ibt!up!cf!esjwfo!epxoxbset!gps!npwjoh!uif!cmpdl!C!pg!861.O!xfjhiu!bt!tipxo!jo!Gjh/!8/4:/!Jg!uif! bohmf!pg!gsjdujpo!gps!bmm!tvsgbdft!jt!21¡-!Ýoe!uif!gpsdf! sfrvjsfe!up!npwf!uif!xfehf/ \C :3/69!O^! ! " ɏ ŶŸŻ &¹°ª»°¶µɏ A P 750 N 10 m A 15° B B 4m ) # ( B!361.O!gpsdf!qbsbmmfm!up!bo!jodmjofe!qmbof!jt!sfrvjsfe!up!npwf!b!cmpdl!vq!po!bo!jodmjofe!qmbof!xjui!bo!bohmf!pg! jodmjobujpo!pg!26¡/!Jg!uijt!bohmf!jt!dibohfe!up!36¡-!uif!nbhojuvef!pg!uif!sfrvjsfe!gpsdf!dibohft!up!411!O/!Gjoe! uif!xfjhiu!pg!uif!cmpdl!boe!uif!dpfgÝdjfou!pg!gsjdujpo/! \C !523/9!O-!1/47^! ! " Uxp!23¡!xfehft!B!boe!C!bsf!vtfe!up!sbjtf!b!cmpdl!D!pg!xfjhiu! !bt!tipxo!jo!Gjh/!8/51/!Ofhmfdujoh!uif!xfjhiu! pg!uif!xfehf!cmpdlt-!dbmdvmbuf!uif!nbyjnvn!xfjhiu! uibu!dbo!cf!ifme!jo!frvjmjcsjvn!xifo! jt!211!O/!Ublf! m!>!1/4!gps!bmm!uif!tvsgbdft/! \C 346/5!O^! ! " ) Uisff!Þbu!cmpdlt!B-!C!boe!D!xfjhijoh!411!O-!611!O!boe!511!O-!sftqfdujwfmz-!bsf!qmbdfe!po!b!46¡!jodmjofe! qmbof-!bt!tipxo!jo!Gjh/!8/52/!B!gpsdf! !qbsbmmfm!up!uif!qmbof!jt!bqqmjfe!up!qvti!uif!njeemf!cmpdl!vq!uif!qmbof/! Cmpdl!B!jt!sftusbjofe!gspn!npwjoh!cz!b!dbcmf!buubdife!up!b!Ýyfe!tvqqpsu/!Efufsnjof!uif!njojnvn!wbmvf!pg! -! xijdi!kvtu!qsfwfout!uif!jnqfoejoh!npujpo/! \C 5:/15!O^! ! " A C C P P A B ms = 0.3 W P ms = 0.4 B 35° ms = 0.45 ŶŸżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº #¯¨·»¬¹ 9 Tjnqmf!Mjgujoh!Nbdijoft .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ ! .1!jrcɏ ɏ ɏ ɏ ɏ ɏ .1!jrdɏ .1!jreɏɏ .1!jrfɏ .1!jrgɏɏ .1!jrhɏ ɏ .1!jri! ɏ .1!jrjɏ ɏ .1!jrkɏɏ ɏ .1!jrclɏ $°º»°µ®¼°º¯ɏ©¬»¾¬¬µɏº°´·³¬ɏ¨µ«ɏª¶´·¶¼µ«ɏ´¨ª¯°µ¬ºȎɏ¨µ«ɏ®°½¬ɏ¬¿¨´·³¬ºɏ¶ɏº°´·³¬ɏ³°ļ°µ®ɏ ´¨ª¯°µ¬ºȍ $¬ķµ¬ɏª¶´´¶µɏ»¬¹´ºɏ¹¬³¨»¬«ɏ»¶ɏº°´·³¬ɏ³°ļ°µ®ɏ´¨ª¯°µ¬ºȍ 5µ«¬¹³°µ¬ɏ»¯¬ɏ¹¬¨º¶µºɏ¶¹ɏ³¶ºº¬ºɏ°µɏ¨ɏ´¨ª¯°µ¬ɏ¨µ«ɏ«¬»¬¹´°µ¬ɏ°»ºɏ¬ĺª°¬µªÀȍ $°Ĺ¬¹¬µ»°¨»¬ɏ©¬»¾¬¬µɏ¹¬½¬¹º°©³¬ɏ¨µ«ɏº¬³Ɋ³¶ª²°µ®ɏ´¨ª¯°µ¬ºȍɏ )µ¬¹ɏ»¯¬ɏ³¨¾ɏ¶ɏ´¨ª¯°µ¬ºȍ %º»¨©³°º¯ɏ»¯¬ɏ¹¬³¨»°¶µɏ©¬»¾¬¬µɏ´¬ª¯¨µ°ª¨³ɏ¨«½¨µ»¨®¬ɏ¨µ«ɏ³¶¨«Ȏɏ¨µ«ɏ©¬»¾¬¬µɏ¬ĺª°¬µªÀɏ¨µ«ɏ ³¶¨«ȍ #³¨ºº°Àɏ³¬½¬¹ºɏ¨µ«ɏ«¬»¬¹´°µ¬ɏ´¬ª¯¨µ°ª¨³ɏ¨«½¨µ»¨®¬ɏ¶ɏ¬¨ª¯ɏª³¨ººȍ $¬»¬¹´°µ¬Ȏɏ »¯¬ɏ ½¬³¶ª°»Àɏ ¹¨»°¶ɏ ¨µ«ɏ ¬ĺª°¬µªÀɏ ¶ɏ ¨µɏ °µª³°µ¬«ɏ ·³¨µ¬Ȏɏ ¾¬«®¬Ȏɏ ¨µ«ɏ º°´·³¬ɏ ¨µ«ɏ «°Ĺ¬¹¬µ»°¨³ɏºª¹¬¾ɏ±¨ª²ºȍ $¬»¬¹´°µ¬ɏ»¯¬ɏ½¬³¶ª°»Àɏ¹¨»°¶ɏ¨µ«ɏ¬ĺª°¬µªÀɏ¶ɏ³¬½¬¹ºȎɏ¨µ«ɏº°´·³¬ɏ¨µ«ɏ«°Ĺ¬¹¬µ»°¨³ɏ·¼³³¬ÀɏºÀº»¬´ºȍ #¨³ª¼³¨»¬ɏ½¬³¶ª°»Àɏ¹¨»°¶ɏ¨µ«ɏ¬ĺª°¬µªÀɏ¶ɏș°Țɏ¾¯¬¬³Ɋ¨µ«Ɋ¨¿³¬Ȏɏș°°Țɏ¾¯¬¬³ɏ¨µ«ɏ«°Ĺ¬¹¬µ»°¨³ɏ¨¿³¬Ȏɏ ș°°°Țɏ¾¶¹´ɏ¨µ«ɏ¾¶¹´Ɋ¾¯¬¬³Ȏɏ¨µ«ɏș°½Țɏ¾°µª¯ɏª¹¨©ºȍ .1!jrc 9/2! �! JOUSPEVDUJPO Ju!jt!wfsz!ejgÝdvmu!up!votdsfx!b!ovu!ps!cpmu!xjui!cbsf!iboet-!cvu!ju!dbo!fbtjmz!cf!epof! vtjoh!b!xsfodi!ps!b!tdsfx!esjwfs/!Uif!xsfodi!boe!tdsfx!esjwfs!bsf!tjnqmf!nbdijoft/! B! tjnqmf! nbdijof! nblft! b! ejgÝdvmu! ubtl! fbtjfs! cz! dibohjoh! uif! nbhojuvef! boe! ejsfdujpo!pg!uif!bqqmjfe!gpsdf/!Ju!ibt!b!gfx!ps!op!npwjoh!qbsut/!Uiftf!nbdijoft!bsf!tp! dpnnpo!jo!pvs!ebjmz!mjgf!uibu!xf!epoÔu!bqqsfdjbuf!ipx!wbmvbcmf!uifz!bsf/!Epps!lopct-! dbo!pqfofst-!qfodjm!tibsqfofst!boe!tubqmfst!bsf!tpnf!tvdi!tjnqmf!nbdijoft/! tjnqmf! nbdijof dpnqpvoe nbdijof- dpnqmfy!nbdijof-!f/h/-!ifbwz! nbdijoft!)ep{fst-!cbdlipf-!dsboft-!fud/*!boe!bvupnpcjmft!)tuffsjoh!xiffm-!kbdl-!fohjof-!ejggfsfoujbm!bymf-! fud/*/ tjnqmf!mjgujoh!nbdijof-!f/h/-! !vtfe!gps!mjgujoh! xbufs!gspn!b!xfmm!boe! !vtfe!gps!mjgujoh!b!npups!dbs/!Uifsf!bsf!tjy!uzqft!pg!tjnqmf!mjgujoh!nbdijoft; $°º»°µ®¼°º¯ɏ©¬»¾¬¬µɏ º°´·³¬ɏ¨µ«ɏª¶´·¶¼µ«ɏ ´¨ª¯°µ¬ºȎɏ¨µ«ɏ®°½¬ɏ ¬¿¨´·³¬ºɏ¶ɏº°´·³¬ɏ ³°ļ°µ®ɏ´¨ª¯°µ¬ºȍ ɏ ŶŸŽ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ ! ! 2/! Jodmjofe!Qmbof/! 3/! Xfehf/! 4/! Tdsfx!Kbdl/ 5/! Mfwfs/! 6/! Qvmmfz/! 7/! Xiffm boe Bymf/!! Jodmjofe!qmbof!boe!mfwfs!bsf!uif!tjnqmftu!pg!uiftf!nbdijoft/!Npsf!dpnqmjdbufe!nbdijoft!bsf!qvmmfz-! xiffm boe bymf-!xfehf-!boe!tdsfx/!Tjnqmf!nbdijoft!gbmm!joup!uxp!dbufhpsjft;! ! ! 2/! Uiptf!efqfoefou!po!uif wfdups!sftpmvujpo!pg!gpsdft tvdi!bt 3/! Uiptf!cbtfe!po uif frvjmjcsjvn!pg!npnfout- tvdi!bt .1!jrd $¬ķµ¬ɏª¶´´¶µɏ»¬¹´ºɏ ¹¬³¨»¬«ɏ»¶ɏº°´·³¬ɏ³°ļ°µ®ɏ ´¨ª¯°µ¬ºȍ 9/3! - boe boe �! UFSNJOPMPHZ Uif!mjof!ejbhsbn!pg!b!tjnqmf!nbdijof!jt!tipxo!jo!Gjh/!9/2/!Uif!gpmmpxjoh!ufsnt!bsf! dpnnpomz!vtfe!xijmf!ejtdvttjoh!tjnqmf!mjgujoh!nbdijoft/! Input, Px } Effort P P Load W Machine W } x y Distance moved by effort Distance moved by load Output, Wy Gjh/!9/2 2/!Mpbe0Sftjtubodf!)X*! Ju!jt!uif!mpbe!mjgufe!ps!uif!sftjtubodf!pwfsdpnf!cz!uif!nbdijof/!Ju!ibt!uif!voju!pg! gpsdf!)O!ps!lO*/ 3/!Fggpsu!)Q*! Ju!jt!uif!gpsdf!sfrvjsfe!cz!b!nbdijof!up!mjgu!uif!mpbe!ps!up!pwfsdpnf!uif!sftjtubodf/!Jut!voju!jt! O!ps!lO/ 4/!Nfdibojdbm!Bewboubhf!)NB*! Ju!jt!efÝofe!bt!uif!sbujp!pg! uif!mpbe!mjgufe!up!uif!fggpsu!bqqmjfe-!! ! W !>! ! P )9/2* Uivt!jt!b! !cz!xijdi!b!nbdijof!nvmujqmjft!uif! fggpsu/! Nptu! pg! uif! nbdijoft! bsf! vtfe! up! mjgu! b! mbshf! mpbe! cz! bqqmzjoh!b!dpnqbsbujwfmz!tnbmm!fggpsu-!nbljoh! !hsfbufs!uibo! pof/!Uif!nfdibojdbm!bewboubhf!dbo!cf!dbmdvmbufe!cz!vtjoh!uif! frvbujpot!pg!frvjmjcsjvn/!Ju!ibt!op!vojut/! �! 9ORTHY!OF!0OTE Tpnf! nbdijoft! nbz! ibwf! nfdibojdbm!bewboubhf!mftt!uibo! pof/! Tvdi! nbdijoft! offe! bo! fggpsu!npsf!uibo!uif!mpbe!mjgufe/! Uiftf! nbdijoft! bsf! vtfe! up! qspwjef!hsfbufs!dpowfojfodf!pg! epjoh!b!ubtl-!f/h/-!b!qbjs!pg!upoht/ 5/!Joqvu! Uif!xpsl!epof!!cz!uif!fggpsu!jt!lopxo!bt!joqvu!up!uif!nbdijof/!Ju!jt!frvbm!up!uif!qspevdu!pg!fggpsu! !!boe!uif!ejtubodf! !uispvhi!xijdi!ju!npwft/!Uivt-!uif!joqvu!up!b!nbdijof!jt!! ¥! /!Jut!voju!jt!K!ps!lK/ 6/!Pvuqvu! Ju!jt!uif!vtfgvm!xpsl!epof!cz!uif!nbdijof-!xijdi!jt!tbnf!bt!uif!xpsl!epof!po!uif!mpbe/!Ju!jt!hjwfo! cz!uif!qspevdu!pg!mpbe!"!mjgufe!boe!uif!ejtubodf! uispvhi!xijdi!ju!npwft/!Uivt-!uif!pvuqvu!pg!b!nbdijof!jt! " ¥! /!Jut!voju!jt!K!ps!lK/ 7/!Wfmpdjuz!Sbujp!)WS*! Ju!jt!uif!sbujp!pg!uif!wfmpdjuz!pg!fggpsu!!!up!uibu!pg!mpbe!"/!Ipxfwfs-!bt!uif!fggpsu! npwft!cz!b!ejtubodf! !boe!uif!mpbe!npwft!cz!b!ejtubodf! !jo!uif!tbnf!ujnf! -!uif!wfmpdjuz!sbujp!jt!hjwfo!bt Velocity of the effort x 0 t x !>! !>! ! )9/3* ! #$!>! Velocity of the load y 0t y ŶŹŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Uivt-!uif! !pg!b!nbdijof!jt!tjnqmz!hjwfo!bt! �! 9ORTHY!OF!0OTE h ' - /!Uif!#$ pg!b!nbdijof!efqfoet! pomz!po!jut!hfpnfusjdbm!gfbuvsft+/!Ju!jt!b! !gps!b!hjwfo! nbdijof-!jssftqfdujwf!pg!boz!fyusb!fggpsut!sfrvjsfe!evf!up!gsjdujpo/! Ipxfwfs-! !pg!b!nbdijof!dibohft!xjui!dibohf!jo!gsjdujpo/!! ! ! #$ ' 8/!Fggjdjfodz!)g*! Ju!jt!uif!sbujp!pg!uif!pvuqvu!up!uif!joqvu/!Ju!jt!b!nfbtvsf!pg!ipx!nvdi!pg!uif!xpsl!epof!po! uif!nbdijof!jt!dpowfsufe!joup!vtfgvm!xpsl/!Uif!fgÝdjfodz!pg!b!nbdijof!jt!bmtp!hjwfo!cz!uif!sbujp!pg!jut! #$-!bt!tipxo!cfmpx/ Output work W ¥ y W 0P MA !>! !>! ! !>! Input work P¥x VR x0y h!>! ! !up! )9/4* Uif!fgÝdjfodz!pg!b!nbdijof!jo!qsbdujdf!jt!bmxbzt!mftt!uibo!211&-!bt!tpnf!fofshz!jt!mptu!evf!up!gsjdujpo!jo! uif!gpsn!pg!ifbu-!tpvoe-!fud/!Uijt!jnqmjft!uibu!gps!b!nbdijof-!jut! #$ 9/!Jefbm!Nbdijof! �! 9ORTHY!OF!0OTE h #$ ! . ! / " # $ % $ ! gsjdujpomftt!nbdijof # # # :/!Jefbm!Fggpsu!)Qjefbm*! & ' ( Myth $# W P #$ \ W VR ! & #$ )* 21/!Jefbm!Mpbe!)Xjefbm*! & ( $# " .1!jre 5µ«¬¹³°µ¬ɏ»¯¬ɏ¹¬¨º¶µºɏ ¶¹ɏ³¶ºº¬ºɏ°µɏ¨ɏ´¨ª¯°µ¬ɏ ¨µ«ɏ«¬»¬¹´°µ¬ɏ°»ºɏ ¬ĺª°¬µªÀȍ ,& Fact! Uif!wfmpdjuz! sbujp!pg!bo!bduvbm! nbdijof!jt!mftt! uibo!uibu!pg!uif! jefbm!wfstjpo!pg! uibu!nbdijof/ " #$ ! $ & $# 0 ! ' # " ! ¥ #$ 9/4! & )+ �! MPTTFT!JO!NBDIJOFT! ! ( # $! " # ( & ! $# ! " ! " ( !! $ # " $ ' ɏ MA VR h - ŶŹŵ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ $ 3' )* # ! 4! Wactual ¥ y P¥x $ 3' ) + " 9/4/2! !4 )2 $ W VR )5 ! $# ( Wactual P ¥ VR h " W h ¥ VR fi ! )2 ! 6 3' ) 7 W/Pactual VR fi " ( ! h ¥ #$ $# " ! ¥ #$ 4 " 4" )) Fggjdjfodz!jo!Ufsnt!pg!Jefbm!boe!Bduvbm!Fggpsut!boe!Mpbet 3 $# fi h Output Input Input - Losses Input Pactual ¥ x - Pfriction ¥ x Pactual ¥ x h !ideal !actual ∵ ! 4! 6 ( fi h Output Input h "actual "ideal ! !actual - !friction !actual 0! Output Output + Losses ∵" " Wactual ¥ y Wactual ¥ y + Wfriction ¥ y "actual "actual + "friction 4" 'XAMPLE!jrc !µɏ¬Ĺ¶¹»ɏ¶ɏżŴɏ.ɏ°ºɏ¹¬¸¼°¹¬«ɏ©Àɏ¨ɏ´¨ª¯°µ¬ɏ»¶ɏ³°ļɏ¨ɏ³¶¨«ɏ¶ɏżŴŴɏ.ȍɏ4¯¬ɏ¬Ĺ¶¹»ɏ´¶½¬ºɏ ©Àɏ¨ɏ«°º»¨µª¬ɏ¶ɏŹŴŴɏ´´ɏ¨µ«ɏ»¯¬ɏ³¶¨«ɏ´¶½¬ºɏ©ÀɏŸżɏ´´ȍɏ#¨³ª¼³¨»¬ɏ»¯¬ɏ´¬ª¯¨µ°ª¨³ɏ ¨«½¨µ»¨®¬Ȏɏ½¬³¶ª°»Àɏ¹¨»°¶ɏ¨µ«ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏ´¨ª¯°µ¬ȍɏɏ7¯¨»ɏ°ºɏ»¯¬ɏ¬Ĺ¬ª»ɏ¶ɏ¹°ª»°¶µɏ¶µɏ¬Ĺ¶¹»ɏ¨µ«ɏ ³¶¨«ȓ \MP!9/3-!MP!9/4^ 5OLUTION! 8 # 9 ! ) : " : + = #$ 3 h W P x y MA VR . # ) $ *) 800 21 80 500 21/53 48 10 C2 10.42 :7!& ŶŹŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 3 D ( 9/5! .1!jrf 80 - !4 " ! ¥ #$ 4 " 800 10.42 ) ¥ 4/33!O *E 4 ) 47/7!O �! SFWFSTJCMF!BOE!TFMG.MPDLJOH!NBDIJOFT !( D $°Ĺ¬¹¬µ»°¨»¬ɏ©¬»¾¬¬µɏ ¹¬½¬¹º°©³¬ɏ¨µ«ɏº¬³Ɋ ³¶ª²°µ®ɏ´¨ª¯°µ¬ºȍ W VR ! !! "( $ ! & # $ 2/! Uif! mpbe! mjgufe! gbmmt! epxo! " # ( 6 sfwfstjcmf!nbdijof ! ! " ! $ )E 3/!Uif!mpbe!mjgufe!epft!opu!gbmm!epxo! " jssfwfstjcmf! !tfmg.mpdljoh!nbdijof 0 ! $# F & ! 4G ! ! 4" & $ # $ ( # ( # ! ( # ( # ( " # ( HG ! fi ! 4" fi ! H E" fi Wy 1 J Px 2 fi hJ " 1 2 ( ! # ( 0 ! # ( # & # 6 ( # ! ( ! $ ( ! & ! " ! $ # H" hJ+ + G Effort, P + Actual machine B m = tan q A q DW DP Ideal machine G P W W ! Gjh/!9/3! ( c O Load, W Gjh/!9/4! % ɏ ŶŹŷ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ 9/6! .1!jrg �! MBX!PG!NBDIJOFT " )µ¬¹ɏ»¯¬ɏ³¨¾ɏ¶ɏ ´¨ª¯°µ¬ºȍ # ! & " mbx!pg!nbdijof ( 0! !( $ )7 ! ' ! ! ! 0 $ $ ( $ ! $ $ )7 9/7! " )C ! ) )C ( !! �! NBYJNVN!NB!BOE!NBYJNVN!g " " ( W P ( # ( 1 m + c/W W mW + c ! N" ( $ 3' ) " M N" 0 " M " !! ( M N" # $ $# ) 0 " "( # $ )* h MA 1 MA = m + c /W 0 0 MAmax = 1 m h= 1 1 ¥ VR m + c /W h max = 0 0 W 1 1 ¥ VR m W (b) Variation of h with load W (a) Variation of MA with load W Gjh/!9/5 " & ( h MA VR " ( 1 1 ¥ VR m + c/W ( ( $ 3' )7 h # # ! # $ $ Opuf %º»¨©³°º¯ɏ»¯¬ɏ¹¬³¨»°¶µɏ ©¬»¾¬¬µɏ´¬ª¯¨µ°ª¨³ɏ ¨«½¨µ»¨®¬ɏ¨µ«ɏ³¶¨«Ȏɏ ¨µ«ɏ©¬»¾¬¬µɏ¬ĺª°¬µªÀɏ ¨µ«ɏ³¶¨«ȍ F ! DP DW / G8 q ! ! ( .1!jrh !! ! 4! $ $ "K ! G # ' ! ) ! "" ! ŶŹŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº h $ VR % m !"& !h h #! ! # ¥ ' ! ( ' & ! ! # # " & # ! 'XAMPLE!jrd !ɏº°´·³¬ɏ³°ļ°µ®ɏ´¨ª¯°µ¬ɏ³°ļºɏŶŴŴɏ.ɏ¨µ«ɏŷŴŴɏ.ɏ©Àɏ¼º°µ®ɏ¬Ĺ¶¹»ºɏ¶ɏŹŴɏ.ɏ¨µ«ɏźŴɏ.ɏ ´¨®µ°»¼«¬Ȏɏ ¹¬º·¬ª»°½¬³Àȍɏ ɏ )ɏ °»ºɏ ½¬³¶ª°»Àɏ ¹¨»°¶ɏ °ºɏ ŶŹȎɏ «¬»¬¹´°µ¬ɏ ș¨Țɏ »¯¬ɏ ³¨¾ɏ ¶ɏ ´¨ª¯°µ¬Ȏɏș©Țɏ°»ºɏ¬ĺª°¬µªÀɏ¨»ɏ©¶»¯ɏ»¯¬ɏ³¶¨«ºɏ¨µ«ɏª¯¬ª²ɏ»¯¬ɏ¹¬½¬¹º°©°³°»Àɏ¶ɏ»¯¬ɏ´¨ª¯°µ¬ȎɏșªȚɏ»¯¬ɏ¬Ĺ¶¹»ɏ ³¶º»ɏ°µɏ©¶»¯ɏ»¯¬ɏª¨º¬ºȎɏ¨µ«ɏș«Țɏ»¯¬ɏ´¨¿°´¼´ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏ´¨ª¯°µ¬ȍ \MP!9/4-!MP!9/7^ 5OLUTION! ) "$ *!! $ + , ," ! $ - , ," #$ $ + *!$ "0 * !$+ , "$ , fi + $ 0 * !$- , "$% , fi - $% 0 & # " $ ! $% " * Q!>!1/2X!,!41 * !$+ , "$ , W 200 MA 4 $ $( ! h$ $ $ - $ 27!& $ P 50 VR 25 2 h + 7" jssfwfstjcmf/ !. ' ' 2 ' ' * !$- , "$% , W 300 MA 5 $ $+ ! h$ $ $ $ 31!& $ P 60 VR 25 2 h + 7" jssfwfstjcmf/ !' * !$+ , "$ , " ' * !$- , "$% $ VR ¥ m $ 1 1 ¥ $ 25 0.1 ! $ P- W 200 $ 50 $ 53!O VR 25 ! $!: W 300 $- : $ 59!O VR 25 , " h "$% ( $ 51!& �!0OTE 2 # .1!jri #³¨ºº°Àɏ³¬½¬¹ºɏ¨µ«ɏ «¬»¬¹´°µ¬ɏ´¬ª¯¨µ°ª¨³ɏ ¨«½¨µ»¨®¬ɏ¶ɏ¬¨ª¯ɏ ª³¨ººȍ + 7" 9/8! & !" �! MFWFST . ! < !& . . ! # ! & # ! ! ! !& ! # ! = ! & " & # # ! ! < ɏ ŶŹŹ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ ' ! # ! & ! + < ! ! ! ! ? ! " ! # & # "¥ :!¥ S A@ $ * !" mpbe!bsn < & fggpsu!bsn ! @" W a Effort arm $ $ load arm P b fi $ > ! # Load W Effort P O Pivot B A a b Gjh/!9/6! & = & mfwfsbhf ( bewboubhf C 9/8/2! D mbx!pg!mfwfs B & ! # ! ! ! nfdibojdbm! !" Dmbttjgjdbujpo!pg!Mfwfst ! # 2/! Dmbtt.J! # F ! < # " # # # ! !& ! & & " 3/!Dmbtt.JJ! B ? GBB # ! ! & G ? !& !& # ! " ! ' !& # # ! GB # ! ! ! ' # # H & ! # = 4/!Dmbtt.JJJ! !& # # ! ! ' - */!Uif! !jt!bmxbzt!mftt! uibo!pof/!Uiftf!mfwfst!jodsfbtf!uif!tqffe!pg!xpsl!xjuipvu!boz!hbjo!jo!gpsdf/!Gjsf!upoht-!uxff{fst-!lojwft!boe! tqbeft!bsf!tpnf!fybnqmft!pg!Dmbtt.JJJ!mfwfst/ Effort Load Load Fulcrum (a) Class-I lever Fulcrum Load Effort (b) Class-II lever Fulcrum Effort (c) Class-III lever Gjh/!9/7 B!dpnqpvoe!mfwfs!jt!b!tztufn!jo!xijdi!uxp!ps!npsf!mfwfst!bdu!vqpo!fbdi!puifs/!Fybnqmft!pg!dpnqpvoe! mfwfst!bsf!objm!dmjqqfst-!ujo!tojqt!boe!hbsefo!tifbst/! ŶŹźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!jre !ɏª¶´·¶¼µ«ɏ³¬½¬¹Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏżȍŻ¨Ȏɏ°ºɏ¼º¬«ɏ»¶ɏ³°ļɏ¨ɏ³¶¨«ɏ¶ɏŷŴɏ².ɏ¨ª»°µ®ɏ¨»ɏ »¯¬ɏ·¶°µ»ɏ&ȍɏ#¨³ª¼³¨»¬ɏ»¯¬ɏ¬Ĺ¶¹»ɏ»¶ɏ©¬ɏ¨··³°¬«ɏ¨»ɏ»¯¬ɏ·¶°µ»ɏ!ɏ»¶ɏ±¼º»ɏ³°ļɏ»¯¬ɏ³¶¨«ȍɏ !³º¶Ȏɏª¨³ª¼³¨»¬ɏ»¯¬ɏ´¬ª¯¨µ°ª¨³ɏ¨«½¨µ»¨®¬ɏ¶ɏ»¯¬ɏª¶´·¶¼µ«ɏ³¬½¬¹ɏ°ɏ³ŵɏǛɏŵŸŴɏ´´Ȏɏ³ŶɏǛɏŹŴɏ´´Ȏɏ³ŷɏǛɏŶŴŴɏ ´´ɏ¨µ«ɏ³ŸɏǛɏŸŴɏ´´ȍ \MP!9/8^ Effect P B Pivot l1 A Load W E Pivot D l2 C F l3 l4 (a) Compound lever Effect P Pivot B E A l1 l2 R Load W R C Pivot D F l3 l4 (b) FBD of each lever Gjh/!9/8 5OLUTION! Hjwfo;!"!>!41!lO-! 2!>!251!nn-! 3!>!61!nn-! 4!>!311!nn-! 5!>!51!nn/ Xifo!mfwfst!BC!boe!DE!bsf!tfqbsbufe-!uifz!fyfsu!b!sfbdujpo!$!)xijdi!jt!b!gpsdf!jo!uif!mjol!CD*!po!fbdi!puifs! bt!tipxo!jo!Gjh/!9/8 /!Gps!uif!mfwfs!DE-!ubljoh!npnfout!bcpvu!uif!qpjou!E-!xf!hfu Wl4 ! )* $!¥!) 4!,! 5*!Ï!"!¥! 5!>!1! fi! $!>! l3 + l4 Gps!uif!mfwfs!BC-!ubljoh!npnfout!bcpvu!uif!qpjou!F-!xf!hfu !!¥! 2!Ï!$!¥! 3!>!1 Tvctujuvujoh!uif!wbmvf!pg!$!gspn!Fr/!) *!jo!uif!bcpwf!frvbujpo-!xf!hfu Wl4 Wl4 l2 30 ¥ 40 ¥ 50 !¥! 3!>!1! fi! !!>! !>! !>!2/8:!lO !!¥! 2!Ï! l3 + l4 l1 (l3 + l4 ) 140 (200 + 40) W 30 \! Nfdibojdbm!bewboubhf-! >! !>! !>!27/87 P 1.79 .1!jrj $¬»¬¹´°µ¬Ȏɏ½¬³¶ª°»Àɏ ¹¨»°¶ɏ¨µ«ɏ¬ĺª°¬µªÀɏ ¶ɏ¨µɏ°µª³°µ¬«ɏ·³¨µ¬Ȏɏ ¾¬«®¬Ȏɏ¨µ«ɏº°´·³¬ɏ¨µ«ɏ «°Ĺ¬¹¬µ»°¨³ɏºª¹¬¾ɏ±¨ª²ºȍ 9/9! 9/9/2! �! NBDIJOFT!CBTFE!PO!JODMJOFE!QMBOF Tjnqmf!Jodmjofe!Qmbof! Bo!jodmjofe!qmbof!jt!pof!pg!uif!tjnqmftu!nbdijoft!vtfe!gps!btdfoejoh!ps!eftdfoejoh! pckfdut/!Uif!gpsdf!sfrvjsfe!up!npwf!bo!pckfdu!pwfs!)vq!ps!epxo*!bo!jodmjofe!qmbof!jt! rvjuf!mftt!dpnqbsfe!up!uibu!sfrvjsfe!up!npwf!ju!wfsujdbmmz-!cvu!uif!ejtubodf!npwfe!cz! ɏ ŶŹŻ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ uif!fggpsu!jodsfbtft/!Tpnf!bqqmjdbujpot!pg!jodmjofe!qmbof!bsf!sbnqt-!nfubm!boe!xbufs!tmjeft-!bjsqmbof!sftdvf! tmjeft-!ipqqfst!boe!gvoofmt/!Uif!gpmmpxjoh!uisff!gpsdft!bdu!po!uif!cmpdl!qmbdfe!po!bo!jodmjofe!qmbof!bt!tipxo! jo!Gjh/!9/9/ ! )j*! Xfjhiu!"!pg!uif!cmpdl!bdujoh!wfsujdbmmz!epxoxbse/! ! )jj*! Gsjdujpo!(!bdujoh!qbsbmmfm!up!uif!qmbof/ ! )jjj* Opsnbm!sfbdujpo!)!bdujoh!qfsqfoejdvmbs!up!qmbof/! Dpotjefs!b!mpbe!)cmpdl*!pg!xfjhiu!"!qmbdfe!po!b!qmbof!jodmjofe!bu!bo!bohmf!a!xjui!ipsj{poubm-!bt!tipxo!jo! Gjh/!9/9/!Uif!cmpdl!jt!qvmmfe!vq!cz!bo!jofyufotjcmf!tusjoh!qbttjoh!pwfs!b!qvmmfz/!Xifo!bo!fggpsu!!!jt!bqqmjfe! bu!uif!gsff!foe!pg!tusjoh-!uif!cmpdl!npwft!gspn!uif!qptjujpo!D!up!uif!qptjujpo!E!cz!b!ejtubodf! /!Tjodf!uif! tusjoh!jt!jofyufotjcmf-!uif!fggpsu!!!bmtp!npwft!cz!tbnf!ejtubodf! /!Uif!mpbe!jt!mjgufe!vq!wfsujdbmmz!cz!b!ejtubodf! !tjo!a/!Uif!wfmpdjuz!sbujp!jt!hjwfo!bt Distance moved by the effort #$!>! !>!dptfd!a )9/25* !>! Distance moved by the load sina Uif!nfdibojdbm!bewboubhf!jt!hjwfo!bt W !>! P B B P1 x P D W F A ! P1 W 90° C f a Gjh/!9/9! * 90° C x N f P A 35° N1 F = mN1 Gjh/!9/:! 'XAMPLE!jrf !µɏ¬Ĺ¶¹»ɏ¶ɏŻŴɏ.ɏ°ºɏ¹¬¸¼°¹¬«ɏ»¶ɏ´¶½¬ɏ¨ɏ³¶¨«ɏ¶ɏŵŶŴɏ.ɏ¼·ɏ¨µɏ°µª³°µ¬«ɏº´¶¶»¯ɏ·³¨µ¬ɏ ¾°»¯ɏ ¨µɏ °µª³°µ¨»°¶µɏ ¶ɏ ŷŹǸɏ ¾°»¯ɏ »¯¬ɏ ¯¶¹°Á¶µ»¨³ȍɏ ș¨Țɏ #¨³ª¼³¨»¬ɏ »¯¬ɏ ½¬³¶ª°»Àɏ ¹¨»°¶Ȏɏ ´¬ª¯¨µ°ª¨³ɏ¨«½¨µ»¨®¬ɏ¨µ«ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏºÀº»¬´ȍɏ)ºɏ»¯¬ɏ°µª³°µ¬«ɏ·³¨µ¬ɏ¹¬½¬¹º°©³¬ɏ¶¹ɏ°¹¹¬½¬¹º°©³¬ȓɏș©Țɏ )ɏ»¯¬ɏª¶¬ĺª°¬µ»ɏ¶ɏ¹°ª»°¶µɏ©¬»¾¬¬µɏ³¶¨«ɏ¨µ«ɏ°µª³°µ¬«ɏ·³¨µ¬ɏª¯¨µ®¬ºɏ»¶ɏŴȍŷȎɏ¾¯¨»ɏ¾°³³ɏ©¬ɏ»¯¬ɏ¬Ĺ¶¹»ɏ³¶º»ɏ «¼¬ɏ»¶ɏ»¯¬ɏ¬¿»¹¨ɏ¹°ª»°¶µȓɏșªȚɏ7°»¯ɏ»¯¬ɏ¨©¶½¬ɏ¹°ª»°¶µȎɏ«¶¬ºɏ»¯¬ɏ°µª³°µ¬«ɏ·³¨µ¬ɏ©¬ª¶´¬ɏ°¹¹¬½¬¹º°©³¬ȓɏ)ɏ µ¶»Ȏɏ¾¯¨»ɏ°ºɏ»¯¬ɏ´¨¿°´¼´ɏ¨µ®³¬ɏ¶ɏ°µª³°µ¨»°¶µɏ¶¹ɏ»¯¬ɏ°µª³°µ¬«ɏ·³¨µ¬ɏ»¶ɏ¹¬´¨°µɏ°¹¹¬½¬¹º°©³¬ȓ \MP!9/9^ 5OLUTION! Hjwfo;!"!>!231!O-!!!>!81!O/!a!>!46¡-!m!>!1/4/ ! ) *! Wfmpdjuz!sbujp-! #$ >!dptfd!a!>!dptfd!46¡!>!2/85 W 120 !>!2/8 ! ! Nfdibojdbm!bewboubhf-! + !>! P 70 MA 1.7 ! ! FgÝdjfodz-! h! >! !>! !>!1/:8!>!:8!& VR 1.74 ! ! Tjodf!h!jt!hsfbufs!uibo!61!&-!uif!jodmjobujpo!jt!sfwfstjcmf/ ! ) *! Mfu!uif!sfrvjsfe!fggpsu!cf!!2-!xifo!uif!dpfgÝdjfou!pg!gsjdujpo!dibohft!up!1/4/!Sftpmwjoh!gpsdft!ubohfoujbm! boe!opsnbm!up!uif!jodmjofe!qmbof!boe!bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!)sfgfs!Gjh!9/:*-!xf!hfu S( !>!1;! )2!Ï!"!dpt!a!>!1! fi! )2!>!231!dpt!46¡!>!:9/3:!O ŶŹżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº S(!!>!1;! !2!Ï!m)2!Ï!"!tjo!a!>!1 fi! !2!>!1/4!¥!:9/3:!,!231!tjo!46¡!>!:9/43!O ! ! ! ! Fggpsu!mptu!jo!fyusb!gsjdujpo!>!!2!Ï!!!>!:9/43!Ï!81!>!39/43!O MA W/P1 120 / 98.32 !>! 1/8 81!& ! ) *! Uif!fgÝdjfodz-!h >! VR 1.74 1.74 h sfwfstjcmf ! ! ! ≥" (¥ ≥"¥ a fi m) ≥ " %& fi a£m fi a £ # '$ fi 9/9/3! a$ ≥ " a Xfehf! ! ( ( , - a fi m #" a £ 27/8¡ # )$ # * ( $ �! 9ORTHY!OF!0OTE ( * ! " +& +& ) ( +& * ) ) 5 ) * ) 6 ( ) ) #$ # +: $ l h 1 tan a #+ & $ #! #$ # +& $ l h ) 2{ ◊ tan(a /2)} #! ) " $ 1 2 tan(a /2) #+ &=$ " Block ) $ W W W a Wedge (a) A wedge used to lift a load a/2 h a P W P l l (b) Single wedge (c) Double wedge Gjh/!9/21! " 5> ) ( ? P h ɏ ŶŹŽ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ * ) @ ! : A6 #: =$ #: :$ " ! " fi ! sin(180∞ - 2f - a ) sin(90∞ + 2f + a ) sin(2f + a ) ! " fi ! " #Bf C a$ cos(2f + a ) fi " sin(180∞ - 2f - a ) sin(90∞ + 2f + a ) #+ &:$ 'XAMPLE!jrg #¨³ª¼³¨»¬ɏ»¯¬ɏ¬Ĺ¶¹»ɏ¹¬¸¼°¹¬«ɏ»¶ɏ³°ļɏ¨ɏŵŶŴŴɊ.ɏ©³¶ª²ɏ¼º°µ®ɏ¨ɏº°µ®³¬ɏ¾¬«®¬ɏ¶ɏŵŹǸɏ ¨µ®³¬ȍɏ4¯¬ɏª¶¬ĺª°¬µ»ɏ¶ɏ¹°ª»°¶µɏ¶µɏ¨³³ɏº¼¹¨ª¬ºɏ°µɏª¶µ»¨ª»ɏ°ºɏŴȍŵŶȍɏ!³º¶ɏª¨³ª¼³¨»¬ɏ»¯¬ɏ ´¬ª¯¨µ°ª¨³ɏ¨«½¨µ»¨®¬Ȏɏ»¯¬ɏ½¬³¶ª°»Àɏ¹¨»°¶ɏ¨µ«ɏ»¯¬ɏ¬ĺª°¬µªÀɏ¨µ«ɏª¯¬ª²ɏ¾¯¬»¯¬¹ɏ»¯¬ɏºÀº»¬´ɏ°ºɏ¹¬½¬¹º°©³¬ɏ ¶¹ɏ °¹¹¬½¬¹º°©³¬ȍɏ $¬»¬¹´°µ¬ɏ »¯¬ɏ ´¨¿°´¼´ɏ ¨µ®³¬ɏ ¶ɏ »¯¬ɏ ¾¬«®¬ɏ ¼·ɏ »¶ɏ ¾¯°ª¯ɏ »¯¬ɏ ºÀº»¬´ɏ ¹¬´¨°µºɏ °¹¹¬½¬¹º°©³¬ȍɏɏɏ \MP!9/9^ E" f 5OLUTION! D A &B %& 6 H I ) AJ ) h * J , a & F m &B %& m &B = +GF ! " #Bf C a$ &B #B ¥ = +GF C & F$ W 1200 2/94 P 656.44 1 1 4/84 #$ tan a tan 15∞ MA 1.83 h GK 5:!& 3.73 VR jssfwfstjcmf 767/55!O ) MA WLP "/{" tan(2f + a )} (1 - tan 2f tan a ) a 1/tan a VR VR (tan 2f + tan a ) Bf #B ¥ = +GF$ BG'G (1 - tan 2f tan a ) tan a (1 - 0.2434 tan a ) h a (tan 2f + tan a ) (0.2434 + tan a ) A6 # $ J )h a ) ) + && O )hJ P * h M J J , J * fi M * #h £ $ J #$ N K N a J ) ) h tan a (1 - 0.2434 tan a ) (0.2434 + tan a ) A6 # $ fi a a% BG'G aB 71/7¡ B a% a C &B&: 6 6 a& B+' fi a& 26/9¡ a E Q a £ 26/9¡ 71/7¡ £ a Q K F BG'G &B&: C aB & ::B ++ O fi B a ) ŶźŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº > J 6 a " J ) ) #B ¥ = +GF C & +F$ #B ¥ = +GF C = =F$ 6 #Bf C a&$ " #Bf C aB$ " Q a £ 26/9¡ " " !& !B J &B &B ¥ ='K =:+ ': , ¥ ' ' GB=' G , 70 60 Efficiency, h (%) 50 40 30 20 10 15.8° 0 10 a1 20 0 30 40 50 60.6° a2 70 80 Wedge angle, a (degrees) f + 7/95¡ )m!>!1/23* Gjh/!9/22! , 9/9/4! Tdsfx!Kbdl! B!tdsfx!kbdl!jt!vtfe!up!mjgu!ifbwz!mpbet!cz!bqqmzjoh!tnbmmfs!fggpsut/!B!tdsfx!kbdl!ps!tjnqmz!b!kbdl!jt!dpnnpomz! vtfe!up!mjgu!wfijdmft!gps!dibohjoh!xiffmt/!Ju!dpotjtut!pg!b!cbtf!jo!uif!tibqf!pg!ipmmpx!gsvtuvn!pg!b!dpof-!b!ovu!bu! uif!upq!pg!uif!gsvtuvn-!b!uisfbefe!tdsfx!xjui!b!dpmmbs-!boe!b!mfwfs!buubdife!up!uif!dpmmbs-!bt!tipxo!jo!Gjh/!9/: /! Uif!qjudi!pg!uif!uisfbet!pg!uif!tdsfx!boe!uibu!pg!uif!ovu!jt!tbnf-!tp!uibu!uif!tdsfx!dbo!nfti!xjui!uif!ovu/ W W l Collar l Lever M=F¥l Screw p F F Screw d Nut O Lever p a P Base (a) Construction d a (b) Top view of screw jack R f (c) Forces acting on screw Gjh/!9/23! - Gps!mjgujoh!ps!mpxfsjoh!uif!mpbe-!uif!mfwfs!jt!spubufe/!Jg! !jt!uif!mfohui!pg!mfwfs!boe! !jt!uif!qjudi!pg!uisfbet! pg!tdsfx-!uifo!jo!pof!spubujpo!uif!fggpsu!npwft!cz!b!ejtubodf!3p !boe!uif!mpbe!jt!mjgufe!cz!b!ejtubodf! /! ɏ Ŷźŵ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ Uivt-!uif!wfmpdjuz!sbujp!nbz!cf!fyqsfttfe!bt Distance moved by effort 3pl ! )9/29* !>! #$! >! p Distance moved by load Uijt!tipxt!uibu!uif!wfmpdjuz!sbujp!pg!b!tdsfx!kbdl!dbo!cf!jodsfbtfe!cz!efdsfbtjoh!uif!qjudi!pg!uif!tdsfx/ Gjhvsf!9/23 !tipxt!uif!upq!wjfx!pg!uif!tdsfx!boe!mfwfs/!Uif!fggpsu!bqqmjfe!bu!uif!foe!pg!uif!mfwfs!jt!(-! xijdi!jt!usbotgfssfe!bt!jut!frvjwbmfou!fggpsu!! bu!uif!nfbo!sbejvt!pg!tdsfx! 03-!xifsf! !jt!uif! ! pg!uif!tdsfx/!Ubljoh!npnfout!pg!uif!gpsdft!bcpvu!uif!dfousf!pg!uif!tdsfx-!xf!hfu 3Fl S }P!>!1;! (!¥! !Ï!!!¥! !>!1! fi! !!>! 3 d . /!Uif!efwfmpqnfou!pg!gpsdft!po!b!trvbsf! uisfbefe!tdsfx!jt!tipxo!jo!Gjh/!9/23 /!Fbdi!uisfbe!pg!b!tdsfx!jt!bttvnfe!bt!pof!jodmjofe!qmbof!pg!ipsj{poubm! mfohui!/ !bt!tipxo!jo!Gjh/!9/24/!Jg! uisfbet!pg!b!tdsfx!boe!ovu!bsf!jo!dpoubdu!xjui!fbdi!puifs-!uif!mpbe!" jt! ejtusjcvufe!vojgpsnmz!bnpoh!uiftf! uisfbet/!Boe-!tp!epft!uif!gpsdf!!/!Uivt-!bt!tipxo!jo!Gjh/!9/24 -!uif!mpbe! boe!uif!fggpsu!tibsfe!cz!fbdi!uisfbe!bsf!hjwfo-!sftqfdujwfmz-!bt!" ¢!>!"0 !boe!!¢!>!!0 / Uif!tdsfx!kbdl!mjgut!uif!mpbe!cz!efwfmpqjoh!gsjdujpo!(!boe!opsnbm!sfbdujpo!)!bu!uif!uisfbe!tvsgbdft!jo! dpoubdu/!Uif!sftvmubou!$!pg!uiftf!uxp!gpsdft!jt!tipxo!jo!Gjh/!9/21 xijdi bdut!bu!bo!bohmf!f!)bohmf!pg!gsjdujpo*! xjui!opsnbm!sfbdujpo/!Ju!jt!dmfbs!uibu!uif!mpbe!" ¢!jt!bdujoh!ejsfdumz!po!uif!jodmjofe!qmbof!pg!uif!uisfbe!pg!tdsfx/! Uif!bohmf!a- dbmmfe!ifmjy!bohmf-!jt!uif!bohmf!pg!jodmjobujpo!pg!b!uisfbe!xjui!uif!ipsj{poubm/!Jo!pof!dpnqmfuf! spubujpo!pg!uif!mfwfs-!uif!ipsj{poubm!ejtubodf!dpwfsfe!cz!!¢ jt!p -!xijmf!uif!mpbe!"¢!jt!mjgufe!cz!b!ejtubodf! /! Tp-!uif!ifmjy!bohmf!a!jt!hjwfo!cz p ! ubo!a! >! ! )9/2:* pd �!0OTE! Gps!dpnnpomz!vtfe!trvbsf!uisfbet-!uif!nfbo!ejbnfufs! !jt!sfmbufe!up!uif!qjudi! !pg!uif!uisfbet!bt! gpmmpxt/!Bt!tipxo!jo!Gjh/!9/24 -!uif!ifjhiu!pg!fbdi!uisfbe!jt! 03/!Gps!b!trvbsf!uisfbe-!jut!efqui! !jt!tbnf! bt!jut!ifjhiu-!j/f/-! !>! 03/!Uifsfgpsf-!jg! p!jt!uif!pvufs!ejbnfufs-!xf!ibwf!uif!nfbo!ejbnfufsÊ ˆ !>! p!Ï! Á + ˜ !>! p!Ï! !>! p!Ï! Ë 3 3¯ 3 W¢ P¢ do W F = mN a t f R a W¢ p P¢ F Screw Threads N pd (b) Lifting the load N a Nut W¢ P¢ F = mN a t/2 d p t/2 (a) Distribution of forces among threads Gjh/!9/24 R N f a pd (c) Lowering the load p ŶźŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 2/!Fggpsu!Sfrvjsfe!up!Mjgu!uif!Mpbe! Gjhvsf!9/24 !tipxt!uif!efwfmpqnfou!pg!gpsdft!bu!uif!tdsfx!uisfbe! xifo!uif!mpbe!"!jt!mjgufe!cz!uif!fggpsu!!!po!uif!tdsfx!kbdl/!Uif!opsnbm!sfbdujpo!)!bdut!qfsqfoejdvmbs!up!uif! jodmjofe!qmbof!pg!tdsfx/!Uif!ofu!sfbdujpo!$!jt!uif!sftvmubou!pg!uif!opsnbm!sfbdujpo!)!boe!uif!gsjdujpobm!gpsdf! m)/!Uif!bohmf!cfuxffo!uif!mjoft!pg!bdujpo!pg!"¢ boe!sftvmubou!sfbdujpo!$!jt!)a!,!f*/ Bqqmzjoh!frvbujpot!pg!frvjmjcsjvn!bmpoh!boe!qfsqfoejdvmbs!up!uif!ejsfdujpo!pg!" ¢-!xf!hfu " ¢!>!$!dpt!)a!,!f*! boe! !¢!>!$!tjo!)a!,!f*/ Ejwjejoh!uif!uxp!frvbujpot-!xf!hfu P0n P¢ !>!ubo!)a!,!f*! fi! !!>!"!ubo!)a!,!f* !>!ubo!)a!,!f*! fi! ! W0n W¢ 3Fl fi! ! >!"!ubo!)a!,!f* d Wd !ubo!)a!,!f*! )9/31* fi! (! >! 3l Uijt!hjwft!uif!fggpsu!(!sfrvjsfe!bu!uif!foe!pg!uif!mfwfs!up!mjgu!uif!mpbe!"/!Uivt-!uif!npnfou!sfrvjsfe!up!mjgu! uif!mpbe!"Wd !ubo!)a!,!f*! )9/32* ! >!(!¥! !>! 3 3/!Fggpsu!Sfrvjsfe!up!Mpxfs!uif!Mpbe! Gjhvsf!9/21 !tipxt!uif!efwfmpqnfou!pg!wbsjpvt!gpsdft!xifo! uif!mpbe!"!po!b!tdsfx!kbdl!jt!mpxfsfe!cz!bqqmzjoh!bo!fggpsu!! jo!uif!sfwfstf!ejsfdujpo/!Uif!gsjdujpobm!gpsdf! sfwfstft!jut!ejsfdujpo!boe!uif!sftvmubou!$!tijgut!up!uif!puifs!tjef!pg!opsnbm!sfbdujpo/!Uif!bohmf!cfuxffo!uif!mjof! pg!bdujpo!pg!" ¢!boe!$!cfdpnft!)f!Ï!a*/!Gpmmpxjoh!uif!tbnf!qspdfevsf!bt!bcpwf-!xf!hfu Wd (! >! !ubo!)f!Ï!a*! )9/33* 3l �!0OTE! Jg!a!≥!f-!(!cfdpnft!ofhbujwf!ps!{fsp<!!uijt!nfbot!uibu!uif!tztufn!cfdpnft!sfwfstjcmf/ 4/!Fggjdjfodz!pg!Tdsfx!Kbdl! Uif!fggpsu!sfrvjsfe!up!mjgu!uif!mpbe!bu!uif!nfbo!sbejvt!pg!tdsfx!kbdl!jt!hjwfo! bt!!!>!"!ubo!)a!,!f*/!Gps!bo!jefbm!tdsfx!kbdl-!uif!gsjdujpo!jt!{fsp!)j/f/-!f!>!1*-!uivt!uif!jefbm!fggpsu!jt!hjwfo!bt! !!>!"!ubo!a/!Uivt-!uif!fgÝdjfodz!pg!uif!tdsfx!kbdl!jt!hjwfo!cz " tan a tan a Ideal effort ! )9/34* h! >! !>! !>! Actual effort " tan (a + f ) tan(a + f ) 5/!Nbyjnvn!Fggjdjfodz!pg!Tdsfx!Kbdl! Uif!dpoejujpo!gps!nbyjnvn!fgÝdjfodz!dbo!cf!pcubjofe!cz! ejggfsfoujbujoh!h!xjui!sftqfdu!up!a!boe!qvuujoh!uif!efsjwbujwf!frvbm!up!{fsp-! fi fi fi È tan a ˘ h !>! Í ˙ a a Î tan(a + f ) ˚ a a f a sin(a + f ) cos a cos(a + f ) a 1 2 f f sec 2a tan(a + f ) - sec 2 (a + f ) tan a tan 2 (a + f ) sin a cos (a + f ) cos a 1 a fi fi 2 a fi a f p a fi a f a a p f 4 2 f 45∞ - a f 2 a ɏ Ŷźŷ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ a tan a tan(a + f ) h! ! ! ! {1 - tan(f /2)}/{1 + tan(f /2)} {1 + tan(f /2)}/{1 - tan(f /2)} tan(45∞ - (f /2)) tan(45∞ + (f /2)) Ê cos(f /2) - sin(f /2) ˆ ÁË ˜¯ cos(f /2) {1 - tan(f /2)}2 {1 + tan(f /2)}2 2 {cos(f /2) - sin(f /2)}2 {cos(f /2) + sin(f /2)}2 Ê cos(f /2) + sin(f /2) ˆ ÁË ˜¯ cos(f /2) 2 2 cos (f /2) + sin (f /2) - 2 cos(f /2) sin(f /2) 1 - sin f cos 2 (f /2) + sin 2 (f /2) + 2 cos(f /2) sin(f /2) 1 + sin f 2 " ! ! ! h! * ! 9/9/5! ! ! # $ 1 - sin f 1 + sin f + + %& ' + Ejggfsfoujbm!Tdsfx!Kbdl - ejggfsfoujbm!tdsfx!kbdl + + + ! + ! + + ! # $& . ! + &* + + + + + 0 3 & %&6'& * ! 7 + -& * $ ! & * + + -& * + + ! &8 + + ! & * -! 7 + + & 9 7 6 ! + +" + + ! 3 & %&66& . ! + : ! + p ; ++ ! + 6 : ++ ! + 7 : + + 6 Distance moved by effort 2pl \ < = #$ Distance moved by load p1 - p2 * #$ + # $ ! !& * + + ! + ! + &* + ! - ,- > + + m6 f,& + m@ b& b ? + + Load, W Moves down p2 m6 P Lever Moves up p1 l Screw, A Nut, C Gjh/!9/25 0 ! ! # $ # $& m& . # $ Screw, B <? ! + + ŶźŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!jrh 4¯¬ɏºª¹¬¾ɏ¶ɏ¨ɏºª¹¬¾ɏ±¨ª²ɏ¯¨ºɏ¨ɏ´¬¨µɏ«°¨´¬»¬¹ɏ¶ɏŵŴŴɏ´´ɏ¨µ«ɏ¨ɏ·°»ª¯ɏ¶ɏŵŷŴɏ´´ȍɏ #¨³ª¼³¨»¬ɏ»¯¬ɏ¶¹ª¬ɏ&ɏ»¯¨»ɏ´¼º»ɏ©¬ɏ¨··³°¬«ɏ¨»ɏ»¯¬ɏ¬µ«ɏ¶ɏźŴŴɏ´´ɏ³¬½¬¹ɏ»¶ɏ¹¨°º¬ɏ¨ɏ ³¶¨«ɏ¶ɏŻŴŴɏ.ȍɏ$¬»¬¹´°µ¬ɏ°»ºɏ¬ĺª°¬µªÀɏ°ɏ»¯¬ɏª¶¬ĺª°¬µ»ɏ¶ɏ¹°ª»°¶µɏ©¬»¾¬¬µɏ»¯¬ɏµ¼»ɏ¨µ«ɏºª¹¬¾ɏ°ºɏŴȍŶŹȍɏ )ºɏ»¯¬ɏºª¹¬¾ɏ±¨ª²ɏº¬³Ɋ³¶ª²°µ®ȓɏ)ɏ°»ɏ°ºȎɏª¨³ª¼³¨»¬ɏ»¯¬ɏ»¶¹¸¼¬ɏµ¬ª¬ºº¨¹Àɏ»¶ɏ³¶¾¬¹ɏ»¯¬ɏ³¶¨«ȍɏ)ɏµ¶»Ȏɏ¾¯¨»ɏ ¨´¶¼µ»ɏ¶ɏ»¶¹¸¼¬ɏµ¬¬«ºɏ»¶ɏ©¬ɏ¨··³°¬«ɏ»¶ɏ²¬¬·ɏ»¯¬ɏ³¶¨«ɏ¹¶´ɏ«¬ºª¬µ«°µ®ȓ \MP!9/9^ 5OLUTION! B * C 6 !! 6E !! !! " F H m G & J& a p pd a 130 p ¥ 100 6 fi a &'6 &'6 & KL * 6 f ( * > ( 6 m + Wd l a * + 700 ¥ 100 2 ¥ 600 f & KL tan 22.29∞ tan(22.29∞ + 14.04∞ ) sfwfstjcmf tan a tan(a + f ) h ! " t !¥ .1!jrk $¬»¬¹´°µ¬ɏ½¬³¶ª°»Àɏ ¹¨»°¶ɏ¨µ«ɏ¬ĺª°¬µªÀɏ ¶ɏ³¬½¬¹ºȎɏ¨µ«ɏº°´·³¬ɏ ¨µ«ɏ«°Ĺ¬¹¬µ»°¨³ɏ·¼³³¬Àɏ ºÀº»¬´ºȍ ! @ ; 6'& 'L 6'& 'L 53/9:!O # $ h 9/:/2! & J 5 5 5 #a $ f% & ¥ , , ' 0.41 0.74 66/5!& #'' '*+ $ , ! " +% , , & - 6/186!On 100 2 9/:! �! QVMMFZ!TZTUFNT / 8! 5 ! - 5 ! " / ! ! ! ! 5 5 5 " ! #% : # % ; # % < 5 ! 5< Tjohmf!Qvmmfz!Tztufn A, ! 5 " ! # < ! ! 5 < = " < > ? ! 5 B= !! % = = C " " ! ! ! " ! ! 5 ! 5 ɏ ŶźŹ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ 8!! 5 C < ! 5 S DC \ @ " <5 #$ 5 ! ? " ¥ E' $ ! ¥ E' fi " ! W " P ! = < ! 5 5 5 !! ! " Myth B!gsjdujpomftt! qvmmfz!nfbot!uif! gsjdujpo!cfuxffo! uif!spqf!boe! qvmmfz!jt!{fsp/ , 8 Fact! ! / ! ! !5 ! ! ! ! < 5 < " 5 5 5 5 = < < > !! Fixed pulley 1 W/8 2 P W/4 Pulley 23 Axle O W/2 Rope 24 d P W W ! Gjh/!9/26! - 9/:/3! Nvmujqmf!Qvmmfz!Tztufnt 5 Gjh/!9/27! ( 5! ! ! 5 5 2/! Gjstu.Psefs!Tztufn!pg!Qvmmfzt! 8 B B= ! " ! ! "E' ! 5 " ! " " A F ! " < 5 5 H "E W " P "/8 5 5 ; ; 5 ! ! ! ! ! A 5 " " ! A ,G B ! > ! 5 <" 5 ' "EA I 'H �!0OTE! B= ! 5 " < ! 5 5 5 ' ! " < " #$ / <5 J 5 #$ 5 5 Ŷźźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 3/! Tfdpoe.Psefs!Tztufn!pg!Qvmmfzt! < ! L 5< # " < %K . " 5 ! ! " #$ ; A ,& < " . ! 5 ! A ,& 8 ; 5 < ! 5 " ! fi ! !! 5< W P 5 B= !! " 5 5 ! ! < F< ! C<" 5< #B= % 5 !! ! ! 5 . " < < <5 ! . " ! ! P P TT T TT TT TT W W W W (a) (b) (a) (b) Gjh/!9/28! - 8 Gjh/!9/29! - = ! !! <5 B" " " F . 5 ! 5 5 ! W ! fi P #$ < < ! 5 . " ! ! ; ; A ,A A ,A #$ 1 4/!Uijse.Psefs!Tztufn!pg!Qvmmfzt! 8 ! ! ! 5 C 5 ! ! ! ! 5 ., ! = K B= < ! B= " .' 5 B= F " < 5 / ! 5 ! " < ; A ,* M '., '! " < < ; ! ! ! < < 5 < A ,* < !! ɏ ŶźŻ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ '.' " . , N .' N .H N . W #' $ ,% P #$ \ 5 #$ ''! ' ¥ '! .H . ' ¥ ''! '.H ! N '! N ''! N 'H! 'H! !#' $ ,% < #' $ ,% D 2 d T4 T4 2 Distance moved by effort T3 T3 W/2 P T2 T2 T1 T1 P W Distance moved by load Gjh/!9/2:! . ! 9/:/4! W/2 W Gjh/!9/31! 0 Ejggfsfoujbm!Qvmmfz!Tztufn 8 ejggfsfoujbm!qvmmfz dibjo!ipjtu Xftupo!ejggfsfoujbm!qvmmfz!cmpdl " 5 "5 " 8 ; A' B= ! 5 1 = 5 8 ! 5 < 8 ! ! ! 5 ! 8 ! 5 5< " !! ! / ! <5 ! ! !! ! ! ! 5 ! ! 5 !< " ! ! <5 p0O 0 < ! < ! ! 5 p O < ! <5 #p0 $ p % " 5< ! !! ! 5 " \ P 5 #p0 $ p %E' <5 Distance moved by effort Distance moved by load 5 ! ; 5 p #0 $ %E' pD p ( D - d )/2 2D (D - d ) 0 0 ! $ # " # # $ ! ! 5 Ŷźżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!jri 5OLUTION! % 1 3 & 6 h !ɏķ¹º»Ɋ¶¹«¬¹ɏºÀº»¬´ɏ¶ɏ·¼³³¬Àºɏ¯¨ºɏķ½¬ɏ´¶½¨©³¬ɏ·¼³³¬Àºȍɏ)ɏ»¯¬ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏ ºÀº»¬´ɏ°ºɏŻŹɏƴȎɏª¨³ª¼³¨»¬ɏ»¯¬ɏ¬Ĺ¶¹»ɏ¹¬¸¼°¹¬«ɏ»¶ɏ³°ļɏ¨ɏŵŴɊ².ɏ³¶¨«ȍ \MP!9/:^ ' h *' + MA VR W P 8 , *' " fi -, .0 #$ 4 h ¥ #$ fi ! W MA 4' , *' ¥ 54 10 24 54 47 1/53!lO 'XAMPLE!jrj !ɏ³¶¨«ɏ¶ɏŵɏ².ɏ°ºɏ³°ļ¬«ɏ©Àɏ¨µɏ¬Ĺ¶¹»ɏ¶ɏŷŴŴɏ.ɏ¼º°µ®ɏº¬ª¶µ«Ɋ¶¹«¬¹ɏºÀº»¬´ɏ¶ɏ·¼³³¬Àºɏ ¾°»¯ɏ»¯¹¬¬ɏ·¼³³¬Àºɏ°µɏ»¯¬ɏ¼··¬¹ɏ©³¶ª²ɏ¨µ«ɏ»¾¶ɏ·¼³³¬Àºɏ°µɏ»¯¬ɏ³¶¾¬¹ɏ©³¶ª²ȍɏ#¨³ª¼³¨»¬ɏ ș¨Țɏ»¯¬ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏ´¨ª¯°µ¬Ȏɏș©Țɏ»¯¬ɏ¬Ĺ¶¹»ɏ³¶º»ɏ°µɏ¹°ª»°¶µȎɏ¨µ«ɏșªȚɏ»¯¬ɏ¹°ª»°¶µ¨³ɏ³¶¨«ȍ \MP!9/:^ 5OLUTION! % &" 1 3 -,,, 0 ! - .0 5<4 #$ W 1000 5 55 P 300 MA 3.33 h , A* 78& VR 5 W 1000 4,, 0 ! VR 5 ! ! ! 5,, 4,, = B ' ' 211!O ! ¥ #$ 5,, ¥ ' -',, 0 " " -',, -,,, 611!O " " ! 5,, 0 !! 9/21! .1!jrcl 9/21/2! #¨³ª¼³¨»¬ɏ½¬³¶ª°»Àɏ¹¨»°¶ɏ ¨µ«ɏ¬ĺª°¬µªÀɏ¶ɏș°Țɏ ¾¯¬¬³Ɋ¨µ«Ɋ¨¿³¬Ȏɏș°°Țɏ ¾¯¬¬³ɏ¨µ«ɏ«°Ĺ¬¹¬µ»°¨³ɏ ¨¿³¬Ȏɏș°°°Țɏ¾¶¹´ɏ¨µ«ɏ ¾¶¹´Ɋ¾¯¬¬³Ȏɏ¨µ«ɏș°½Țɏ ¾°µª¯ɏª¹¨©ºȍ �! XIFFM.BOE.BYMF!MJGUJOH!NBDIJOFT Tjnqmf!Xiffm!boe!Bymf! # 0 8 1 p # # C ! ! ! # # # ! F = 1 # ! E 4- 8 #$ x y W P pD pd D d p0 ! ! " ! ɏ ŶźŽ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ Axle (diameter, d) Wheel (diameter, D) D Handle t2 d Bearing d + t2 Rope t1 D + t1 W P P (a) Wheel and axle (b) Section of wheel and axle with thick rope Gjh/!9/32! " . # . ! 8 # 1 Wheel (diameter, D) E 4Axle dia d1 dia d2 # 0< 0 9/21/3! 1 2 + 1 0< 2 4 < - 4 + 4 4 < 4 Rope # 4 Bearing Xiffm!boe!Ejggfsfoujbm!Bymf -G - # 4 # 1 P " E 44 # Handle W . (a) Wheel and axle # " # # . ! ! Gjh/!9/33! " # # ! # # . # # #$ ! 'XAMPLE!jrk # p0 p p 4 p - p 4 p p 4 H4 pD p (d1 - d 2 )/2 # - 4 2D (d1 - d 2 ) ! !ɏ³¶¨«ɏ¶ɏŷŴŴɏ.ɏ°ºɏ»¶ɏ©¬ɏ³°ļ¬«ɏ©Àɏ¨ɏº°´·³¬ɏ¾¯¬¬³ɏ¨µ«ɏ¨¿³¬ɏ¼º°µ®ɏ¨µɏ¬Ĺ¶¹»ɏ¶ɏŵŴŴɏ.ȍɏ 4¯¬ɏ«°¨´¬»¬¹ɏ¶ɏ»¯¬ɏ¨¿³¬ɏ°ºɏŵŴŴɏ´´ɏ¨µ«ɏ»¯¨»ɏ¶ɏ»¯¬ɏ¾¯¬¬³ɏ°ºɏŸŴŴɏ´´ȍɏ#¨³ª¼³¨»¬ɏ ș¨Țɏ»¯¬ɏ´¬ª¯¨µ°ª¨³ɏ¨«½¨µ»¨®¬Ȏɏș©Țɏ»¯¬ɏ½¬³¶ª°»Àɏ¹¨»°¶Ȏɏ¨µ«ɏșªȚɏ»¯¬ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏ´¨ª¯°µ¬ȍ \MP!9/21^ ŶŻŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 5OLUTION! % &" 5,, 0 ! -,, 0 -,, W 300 4 P 100 400 5 100 = D d #$ h MA VR 3 4 0 7,, 86!& 'XAMPLE!jrcl )µɏ¨ɏ¾¯¬¬³ɏ¨µ«ɏ«°Ĺ¬¹¬µ»°¨³ɏ¨¿³¬Ȏɏ»¯¬ɏ«°¨´¬»¬¹ɏ¶ɏ»¯¬ɏ¬Ĺ¶¹»ɏ¾¯¬¬³ɏ°ºɏŹŴŴɏ´´ɏ¾¯¬¹¬¨ºɏ »¯¬ɏ«°¨´¬»¬¹ºɏ¶ɏ«°Ĺ¬¹¬µ»°¨³ɏ¨¿³¬ºɏ¨¹¬ɏŷŴŴɏ´´ɏ¨µ«ɏŶŹŴɏ´´Ȏɏ¹¬º·¬ª»°½¬³Àȍɏ&°µ«ɏ»¯¬ɏ ³¶¨«ɏ¾¯°ª¯ɏª¨µɏ©¬ɏ³°ļ¬«ɏ©Àɏ¨µɏ¬Ĺ¶¹»ɏ¶ɏŶŴŴɏ.ɏ°ɏ»¯¬ɏ¬ĺª°¬µªÀɏ°ºɏŻŹɏƴȍɏ4¨²¬ɏ»¯¬ɏ¹¶·¬ɏ«°¨´¬»¬¹ɏ¨ºɏ ŵŴɏ´´ȍ \MP!9/21^ 5OLUTION! 9/21/4! - $ &$ 0 " " " h ! #$ 0 0% & $ ' ( % $ ( % 2 De 2 ¥ 510 #$ + (d e1 - d e 2 ) (310 - 260) MA h fi h ¥ #$ VR W fi " ¥! P % % % ! ) , ¥ ¥ , 4171!O Xpsn!boe!Xpsn.Xiffm! " "& #' # & $ # & $ " ! /. 7 8$ # $ " $ # ;#$ & . . "# $ $ " #$ ' # & $ #$ ' # & $ " . & $ # &$ #$ $ & $ " 8$ & : && & $ "" 0 9& " & $ $ " /. 7 :: " "" 9 $ Effort wheel Worm Bearing Worm Bearing D Toothed Worm-wheel d Toothed Worm-wheel Load drum W Load drum (a) 3-D image (b) Line diagram Gjh/!9/34! " P 8$ . $ ɏ ŶŻŵ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ # < ) = $ ;#$ 9 = &= $ ?& pD p d /N t x y #$ & " 9= ; $ " " 8$ $ = pD Nt D #$ 2p d / N t 2d A " & & . ;& # . & : ; & ;#$ " " $ p0@ "= \ > $ # #$ $ # $ : & . ?& : && . "= $ #$ $ & ' #$ # $ & pd N " ND d $ # &. " " &= # $ $ & & . "9& $# . > $ # & . B9 &9 "9 & $ &: " = $ & "& . &9=& " A & " & &: " 9& " : && & 'XAMPLE!jrcc )µɏ¨ɏ¾¶¹´ɏ¨µ«ɏ¾¶¹´Ɋ¾¯¬¬³Ȏɏ»¯¬ɏ«°¨´¬»¬¹ɏ¶ɏ³¶¨«ɏ«¹¼´ɏ°ºɏŶŹŴɏ´´ɏ¨µ«ɏ»¯¨»ɏ¶ɏ ¬Ĺ¶¹»ɏ¾¯¬¬³ɏ°ºɏŹŹŴɏ´´ȍɏ)ɏ¨ɏ³¶¨«ɏ¶ɏŸŴŴŴɏ.ɏª¨µɏ©¬ɏ±¼º»ɏ³°ļ¬«ɏ©Àɏ¨µɏ¬Ĺ¶¹»ɏ¶ɏŶŹŴɏ .Ȏɏķµ«ɏ»¯¬ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏ´¨ª¯°µ¬ȍɏ4¯¬ɏµ¼´©¬¹ɏ¶ɏ»¬¬»¯ɏ¶µɏ¾¶¹´Ɋ¾¯¬¬³ɏ°ºɏźŴɏ¨µ«ɏ»¯¬ɏ¾¶¹´ɏ°ºɏ «¶¼©³¬Ɋ»¯¹¬¨«¬«ȍɏɏ \MP!9/21^ 0 5OLUTION! #$ C $ " h 9/21/5! Nt D 2d . MA VR 16 66 " 60 ¥ 550 2 ¥ 250 ) ! , ) ) )) W P 4000 250 , 35!& ) Xjodi!Dsbc 8$ # $ = && : & & :: $ #$ " ( > & 9& " $ "9 . " : ( & > &&& # 9: .$ : & & 9 "" 9 #$ $ $ " 8$ & :: " $ $ " $ " " . tqvs!hfbst 9& " & $ 2/!Tjohmf.Qvsdibtf!Xjodi!Dsbc! > $ & & . .$$ & $ " $ : 8$ ""9 # 9 " 9 " $ "" 9 & $ "" & & .& "& : &# 9 " $ & #$ $ &:9 . & & &$ # /. 7 , " 9& & $ " $ &:9 #$ . -$ " - : ŶŻŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Handle P R Pinion (Nt1 teeth) Axle P Rope Bearings Post r W Load drum (a) 3-D image Spur wheel (Nt2 teeth) W (b) Line diagram Gjh/!9/35! - �! 9ORTHY!OF!0OTE ) ) ) ) , ) ) ! " p$ ) t1 " p )t2 2p R R N " ◊ t2 " 2p rN t1 / N t 2 r N t1 ! \ Tqvs!hfbst # 3/! Epvcmf.Qvsdibtf! Xjodi! Dsbc! $ % & ' ( ) , - qjojpo tqvs!xiffm nbjo!hfbs $ ! % & ( ) ) ( ) )* $ % & )+ Handle Pinion P Nt1 R Axle A Axle B Nt2 Nt3 Spur wheel r W (a) 3-D image Load drum (b) Line diagram Gjh/!9/36! 0 Nt4 ɏ ŶŻŷ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ $ ! ( .) ) 0. ) * ) +0 ! \ , # ( ) - ) ) $ - 3 " p .) ) 0 .) * ) +0 2p R R N N " ◊ t2 ◊ t4 " 2p r ( N t1 / N t 2 )( N t 3 / N t 4 ) r N t1 N t 3 #$ 'XAMPLE!jrcd ɏ ɏ ɏ ɏ ɏ ɏ " p$ 4¯¬ɏ¶³³¶¾°µ®ɏ«¨»¨ɏ¹¬¬¹ºɏ»¶ɏ¨ɏ«¶¼©³¬Ɋ·¼¹ª¯¨º¬ɏ¾°µª¯ɏª¹¨©ȍ 4¯¬ɏ³¬µ®»¯ɏ¶ɏ³¬½¬¹ɏșª¹¨µ²Țɏ¨¹´ɏɏɏɏɏɏɏɏɏɏɏǛɏŹŴŴɏ´´ 4¯¬ɏ«°¨´¬»¬¹ɏ¶ɏ»¯¬ɏ³¶¨«ɏ«¹¼´ɏ ǛɏŵŷŴɏ´´ɏ 4¯¬ɏµ¼´©¬¹ɏ¶ɏ»¬¬»¯ɏ¶µɏ»¯¬ɏ·°µ°¶µɏ¶ɏ¬Ĺ¶¹»ɏ¨¿³¬ɏ ǛɏŵŹ 4¯¬ɏµ¼´©¬¹ɏ¶ɏ»¬¬»¯ɏ¶µɏ»¯¬ɏº·¼¹ɏ¾¯¬¬³ɏ¶ɏ°´´¬«°¨»¬ɏ¨¿³¬ɏ ǛɏżŴ 4¯¬ɏµ¼´©¬¹ɏ¶ɏ»¬¬»¯ɏ¶µɏ»¯¬ɏ·°µ°¶µɏ¶ɏ°´´¬«°¨»¬ɏ¨¿³¬ɏ ǛɏŶŴ 4¯¬ɏµ¼´©¬¹ɏ¶ɏ»¬¬»¯ɏ¶µɏ»¯¬ɏº·¼¹ɏ¾¯¬¬³ɏ¶ɏ³¶¨«ɏ¨¿³¬ɏ ǛɏŻŹ 4¯°ºɏ´¨ª¯°µ¬ɏª¨µɏ³°ļɏ³¶¨«ºɏ¶ɏŵŴŴɏ.ɏ¨µ«ɏŶŴŴɏ.ɏ©Àɏ¨··³À°µ®ɏ¬Ĺ¶¹»ºɏ¶ɏŵȍŶŹɏ.ɏ¨µ«ɏŶɏ.Ȏɏ¹¬º·¬ª»°½¬³Àȍɏ $¬»¬¹´°µ¬ɏș¨Țɏ»¯¬ɏ³¨¾ɏ¶ɏ´¨ª¯°µ¬Ȏɏș©Țɏ»¯¬ɏ¬Ĺ¶¹»ɏ¹¬¸¼°¹¬«ɏ»¶ɏ³°ļɏ¨ɏ³¶¨«ɏ¶ɏŶŹŴɏ.ɏ¨µ«ɏ»¯¬ɏ¬ĺª°¬µªÀɏ¨»ɏ»¯°ºɏ³¶¨«Ȏɏ șªȚɏ»¯¬ɏ´¨¿°´¼´ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏ´¨ª¯°µ¬ȍ \MP!9/21^ 5OLUTION! 4 5 " &66 5 !" "8 &9 . 0 , 4 &" : \ . 0 < $ ¥ 66 8 ; , ; ) " & ) " %6 ) * " 6 ) + " 7& 66 9 " ¥ 66 8 " 6 667& 5 Q!> 1/1186X!,!1/6 &6 9 9 66 9 : "6& ! " 6 667& ¥ &6 8 6 & " 3/48!O 2l N t 2 N t 4 2 ¥ 500 80 75 ¥ ¥ ¥ ¥ " &* %& " d N t1 N t 3 130 15 20 W 250 "! " " 6& +% P 2.37 MA 105.48 " !"!6 ?% "!79!& h+ VR 153.85 1 h (" " " 6 %7 " 98!& m ¥ VR 0.0075 ¥ 153.85 #$ + # = <> . 0 = ( " *6 > ! #&&+6+10#.!51.8'&!':#/2.'5 'XAMPLE!jrce !ɏº°´·³¬ɏ³°ļ°µ®ɏ´¨ª¯°µ¬ɏ¾°»¯ɏ¨µɏ¬ĺª°¬µªÀɏ¶ɏŹżɏƴɏ³°ļºɏŻŴŴŴɏ.ɏ¼º°µ®ɏŵźŴɏ.ɏ¬Ĺ¶¹»ȍɏ ș¨Țɏ#¨³ª¼³¨»¬ɏ°»ºɏ´¬ª¯¨µ°ª¨³ɏ¨«½¨µ»¨®¬ɏ¨µ«ɏ½¬³¶ª°»Àɏ¹¨»°¶Ȏɏș©Țɏ#¨³ª¼³¨»¬ɏhɏ°ɏ°»ɏ³°ļºɏ ŵŶɗŹŴŴɏ.ɏ©Àɏ¨µɏ¬Ĺ¶¹»ɏ¶ɏŶżŴɏ.ȍɏșªȚɏ%º»¨©³°º¯ɏ°»ºɏ³¨¾ɏ¶ɏ´¨ª¯°µ¬ɏ¨µ«ɏª¨³ª¼³¨»¬ɏ´¨¿°´¼´ɏ-!ɏ¨µ«ɏ ´¨¿°´¼´ɏ62ȍɏ \MP!9/7^ ŶŻŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº h 5OLUTION! " ! W P MA h 7000 54/86 160 MA 43.75 fi #$ 86/54 h VR 0.58 W 12500 55/75 280 P MA 44.64 ' $!% & ! # h VR 75.43 * + !# ! ", - " ¥ , - " 9 ¥ 9 , : + ;< + 99 \ * + !# > #<# # # > > #<# !% Q!>!1/133X!,!8/4 : ! 1 56/56 0.022 MAmax 45.45 & h# > VR 75.43 ! " # 6:!& = ? < 71!& 'XAMPLE!jrcf !ɏ«°Ĺ¬¹¬µ»°¨³ɏºª¹¬¾ɏ±¨ª²ɏ¯¨ºɏ»¾¶ɏºª¹¬¾ºɏ¶ɏ·°»ª¯¬ºɏ¶ɏŵŴɏ´´ɏ¨µ«ɏŻɏ´´ȍɏ#¨³ª¼³¨»¬ɏ »¯¬ɏ¬Ĺ¶¹»ɏ¹¬¸¼°¹¬«ɏ¨»ɏ»¯¬ɏ¬µ«ɏ¶ɏ»¯¬ɏ¯¨µ«³¬ɏ¶ɏŴȍŹɏ´ɏ³¬µ®»¯ɏ»¶ɏ³°ļɏ¨ɏ³¶¨«ɏ¶ɏŻŴɏ².ȍɏ !ºº¼´¬ɏ»¯¨»ɏ»¯¬ɏ¬ĺª°¬µªÀɏ¶ɏ¨ɏ«°Ĺ¬¹¬µ»°¨³ɏºª¹¬¾ɏ±¨ª²ɏ°ºɏŷŴɏƴȍ \MP!9/9^ + 5OLUTION! A $!% fi # ## #$ + &" h & 70 000 /! 1047.19 = !>! ## 9 ## " 2pl 2p ¥ 500 p1 - p2 10 - 7 W 70 000 P ! MA = fi = VR fi ! B h @ = ' 333/93!O 'XAMPLE!jrcg !µɏ¬Ĺ¶¹»ɏ¶ɏŹŴŴɏ.ɏ°ºɏ¨··³°¬«ɏ»¯¹¶¼®¯ɏ¨ɏ«°º»¨µª¬ɏ¶ɏŵŹɏ´ɏ»¶ɏ¹¨°º¬ɏ¨ɏ³¶¨«ɏ¶ɏŵŵɏ².ɏ©Àɏ ¨ɏ«°º»¨µª¬ɏ¶ɏźŴɗª´ȍɏ#¨³ª¼³¨»¬ɏ»¯¬ɏ´¬ª¯¨µ°ª¨³ɏ¨«½¨µ»¨®¬Ȏɏ»¯¬ɏ½¬³¶ª°»Àɏ¹¨»°¶Ȏɏ»¯¬ɏ ¬ĺª°¬µªÀȎɏ»¯¬ɏ°«¬¨³ɏ³¶¨«ɏ¨µ«ɏ°«¬¨³ɏ¬Ĺ¶¹»Ȏɏ»¯¬ɏ¬Ĺ¶¹»ɏ³¶º»ɏ°µɏ¹°ª»°¶µɏ¨µ«ɏ¹°ª»°¶µ¨³ɏ¹¬º°º»¨µª¬ȍ \MP!9/7^ 5OLUTION! ! 0 # W P ## " @ 11 000 33 500 # ## ɏ ŶŻŹ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ A $!% D #$ &" & ! ! !! " " D $!! " -" !" " 'XAMPLE!jrch "& 5OLUTION! ?<" # # h # F ? " " +G @ !% ! @ J D 15 000 36 600 d MA 22 99!& VR 25 W 11000 551!O VR 25 ! ¥ #$ ¥9 23!611!O E BB 71!O !E! E" 9 E 2611!O " H ! !" ! ## ? # ! " <"! ## ## " @ m 6 p =9 a p d p ¥ 60 " ;< " " Wd a,f ¥ (¥ 9l Wd tan a + tan f ¥ 2 1 - tan a tan f 7000 ¥ 60 0.032 + 0.06 '= ¥ 2 1 - 0.032 ¥ 0.06 # " ! I " <" ## # # \MP!9/9^ f 9 ## ª 2:/47!NOn 'XAMPLE!jrci !ɏ«°Ĺ¬¹¬µ»°¨³ɏºª¹¬¾ɏ±¨ª²ɏ¯¨ºɏźɏ´´ɏ·°»ª¯ɏ¶ɏº´¨³³¬¹ɏºª¹¬¾ɏ¨µ«ɏŵŴɏ´´ɏ·°»ª¯ɏ¶ɏ ³¨¹®¬¹ɏºª¹¬¾ȍɏ&¹¶´ɏª¬µ»¹¬ɏ¶ɏºª¹¬¾Ȏɏ»¯¬ɏ³¬µ®»¯ɏ¶ɏ»¯¬ɏ³¬½¬¹ɏ¨¹´ɏ°ºɏŹŴŴɏ´´ȍɏ4¯¬ɏ ºª¹¬¾ɏ±¨ª²ɏ¹¨°º¬ºɏ¨ɏ³¶¨«ɏ¶ɏŵŷɏ².ɏ¾°»¯ɏ¨µɏ¬Ĺ¶¹»ɏ¶ɏŵŻŹɏ.ȍɏ#¨³ª¼³¨»¬ɏ»¯¬ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏºª¹¬¾ɏ±¨ª²ɏ¨»ɏ »¯°ºɏ³¶¨«ȍɏ)ɏ»¯¬ɏ±¨ª²ɏ³°ļºɏ¨ɏ³¶¨«ɏ¶ɏŷŹɏ².ɏ¾°»¯ɏ¨µɏ¬Ĺ¶¹»ɏ¶ɏŸŹŹɏ.Ȏɏ«¬»¬¹´°µ¬ɏ»¯¬ɏ³¨¾ɏ¶ɏ´¨ª¯°µ¬ȍ \MP!9/9^ 5OLUTION! A $!% ! " &" & ! ", ! ! B : + ;< ? " ! " + !# * + !# ' ' ##-! ## " =@ ! "! B 2pl 2p ¥ 500 =' #$ + p1 - p2 10 - 6 W 13000 B9 P 175 MA 74.28 h ' :/6& VR 785.39 ## 9 = @ ! "! " =@ fi = , " = @ fi B = , + 9 9 ' : # Q!>!1/123!83X!,!:/66 ŶŻźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!jrcj A first-order system of pulleys has four movable pulleys and one fixed pulley. If a load of 1700 N is lifted by an effort of 110 N, calculate the efficiency of the machine, the effort wasted in friction and the load which could be lifted if the friction were absent. \MP!9/:^ B " 5OLUTION! A &" $!% - " & h # D !! " F < $!! " D !! " HH !" ! #$ 9B W 1700 B P 110 MA 15.45 h ' :7!& VR 16 #$ #$ ! " # W 1700 ! 9 VR 16 ! !!" !E! E 9 4/86!O " ! ¥ #$ ¥ 2871!O 'XAMPLE!jrck !ɏ»¯°¹«Ɋ¶¹«¬¹ɏ·¼³³¬ÀɏºÀº»¬´ɏ³°ļºɏ¨ɏŴȍżɊ².ɏ³¶¨«ɏ¼º°µ®ɏ¨µɏ¬Ĺ¶¹»ɏ¶ɏŵŹŴɏ.ȍɏ#¨³ª¼³¨»¬ɏ »¯¬ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏºÀº»¬´ɏ¨µ«ɏ»¯¬ɏ¬Ĺ¶¹»ɏ³¶º»ɏ°µɏ¹°ª»°¶µɏ°ɏ»¯¬¹¬ɏ¨¹¬ɏ¶¼¹ɏ·¼³³¬Àºɏ °µɏ»¯¬ɏºÀº»¬´ȍɏ!³º¶Ȏɏ«¬»¬¹´°µ¬ɏ¾¯¬»¯¬¹ɏ»¯¬ɏ·¼³³¬ÀɏºÀº»¬´ɏ°ºɏº¬³Ɋ³¶ª²°µ®ȍ \MP!9/:^ B " ! &" 9 E 9B E W 800 == ! P 150 MA 5.33 $!% & h+ = 47!& VR 15 W 800 $!! " !" !!" !E! 150 VR 15 hK H< & & # jt!tfmg.mpdljoh/ 5OLUTION! A @ #$ 'XAMPLE!jrdl :7/78!O 4¯¬ɏ °µ°»°¨³ɏ ¹°ª»°¶µ¨³ɏ ¹¬º°º»¨µª¬ɏ ¶ɏ ¨µɏ ¼µ³¶¨«¬«ɏ ·¼³³¬Àɏ ©³¶ª²ɏ °ºɏ ŸŴɏ .ɏ ¨µ«ɏ °»ɏ °µª¹¬¨º¬ºɏ¨»ɏ»¯¬ɏ¹¨»¬ɏ¶ɏŵŹɏ.ɏ·¬¹ɏŵɊ².ɏ³¶¨«ɏ³°ļ¬«ɏ©Àɏ»¯¬ɏ©³¶ª²ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ ¬Ĺ¶¹»ɏ¹¬¸¼°¹¬«ɏ»¶ɏ³°ļɏ¨ɏ³¶¨«ɏ¶ɏŶŴɗ².ɏ¨µ«ɏª¨³ª¼³¨»¬ɏ»¯¬ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏ·¼³³¬Àɏ©³¶ª²ɏ¨»ɏ»¯°ºɏ³¶¨«ȍɏ4¨²¬ɏ »¯¬ɏ½¬³¶ª°»Àɏ¹¨»°¶ɏ¨ºɏŶŹȍ \MP!9/:^ " 5OLUTION! ? !" " !!" D !! " ! 9 @ !!" B , !9 @ 15 40 + ¥ 20 000 1000 W 20 000 VR 25 H " =B @ #$ 9 ɏ ŶŻŻ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ ? < \ $!% !! " & ! ! , !!" h MA VR , =B 2251!O W/P 20000 / 1140 = VR 25 81!& 'XAMPLE!jrdc 4¯¬ɏ¼··¬¹ɏ©³¶ª²ɏ¶ɏ¨ɏ7¬º»¶µɏ«°Ĺ¬¹¬µ»°¨³ɏ·¼³³¬Àɏ©³¶ª²ɏ¯¨ºɏ»¾¶ɏ·¼³³¬Àºɏ¶ɏŶŴŴɊ´´ɏ ¨µ«ɏŵŹŴɊ´´ɏ«°¨´¬»¬¹ºɏ¨µ«ɏ»¯¬ɏ¬ĺª°¬µªÀɏ°ºɏźŶƴȍɏ&°µ«ɏ»¯¬ɏ³¶¨«ɏ³°ļ¬«ɏ©Àɏ°»ɏ°ɏ»¯¬ɏ ¬Ĺ¶¹»ɏ¨··³°¬«ɏ°ºɏŹŴɏ.ȍɏ \MP!9/:^ ! 5OLUTION! A 0 MA VR h ## h ## 9 9 2 ¥ 200 (200 - 150) 2D (D - d ) #$ &" 9 W MP VR fi " h ¥ #$ ¥ ! 9¥ ¥ 359!O 'XAMPLE!jrdd )µɏ¨ɏ«°Ĺ¬¹¬µ»°¨³ɏ¾¯¬¬³ɏ¨µ«ɏ¨¿³¬Ȏɏ»¯¬ɏ«°¨´¬»¬¹ɏ¶ɏ¾¯¬¬³ɏ°ºɏŵźɏª´ɏ¨µ«ɏ»¯¨»ɏ¶ɏ¨¿³¬ºɏ ¨¹¬ɏŻɏª´ɏ¨µ«ɏŹɏª´ȍɏ)ɏ»¯¬ɏ¬ĺª°¬µªÀɏ¶ɏ»¯¬ɏ´¨ª¯°µ¬ɏ°ºɏŻŹɏƴȎɏª¨³ª¼³¨»¬ɏ»¯¬ɏ¬Ĺ¶¹»ɏ ¹¬¸¼°¹¬«ɏ»¶ɏ³°ļɏ¨ɏ³¶¨«ɏ¶ɏŸŴŴɏ.ȍɏ!³º¶ɏª¨³ª¼³¨»¬ɏ»¯¬ɏµ¼´©¬¹ɏ¶ɏ¹¬½¶³¼»°¶µºɏ»¯¬ɏ´¨ª¯°µ¬ɏ¾¶¼³«ɏ´¨²¬ɏ°µɏ ³°ļ°µ®ɏ»¯¬ɏ³¶¨«ɏ»¯¹¶¼®¯ɏ¨ɏ«°º»¨µª¬ɏ¶ɏŶŹɏª´ȍɏɏ \MP!9/21^ 0 5OLUTION! A \ &" # <#: " ! " 9 # h 2D 2 ¥ 160 d1 - d 2 70 - 50 MA W/P h fi ! VR 16 x fi #$ ¥ #$ y :& !! " " < & ? # " B #$ &" $!% A # < # :& !! " + ) " h ¥ 16 ¥9 ! 400 0.75 ¥ 16 B # p¥ p0 + 400 p ¥ 16 44/44!O # ' ª 9!sfwpmvujpot! 'XAMPLE!jrde )µɏ¨ɏ¾¶¹´ɏ¨µ«ɏ¾¶¹´Ɋ¾¯¬¬³Ȏɏ»¯¬ɏ«°¨´¬»¬¹ɏ¶ɏ»¯¬ɏ³¶¨«ɏ«¹¼´ɏ°ºɏŵŹŴɏ´´ɏ¨µ«ɏ»¯¨»ɏ¶ɏ »¯¬ɏɏ¬Ĺ¶¹»ɏ¾¯¬¬³ɏ°ºɏŸŴŴɏ´´ȍɏ4¯¬ɏ¬ĺª°¬µªÀɏ¶ɏ»¯°ºɏ´¨ª¯°µ¬ɏ°ºɏŹŹƴɏ¨µ«ɏ»¯¬ɏµ¼´©¬¹ɏ ¶ɏ»¬¬»¯ɏ¶µɏ»¯¬ɏ«¶¼©³¬Ɋ»¯¹¬¨«¬«ɏ¾¶¹´ɏ¾¯¬¬³ɏ°ºɏźŴȍɏ#¨³ª¼³¨»¬ɏ»¯¬ɏ½¬³¶ª°»Àɏ¹¨»°¶ɏ¨µ«ɏ³¶¨«ɏ¾¯°ª¯ɏª¨µɏ©¬ɏ ³°ļ¬«ɏ©Àɏ¨µɏ¬Ĺ¶¹»ɏ¶ɏŸŴɏ.ȍ \MP!9/21^ ## 0 5OLUTION! A $!% &" #$ & h B ## h . ! TD 60 ¥ 400 91 9d 2 ¥ 150 MA fi h ¥ #$ ¥ BB VR W fi " ¥ ! BB ¥ B 2871!O P B ŶŻżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!jrdf )µɏ¨ɏº°µ®³¬Ɋ·¼¹ª¯¨º¬ɏ¾°µª¯ɏª¹¨©Ȏɏ»¯¬ɏµ¼´©¬¹ºɏ¶ɏ»¬¬»¯ɏ¶µɏ»¯¬ɏ·°µ°¶µɏ¨µ«ɏ¾¯¬¬³ɏ¨¹¬ɏ ŵźɏ¨µ«ɏŵŵŴȎɏ¹¬º·¬ª»°½¬³Àȍɏ4¯¬ɏ«°¨´¬»¬¹ɏ¶ɏ»¯¬ɏ³¶¨«ɏ¨¿³¬ɏ°ºɏŶŴŴɏ´´ɏ¨µ«ɏ»¯¬ɏ³¬½¬¹ɏ ¨¹´ɏ¶ɏ»¯¬ɏ¯¨µ«³¬ɏ°ºɏŽŴŴɏ´´ȍɏ&°µ«ɏ»¯¬ɏ½¬³¶ª°»Àɏ¹¨»°¶ɏ¶ɏ»¯¬ɏ´¨ª¯°µ¬ȍɏ)ɏ¨ɏŸɊ².ɏ³¶¨«ɏ¹¬¸¼°¹¬ºɏ¨µɏ¬Ĺ¶¹»ɏ ¶ɏŶŴŴɏ.ɏ¨µ«ɏ¨µɏżɊ².ɏ³¶¨«ɏ¹¬¸¼°¹¬ºɏŷŴŴɊ.ɏ¬Ĺ¶¹»Ȏɏķµ«ɏ»¯¬ɏ³¨¾ɏ¶ɏ´¨ª¯°µ¬Ȏɏ»¯¬ɏ´¨¿°´¼´ɏ¬ĺª°¬µªÀɏ ¨µ«ɏ»¯¬ɏ´¨¿°´¼´ɏ´¬ª¯¨µ°ª¨³ɏ¨«½¨µ»¨®¬ȍɏ!³º¶Ȏɏķµ«ɏ»¯¬ɏ¬ĺª°¬µªÀɏ¨µ«ɏ¬Ĺ¶¹»ɏ³¶º»ɏ°µɏ¹°ª»°¶µɏ¶¹ɏ©¶»¯ɏ »¯¬ɏ³¶¨«ºȍ \MP!9/21^ ) 5OLUTION! N \ < ! A #$ &" ! * + !# ' ' )9 > ", ! 9 ! = : + ;< + !# O 9 ## $ ' ## M9 9 M9 ## R T2 900 110 ◊ ◊ 72/98 r T1 100 16 > #<# !% " B fi 9 " fi = + 9 Q!!>!1/136X!,!211 h# & > B VR ¥ m B > #<# # ' ! $!% # > " 9 h !!" !" ! $!% $!! " 75!& 1 51 0.025 W 4000 9 P 200 MA 20 VR 61.87 =9 43!& W PVR 4000 E 246/46!O 61.87 !E! 9 ' 1 61.87 ¥ 0.025 B & $!! " , , " = h & !" !!" W 8000 9 P 300 MA 26.67 VR 61.87 !E! P- B= W VR 54!& 300 - 8000 61.87 281/7:!O ɏ ŶŻŽ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ ! 57//#4; I @ difdl! zpvs!voefstuboejohJ! G SN " .1!jrc! $°º»°µ®¼°º¯ɏ ©¬»¾¬¬µɏ º°´·³¬ɏ ¨µ«ɏ ª¶´·¶¼µ«ɏ ´¨ª¯°µ¬ºȎɏ ¨µ«ɏ ®°½¬ɏ ¬¿¨´·³¬ºɏ ¶ɏ º°´·³¬ɏ ³°ļ°µ®ɏ ´¨ª¯°µ¬ºȍ 2331 F tjnqmf!nbdijof # @ " " ! " nbdijof #: !% < @ # # ! + "# " " :& #< H & M " F dpnqpvoe " dpnqmfy! #H # + "@ 4 3 3567 " ! .1!jre! 5µ«¬¹³°µ¬ɏ»¯¬ɏ¹¬¨º¶µºɏ¶¹ɏ³¶ºº¬ºɏ°µɏ¨ɏ´¨ª¯°µ¬ɏ¨µ«ɏ«¬»¬¹´°µ¬ɏ°»ºɏ¬ĺª°¬µªÀȍ -" # < ! # ? !% & :& " ! < H< + "@ H< + "@ .1!jrf! $°Ĺ¬¹¬µ»°¨»¬ɏ©¬»¾¬¬µɏ¹¬½¬¹º°©³¬ɏ¨µ«ɏº¬³Ɋ³¶ª²°µ®ɏ´¨ª¯°µ¬ºȍɏ D! ! :& # ! : @ ! ! !tfmg.mpdljoh!nbdijof ! " + " # ! !% !! " & #< : sfwfstjcmf!nbdijof F ! .1!jrg! )µ¬¹ɏ»¯¬ɏ³¨¾ɏ¶ɏ´¨ª¯°µ¬ȍ ? " H: + ! " !! " ! " ;< " "" H mbx!pg!nbdijof .1!jriɏ $¬»¬¹´°µ¬ɏ »¯¬ɏ ½¬³¶ª°»Àɏ ¹¨»°¶ɏ ¨µ«ɏ ¬ĺª°¬µªÀɏ ¶ɏ ¨µɏ °µª³°µ¬«ɏ ·³¨µ¬Ȏɏ ¾¬«®¬ɏ ¨µ«ɏ º°´·³¬ɏ ¨µ«ɏ «°Ĺ¬¹¬µ»°¨³ɏºª¹¬¾ɏ±¨ª²ºȍ H xfehft " < " < # wfdups!sftpmvujpo!pg!gpsdft " # @ # " H :& HH & # !! " " < ! " F tdsfx!kbdl < < ! Jodmjofe!qmboft ! & " ! " + ! .1!jrj! $¬»¬¹´°µ¬ɏ½¬³¶ª°»Àɏ¹¨»°¶ɏ¨µ«ɏ¬ĺª°¬µªÀɏ¶ɏ³¬½¬¹ºȎɏ¨µ«ɏº°´·³¬ɏ¨µ«ɏ«°Ĺ¬¹¬µ»°¨³ɏ·¼³³¬ÀɏºÀº»¬´ºȍ H : @ + frvjmjcsjvn!pg!npnfout " gvmdsvn! " qjwpu/!D "# & < ! ! & :& HH & F mfwfs #H " " & : "" !! " +/2146#06!(14/7.#' � � h � ! W P x P y #$ Output work P "h Input work W VR � * + !# - " #$ \MP!9/3^ MA VR ! ¥ #$P !!" " ! # ", \MP!9/4^ ˆ W Ê - P !!" VR ÁË h ˜¯ !E! \MP!9/4^ \MP!9/6^ ŶżŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº � h# # > � - " tdsfx!kbdl h ( Wd 9l > VR ¥ \MP!9/7^ m tan a tan(a + f ) a , f T? \MP!9/9^ "UP ! Ubcmf!9/2! #$ ( D Wfmpdjuz!Sbujp a 1 tan a + 1 2 tan(a /2) V <: + 9pl p " +G @ 5/ 6/ V !! " 7/ - " W " " H< 2p L p1 - p2 " +G @ & & W " " H< 8/ 9 # & & # 9/ ? " W " " H< & & # :/ V !! " &: @ H< 21/ I > 22/ V !! " + 23/ I "# 24/ + " H 3/ 4/ f E a T? 0 Uzqf!pg!Nbdijof 2/ Wd 9l 2D (D - d ) D d 2D (d1 - d 2 ) > TD 9d + "#W+ WH<" 25/ V <: WH<" 9 E + + " : " : R Nt2 ◊ r N t1 R Nt2 Nt4 ◊ ◊ r N t1 N t 3 "U ɏ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Ŷżŵ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ 5*146 #059'4!37'56+105 2/! EfÝof!nfdibojdbm!bewboubhf!pg!b!nbdijof/!Dbo!ju!cf!mftt!uibo!pof@ \MP!9/3^ D % " ! ! !! " HH # X # : < # !! " # " ! ? # " < H" " " ! @ H " ! 3/! EfÝof!wfmpdjuz!sbujp!pg!b!nbdijof/!Epft!ju!efqfoe!po!fofshz!mpttft!jo!uif!nbdijof@ \MP!9/3^ ! D " ! & ! !! " ! D ! " # "" H ! & >" !! " " ;< " < D H & # " % <" ! # 4/! Xibu!jt!uif!ejggfsfodf!cfuxffo!b!sfwfstjcmf!boe!bo!jssfwfstjcmf!nbdijof@! \MP!9/5^ ! Y " # ! !! " ! ! + # " " : ! & ! H # "" " : " !W @ 5/! Xibu!jt!uif!dpoejujpo!pg!bo!jssfwfstjcmf!nbdijof!boe!xiz@! \MP!9/5^ ! ? !% & ! # #< : ! " : "" " : " !W @ D! < H< " & " " ;< " %" " # !" H" < # H< # : # "" " : ? < " # " < H< " :& # @ !% & 6/! Xibu!bsf!uif!bqqmjdbujpot!pg!uif!jodmjofe!qmbof!qsjodjqmf@! ! " +WG @ " #H # + " "H " < HH " !< " WH H" H 7/! Xifo!epft!b!tdsfx.kbdl!cfdpnf!sfwfstjcmf@ ! D! > ! " + "Z # " " ;< : + " + < " +WG @ : # " " : # 8/! Xibu!jt!uif!ejggfsfodf!cfuxffo!b!tjnqmf!tdsfx!kbdl!boe!b!ejggfsfoujbm!tdsfx.kbdl@ ! F #H " +G @ ! " + < + " !! " " +G @ " < " < ? &" ! !! " " +G @ # " ! " "# H \MP!9/9^ ! + > #H ! \MP!9/9^ !" ! # \MP!9/9^ ! + " + #H " +G @! " -';!6'4/5 .1!jrc .1!jrd N #H # [ #H < # " #H ! A $!% .1!jrj #H H< & # & & " : @ # .1!jrg !W * + !# .1!jri D I V !! " H #H " +W G @ # * " V !! " .1!jrf .1!jrk I & W > !! " > I "# + "#W+ I " : I W ŶżŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! 4'8+'9!37'56+105 ! 2/! I ! # JV % !! " # ! 3/! I & << ! 4/! I "" # " :& !" :& " " : !! " # " #H # H< # ! JV " < H< >H" &" ! " !! " !% & \MP!9/3^ !" \MP!9/4^ "" " : ! # # J V " ! " # : \MP!9/5^ " : >H ! " ! 5/! >H" + ! #H # > #<# # ! 6/! V " >H" ! 7/! $>H ! 8/! V " : H" H + "@ ! ! 9/! $>H " ! :/! <#H ! " ! 21/! I !! " %" &H " " & ! 22/! I &" ! H " ! !! " ! " ! ! " # H< & & # # ! H< " " & < H + " +G @+ " +G @ V " @ >H" : & H< & & !! " ! V " \MP!9/6^ <: + ! " + ! ! " "< & ! # H ! # > #<# !% \MP!9/8^ \MP!9/9^ !% & \MP!9/9^ &" " \MP!9/:^ # " >H" !# \MP!9/:^ & JV " >H" # ! H< & J V " ! " >H" &" ! " ! " &" # \MP!9/:^ ! " # \MP!9/:^ ! 23/! I ! " " " & # ! H< & JV " ! 24/! $>H + "@ ! I !! " 25/! $>H + "@ ! + > ! 26/! $>H + "@ ! + ! 27/! $>H + "@ ! + "# >H" H< ! " &: @ " !! " >H" > &" " ! " >H" ! " " # ! " &" >H" \MP!9/:^ &" \MP!9/:^ \MP!9/21^ ! " &" \MP!9/21^ ! 28/! I >H" " + + "# + " : J V !! " &" ! ": ! ! " >H" H<" ! " <: WH<" &" + " : # !% & \MP!9/21^ " \MP!9/21^ 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS! * :& ! 2/! W P ! 3/! A \MP!9/3^ P W &" " ! " # < "◊! \MP!9/3^ :& ! "E! ! ! !! " !! " ɏ Ŷżŷ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ & ! & !% ! 4/! - " !! " # ! # \MP!9/3^ \ #$ ! 5/! D @ ! #$ # ! : @ #$ ! !! " H + " : #H " " !! " " # < # \MP!9/4^ #H " : !" " +G @ \MP!9/9^ + " @ & : + #$ ! # > #<# !% ! 9/! D #H # + !# hmax = "" " +G @ " ! 7/! ? ! 8/! ? " + " ! 6/! ? K #$ & ! " #H 1 - sin f 1 + sin f " +G @ !! " & " +G @ hmax = Wd tan (a - f ) 2l : < \MP!9/6^ #$ & :& 1 + sin f 1 - sin f \MP!9/9^ hmax = HH 1 - tan f 1 + sin f ! Wd sin (a + f ) 2l hmax = " 1 - cos f 1 + cos f :& \MP!9/9^ Wd cos (a + f ) 2l Wd tan (a + f ) 2l $! (ILL $LANKS!3UESTIONS ( ! 2/! ? # ! ! 3/! - " # : " ! 4/! ? #$ ! ! 5/! ? ! ! 6/! ? ! 7/! D H &" ! 8/! ? ! !! " &" ! ! 9/! D + !# ]]]] !! " & ]]]]]] ! < a @ < # " H " # \MP!9/3^ \MP!9/4^ ]]]]]] + " +G @ &: ! : ]]]]]] ! #H H< + & ]]]]]] !% + <: + I < # " : ! & H" H " H< & H: ]]]]]]]] !! " ! !" \MP!9/9^ # \MP!9/9^ ]]]]]] ! @ < : " + \MP!9/9^ ! ]]]]]] Z ! " " & # ! \MP!9/:^ \MP!9/3^ ;< !! " !]]]] \MP!9/6^ %! /ATCH %OLUMNS!3UESTIONS ! 2/! Dpmvno!J! D Dpmvno!JJ! !! " ^ $!! " ! ¥ #$ S ! D !" N ", \MP!9/3-!9/4-!9/6^ ŶżŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ˆ W Ê VR ÁË h ˜¯ * + !# > #<# ? > #<# #$ _ ! 3 Dpmvno!J!)Qvmmfz!Tztufn* H< & & # ^ I "# I TMP!9/:^ 2D (D - d ) Dpmvno!JJ!)Wfmpdjuz!Sbujp*! + " : + " : + "#W+ !! " I m S N 9 9 E ? ! 4 Dpmvno!J!)Nbdijof* V <: WH<" ¥ VR Dpmvno!JJ!)Wfmpdjuz!Sbujp* - " W " " H< & & # W " " H< & & # ? " W " " H< & & # V !! " H< & : @ WH<" W VR ^ R Nt2 Nt4 ◊ ◊ r N t1 N t 3 S R Nt2 ◊ r N t1 N 2D (d1 - d 2 ) \MP!9/21^ TD 9d > > ? D d #NSWERS!TO!1BJECTIVE!3UESTIONS )B*! Nvmujqmf.Dipjdf!Rvftujpot 2/ ! 3/! ! 4/! ! 5/! 6/! 7/ 8/ ! 9/ ! )C*! Gjmm.Cmbolt!Rvftujpot ! 2/ 5 8/ 3/! # " 6 H 9/! < ;< # 4/! 7 a !! " ! )D*! !Nbudi.dpmvno!Rvftujpot 2/! 4/! E ? E S E ^ E ^ E E E S E N E N E ? E _ 3/! E S E N E ? E E ^ ɏ ŶżŹ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ ! 24#%6+%'!241$.'/5 ! 2/! F # ! # ! 3/! D ! ! # # ! ! # ! 4/! F # # ! 5/! F = !! " ! !9 + !! " # H !! " ! = " < &" "# JV " +G @+ [ < HH & " # 9 #J F ! '< + !# ! !! " ! ## !% ! 6/! F H + " " + # < ! ## H # G " !" " + !! " ! ! & ! < < ! :& HH & # : I H !9 @ ! ! ! ! TBot/ 9 #H < 9U \MP!9/4^ ! B W## = U \MP!9/9^ ;< " " # " ? !% ! TBot/ 9 @IU \MP!9/9^ " + TBot/!=== = @ " & ! " + " " " + ##P ## ! @ % TBot/! =' B9 < ! !% & U \MP!9/4^ !% =" , !! " ! ##M ? H + " ! < " < 9 : " TBot/! B 9 @ " " : & " : U \MP!9/4^ ! # TBot/ 9 ! = @ :& HH & G @ B !! " 9 TBot/!" I < ! 7/! F !! " " +G @ ! + H % ? H ! " " " + 9 ##P ? H ! # ? ! " "# !" # " ! " + D! !! " ! HH ! " ! !% & ! 8/! [ &" !" ! = !" ! " ! @ " ! B ## [ # D! &" # U \MP!9/9^ - 9 F U \MP!9/:^ ! ! " " H !9 U \MP!9/:^ Effort P B A Load W E Pivot 180 mm 60 mm C F Pivot D 250 mm 55 mm Gjh/!9/37 ! 9/! F & # ! H< & & ! + ": @ V " ;< " ! ! ! :/! ? !21/! ? !% ! " & ! " W " " & " ! <" H< & <HH " : @ ! : ! :& # ! 22/! F #H + ! + " H "# 9 > ## !! " :& ! < " &" H< & ? " " !% & ! # ! H< & & # H< & : @ !! " ! = ! # :& " ! - & + + H< & ! !% !! " > > ! != & # # ! TBot/! : ! :& !! " ! TBot/! 9 U \MP!9/:^ ## 9 J !% ## # TBot/!9 " I U \MP!9/:^ & ! D! # " TBot/!B9 ' ##U \MP!9/21^ Ŷżźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº !23/! F !! " + # " > " !% & ! # !24/! F " + "# + [ < !25/! D # ! + "# $ # + "# + # " ! # &" WH<" " ! # ! !26/! - > < ! ' ## ## " H ! !! " HH + > = !B " : ## !! " " ;< " ! : + !# ! " ! !27/! ? + ! # # # > #<# !% !% # & ! !28/! F !! " ! " ;< " # "Z [ < H " " : " "" " : J H H : # "" H G< : # "" " : J TBot/ !29/! F !! " ! 9 !" !! " " ;< " !2:/! F ;< " " ! " " ;< " ! @ " # < ! ";< !31/! ? # " < <# < HH ! <"! : @ F ? # & [ + " ! !! " ! = !% <#: " ! H " "# ! : ! :& !! " ! !9 # " &" F ! 9 '9 9 9 <H + 9` [ "# ! @+ !9 % ` " " + ! # # " W #H ! ! # D! G @ ! @ < @ H !" # TBot/! - 9 D! & ? !% & \MP!9/21^ !% !! " ", & ! "< U \MP!9/6^ " = [ < \MP!9/6^ U + !9 `+ !% & ! & # D !% & ! !% ! !" : + !! " < !" J I : !" # > #<# ! ! " " : !% ! " " H : + " " U \MP!9/21^ B" , + " ! !! " " ;< " ! # ! 9@ &" : " : + !!" " TBot/!99 ' ' !!" B" , ! &" # I + : 9 JI + " : J D! <" :< @ b + # " ! ## ## H <" # # "& + <" " H # + " 9 " H # &" TBot/!9 U B TBot/! ! & ! = ## &" # TBot/ = ! ! ? <#: " ! "<# " 9 ## 9 ## " H & & ! # TBot/! 9 9 U \MP!9/21^ !! " + !9 ! !" + < P ' P B =`U \MP!9/9^ @ !9 W + D! < & ! & # TBot/! ! 99 = : ! @ =B < !% ";< J ?@ = P " H !% % ! !" : ? ! ! & ! ! G @ "& !% B " + " ! !" " : = # ! #<# U \MP!9/9^ V "# + " D! G @ + #U \MP!9/9^ : " ;< " " : + " + < 9 @ +" + H< D # &: TBot/! ' #P B ' #U TMP!9/9U b F uvsocvdlmf tusfudijoh!tdsfx- " cpuumf!tdsfx ! " G< " " " & # D + "@ # H" H " +G @ D "# " & + 9 " + ! # nfubm!mppq Y !W " " " W " ? : G< :& " < : & : " + " < #< < & + < + & " !" H & ! : : ! + H H + ɏ ŶżŻ 3°´·³¬ɏ,°ļ°µ®ɏ-¨ª¯°µ¬ºɏ Gjh/!9/38 !32/! F %" W " " & !% & ! !33/! F # !34/! D + !9 " + <: WH<" " BB ## I !! " !" # ! H< & + & # !! " + ! :& # " ! > H< & !" #H + !% + " : = " H & ? : ! :& & ! ! = + > < # <#: " ! # " ! !! " ! = ! :& HH & !" TBot/!= !! " !9 !! " ! = = [ < U " TBot/! H > !% [ 'U < \MP!9/:^ ! > \MP!9/21^ " 9B H<" ## " "# ! & ! # B J F % TBot/! ' 9 U TMP!9/21U Ŷżżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº #¯¨·»¬¹ : Dfousf!pg!Hsbwjuz!boe!Dfouspje .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ ɏ ɏ ɏ ɏ .1!krcɏ .1!krdɏ .1!kreɏɏ .1!krfɏ .1!krgɏɏ 5µ«¬¹³°µ¬ɏ»¯¬ɏª¶µª¬·»ɏ¶ɏª¬µ»¹¬ɏ¶ɏ®¹¨½°»ÀȎɏª¬µ»¹¬ɏ¶ɏ´¨ººɏ¨µ«ɏª¬µ»¹¶°«ȍ $¬»¬¹´°µ¬ɏ»¯¬ɏ³¶ª¨»°¶µɏ¶ɏª¬µ»¹¬ɏ¶ɏ®¹¨½°»ÀȎɏª¬µ»¹¬ɏ¶ɏ´¨ººɏ¨µ«ɏª¬µ»¹¶°«ɏ¶ɏ¨ɏ©¶«Àȍ &°µ«ɏ»¯¬ɏ³¶ª¨»°¶µɏ¶ɏª¬µ»¹¶°«ɏ¶ɏ³°µ¬ºȎɏº¼¹¨ª¬ºɏ¨µ«ɏ©¶«°¬ºȍ )«¬µ»°Àɏ»¯¬ɏ³¶ª¨»°¶µɏ¶ɏª¬µ»¹¶°«ɏ¶ɏª¶´·¶º°»¬ɏ©¶«°¬ºȍɏ 3»¨»¬ɏ¨µ«ɏ·¹¶½¬ɏ0¨··¼ºɏ»¯¬¶¹¬´ºȎɏ¨µ«ɏ¨··³Àɏ»¯¬º¬ɏ»¯¬¶¹¬´ºɏ»¶ɏª¶´·¼»¬ɏ»¯¬ɏº¼¹¨ª¬ɏ¨¹¬¨ɏ¨µ«ɏ ½¶³¼´¬ɏ¶ɏ¨ɏ©¶«Àɏ¯¨½°µ®ɏ¨¿°¨³ɏºÀ´´¬»¹Àȍ .1!krc :/2! �! JOUSPEVDUJPO 5µ«¬¹³°µ¬ɏ»¯¬ɏª¶µª¬·»ɏ ¶ɏª¬µ»¹¬ɏ¶ɏ®¹¨½°»ÀȎɏ ª¬µ»¹¬ɏ¶ɏ´¨ººɏ¨µ«ɏ ª¬µ»¹¶°«ȍ ! " .1!krd $¬»¬¹´°µ¬ɏ»¯¬ɏ³¶ª¨»°¶µɏ ¶ɏª¬µ»¹¬ɏ¶ɏ®¹¨½°»ÀȎɏ ª¬µ»¹¬ɏ¶ɏ´¨ººɏ¨µ«ɏ ª¬µ»¹¶°«ɏ¶ɏ¨ɏ©¶«Àȍ :/3! �! MPDBUJPO!PG!DFOUSF!PG!HSBWJUZ !DFOUSF!PG!NBTT! BOE!DFOUSPJE :/3/2! Dfousf!pg!Hsbwjuz # ! $ % ( ) ) + Ú dW $ % ) &' * ɏ ŶżŽ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ Myth ( - , ) $ % &' ) . / , 0 Fact! - 1 23 4 z 4 + Ú x dW ¥ fi + dW Ú x dW G W dW 4 + Ú y dW ¥ fi 4 ! 5 O W 4 * 6 4 x + 4 + Ú zdW x x y y * 4 ) / . ¥ W Ú y dW + % y P z z fi z+ Ú zdW W ) x= :/3/3! Ú x dW ; y = Ú y dW ; z = Ú z dW W W ,& '- W Dfousf!pg!Nbtt $ ! ) ! + x= 23 + 23 ,& '- Ú x dm ; y = Ú y dm ; z = Ú z dm m m ,& 7- m ,& 7) ) ŶŽŴɏ :/3/4! %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Dfouspje % Myth &' Fact! r ) ) 4 r �! 9ORTHY!OF!0OTE 4 ! % ! % &7 ) ! 0 " 8 Dam Water body Tyre + R Road surface R Water pressure distributed on dam Distributed force (b) Resultant R of hydrostatic pressure (a) Concentrated reaction R 9 x= 23 +" # 23 ,& 7- ,& 1- + "# # # Ú x dV ; y = Ú y dV ; z = Ú z dV V V ,& 1- V # : ɏ ŶŽŵ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ :/3/5! Tjhojgjdbodf!pg!Dfousf!pg!Hsbwjuz # $!%& ' " % " !% # ( ) ' .1!kre &°µ«ɏ»¯¬ɏ³¶ª¨»°¶µɏ ¶ɏª¬µ»¹¶°«ɏ¶ɏ³°µ¬ºȎɏ º¼¹¨ª¬ºɏ¨µ«ɏ©¶«°¬ºȍ :/4! �! DFOUSPJET!PG!MJOFT !TVSGBDFT!BOE!CPEJFT �! 9ORTHY!OF!0OTE :/4/2! ! Mjoft $ " 2 $ & 2 (x *+ y z) ! ! ' $ #$ /0 $* +& , #- $ . $ & " ' x= Ú x dL = ; y = Ú y dL ; z = Ú z dL L L $* 1& L z z dL O x C P (x, y, z ) dA y C (x, y, z ) y z z y O x y x (a) Centroid of a line segment x (b) Centroid of a surface ŶŽŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº :/4/3! Tvsgbdft 3 ( ( #- #- x= :/4/4! ! *+ ! (x, y, z ) $ & . 4 , /0 $* +& Ú x dA = ; y = Ú y dA ; z = Ú z dA A A $* 5& A Tufqt!gps!Efufsnjojoh!Dfouspje!pg!b!Hjwfo!Cpez 6 /0 $* 7& $* 5& 8 9 7 ) ' ! : "( # " 0 $ + ! 1 # 5 3 ' (say, ( x , y , z )) & # ( $ < ! + " ) Myth > 0 ) Fact! 5 A < ? ! 0 :/4/5! Dfouspjet!pg!Tpnf!Tuboebse!Hfpnfusjdbm!Gjhvsft Bsd!pg!b!Djsdmf! ! ! :a 4 3 -@ *1 " *1 ɏ ŶŽŷ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ y y y R cos q Rdq dq a 45° q O a x C R O x x C 45° O R (a) Arc of circle x C R (b) Quarter arc (c) Semi-circular arc ! q A " q /0 $* 1& a a Ú xdl = Ú-a x R dq = Ú- a R cos q dq = R 2 (sin a - sin(- a )) = R sin a a a 2Ra a Ú dl Ú-a R dq Ú- a Rdq 2 $* <& )j*!Rvbsufs!Djsdvmbs!Bsd!)Gjh/!:/5c* a - 15B - p81 fi - ! sin(45∞) p /4 o )jj*!Tfnj.djsdvmbs!Bsd!)Gjh/!:/5d* a p fi ! sin(90∞) p /2 fi ! sin 180∞ p o )jjj*!Djsdvmbs!Sjoh a p Usjbohvmbs!Bsfb! ! " # $ %" & ' * + # " , # ' # # " $ b x b (h - y ) fi h (h - y ) h 3 $ $ * $ Ay fi - Ay Ú y dA Ú yx dy fi b Ï h 2 h3 ¸ bh 2 - ˝ Ìh hÓ 2 3˛ 6 + - " $ - # h Ay Ú0 fi bh $ . bh 2 6 " h b Ï y 2 y3 ¸ - ˝ Ìh hÓ 2 3 ˛0 b (h - y ) y dy h ¥y # " fi " = :' ;< " ŶŽŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº y y y a C a a O xc R R O dRo Ro dq a x a q O x C y y x O R xc dy h x a Method I (b) Circular strip (a) Circular sector b Method II (c) Radial strip % Djsdvmbs!Tfdups! ! %" ? - - , @ - 2a (p ! 2 ) 2p A B + $ + B - - ! - - " " - a > $ a! - D + A B * " - - - # C + * " # , Nfuipe!J # B> $ - %" fi - - Ú x- dA 2 3 a! !3 sin a Ú0 ! " * ! a ¥ ! ! a ! % EF a a G " EF & $ " Ro sin a 2 Roa dRo a 2 ! sin a 3a fi " ? - ! ¥ R fi a! ¥ , Nfuipe!JJ # # Ax %" ! -* ? # B " 2Ê Á 3Ë :! !< " sin ` ˆ ˜ ` ¯ H " q q ? B * $ # 1 2 , $ R dq !! q - " " G - - " EF !- aR x Ú x- dA 2 3 fi !3 sin a ( R 2a ) x fi - # B Ú-a ( 23 R cos q ) ( 12 R a 2 ! sin a 3a 2Ê Á 3Ë 2 dq ) sin a ˆ ˜ a ¯ )j*!Rvbsufs!Djsdvmbs!Bsfb a p fi " $ A q & $ " Ax fi 2 3 - 2 ! sin 45∞ 3(p /4) 4 2! 3p 2Ê2 2 ˆ 3 ÁË p ˜¯ q a a ɏ ŶŽŹ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ )jj*!Tfnj.djsdvmbs!Bsfb a fi 2 ! sin 90∞ 3(p /2) fi 2 ! sin 180∞ 3p p 4! 3p 2Ê2 ˆ Á ˜ 3Ë o ¯ )jjj*!Djsdvmbs!Bsfb a p ! Qbsbcpmjd!Tqboesfm! * $6 . 7 :" : "# * : "# " ". $ ! Ú ?..!+" AB$ a !" "# Ú dA a $ ' ; ". . a 2 Ú0 x y dx a 2 x4 ◊ a3 4 ..!+ $ 3 a /3 "# * ! -" " a a Ú ( ydA ) dA Ú0 ( y /2) ( y dx) Ú0 ( x 2 a 0 /2) ( x 2 dx) O 4 . " :".! AB$ x5 ◊ 2a 3 5 -" $ E" $ ' a 3 2 10 0 dy b C (x, y) y x O a (a) Vertical strip . 2 3 10 3 $ 10 : x x a " "# * b (x, y) y dx # !" #" " " >$ ? 3 4 y = x2 C (x, y) #" + : y x (x, y) : = 3 y = x2 -. 4 3 . 3 a 3 /3 A y F" : " " @ 3 A a /3 : : #" ". " <" $ $& A %&' @ dx a 3 " "# $ Ú0 x ( y dx) Ú0 x ( x dx) Ú x dA # : ! # # + , -" . ! ; " <" $ $& $ # ":= ## . #" : !": : -" ": ! # #" (a – x) (b) Horizontal strip : Ê 3a 3b ˆ $ ÁË , ˜ 4 10 ¯ " ;" 6" #" ! $ : ŶŽźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! # $ ! " ! $ x+ # %& '! (a + x) 2 (a - x) 2 * b b Ú0 (ay - y Ú ydA dA Ú0 y (a - x) dy 3 È ay 2 y 5/2 ˘ Í ˙ 5/2 ˚ a3 Î 2 0 a 3 /3 a 3 /3 A b y ) dy 5 3 2 3 3 È ¥ 4 2( 2 )5/2 ˘ 3 3 È ab 2 2b5/2 ˘ ¥ Í ˙ Í ˙ 3 3 5 ˚ 10 10 10 5 ˚ a3 Î 2 Î 2 b (a + x) b b 2 2 Ú xdA dA Ú0 2 (a - x) dy Ú0 (a - x ) dy Ú0 (b - y) dy A 2a 3 /3 a 3 /3 2a 3 /3 b 3 È 2 b2 ˘ Íb - ˙ 2˚ 2a 3 Î y2 ˘ 3 È by Í ˙ 2˚ 2a 3 Î 0 Sjhiu!Djsdvmbs!Tpmje!Dpof! , - (x, y, z ) $ 6 8 # $ :;! $ PQ OB + 3b 2 4a 3 3 4 4 3 $ $ $ $ $ 7 $ $ $ * < 7= h- y h x r AP AO 3 4 Ê r Á> Ë fi :; yˆ ˜ h¯ 2 ? $ ? @ %& $ " # p # 1 p 3 p yˆ Ê ÁË1 - ˜¯ dy h " C! h Ú y dV V Ú0 2 yˆ ÔÏ Ô¸ Ê y Ìp r 2 Á1 - ˜ dy ˝ Ë h¯ ÓÔ ˛Ô 2 p r h/3 3 È y2 2 y3 ˘ y4 Í + 2 ˙ 3h ˚ h Î 2 4h # " $ $ h 0 $ hÊ y3 2 y 2 ˆ pr2 Ú Á y + 2 dy 0Ë h ˜¯ h p r 2 h/3 4 3Ê 2 2 3ˆ Á 2 + 2 - 3 ˜ 4 Ë ¯ Ê ˆ ÁË 0, , 0˜¯ 4 E# D >F>"G 8 9 ɏ ŶŽŻ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ �!0OTEs! $ $ H $ $ # $ $ $ $ $ H $ $ ! y A y x z y2 + z2 = r2 Q P dy h C dy y y r y C O r x B z O x ! Tpmje!Ifnjtqifsf! , H H $ & $ $ # * 9 ? ? I " 8 # & $ $ " $ $ r " - y" p " p 2 p C 3 # # " " ! C! Ú y dV r Ú0 y{p (r V # 8 * $ " %& - (x, y, z ) $ 2 r p Ú ( yr 2 - y 3 ) dy - y 2 ) dy} (2/3)p r 0 3 (2/3)p r 3 Ê 3 ˆ ÁË 0, , 0˜¯ 8 $ E, r 3 È y2 2 y4 ˘ Í r ˙ 4 ˚0 2r 3 Î 2 # 3 8 >F>CG �!0OTEs $ $ H $ # $ $ H $ ! ŶŽżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ' ! "# $% - $ $ y $ a a O ; x C R $ $ "!a ! sin a a 8 6 $ C D! r cos 45∞ = 2R p x $ C R r= x 6 L= y r J$ $ pR 2 E6 $ 2 2R p 2R p r sin 45∞ = C DG $ $ C p! "! p 8 R y E6 $ O C DG # h C y C E6 $ b 2 - $ 1 A = bh 2 C DG b 2 $ R a a O x !"a C 2 ! sin a 3a 8 E6 $ C DG ' ɏ ŶŽŽ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ ; $ $ C y r Q r= x p R2 4 A= p R2 2 A= 2 ah 3 A= 4 ah 3 r cos 45∞ = 4R 3p r sin 45∞ = 4R 3p 4 2R 3p C R y A= 4! 3p O a C h y 3 8 3 5 O x C h y 3 5 O a a y = kx2 h C ah A= n +1 y Ê n +1 ˆ ÁË 4n + 2 ˜¯ h Ê n + 1ˆ ÁË n + 2 ˜¯ a 3 4 ! 3 10 ! O x " # y c h a x A= C y O b x ( a + b) h 2 2ac + a 2 + cb + ab + b 2 3(a + b) h ( 2a + b) 3(a + b) $% & ' ŷŴŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ' () y 1 V = p r 2h 3 h C y r ) x O ) y C 'XAMPLE!krc y y r O 3 8 2 V = p r3 3 x ,¶ª¨»¬ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏ·¨¹¨©¶³°ªɏ¨¹¬¨ɏ©¶¼µ«¬«ɏ©Àɏ»¯¬ɏ¿Ɋ¨¿°ºɏ¨µ«ɏ»¯¬ɏ³°µ¬ɏ¿ɏǛɏ¨Ȏɏ ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŵŴ¨ȍ & ' ( y x = ky2 x = ky2 b b y/2 x O O x a a (a) Area bounded by a parabola and a line 5OLUTION * + /- ) + (b) Vertical strip considered ) , , fi " ) - + / Ú dA a Ú0 b y dx = Ú y (2ky dy ) 0 a Ú xc dA Ú0 x ( y dx) A .( . ! ) a x dx 2kb3 /3 b Ú0 (ky 2 b Ú0 2 2ky dy y3 2k 3 b )[ y (2ky dy )] 2kb3 /3 Ú0 2k b 0 2 4 2kb3 3 y dy 2kb3 /3 3k È y 5 ˘ Í ˙ b3 Î 5 ˚ b 0 ) (+ ɏ ŷŴŵ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ & ' 3kb 2 5 #, *+ 3 5 fi ∵ - * $ . !" #$% !" #$% ' y a x a Ú0 2 ( y dx) Ú0 2k dx Ú y dA 2kb3 /3 A 3(kb 2 ) 2 3 8 2 3 8k b 2kb3 /3 a È x2 ˘ Í ˙ 4k 2 b3 Î 2 ˚ 0 3 3a 2 8k 2 b 3 ∵' Locate the centroid of the area under the curve x = ky3 from x = 0 to x = a as shown in Fig. 9.11a. & ' ( 'XAMPLE!krd y y b x = ky3 (a, b) x = ky3 x b C y C y O yc x a O (a) Area under cubic curve 5OLUTIONs + * 7 " " 1 9 Ú, b 1" Ú, dA Úx + 6 ' * 6 9 1 b y dx b Ú0 2 y (3ky dy ) b a Ú0 x ( y dx) Ú0 (ky dA A 4kb3 7 " * " 1" Ú y dA A ∵ " - 3 È y4 3k Í ÍÎ 4 $ b ˘ ˙ ˙˚ 0 ) y (3ky 2 dy ) 3kb 4 /4 A 4 7 dx (b) Vertical strip 1 1 x x 6 fi 6 ' + ## 7 3kb 4 4 4k 2 kb 4 È y7 ˘ Í ˙ Î7˚ b 0 4k b 7 b4 7 6 ' - "" ' a Ú0 y ( y dx) 2 A b Ú0 y2 (3ky 2 dy ) 2 3kb 4 /4 2k È y 5 ˘ Í ˙ kb 4 Î 5 ˚ b 0 2 5 4 5 2 5 - ŷŴŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!kre ,¶ª¨»¬ɏ»¯¬ɏª¬µ»¹¬ɏ¶ɏ´¨ººɏ¶ɏ»¯¬ɏ¯¨³ɊªÀ³°µ«¬¹ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŵŶ¨ȍɏ!ºº¼´¬ɏ»¯¨»ɏ »¯¬ɏ´¨»¬¹°¨³ɏ¶ɏ»¯¬ɏªÀ³°µ«¬¹ɏ°ºɏ¯¶´¶®¬µ¬¶¼ºȍɏ & ' ( y y y 200 mm y x z yc dq (a) Half cylinder h x z 100 mm C r q (b) Determining the centre of mass C 5OLUTION ! $ % $ % $ %% & # '' ' "# ' # # # ' 1 ) q* 2 ' & # + # q◊ # q ( 2 3 ( & . # # dV Ú 23 y dV Ú 2 p [cos q ] 0 3p & q /, )! 0* V & # '# ,# 1p 2 # - Úy ( & ! q p 2 (r 0 3 Ê r2 ˆ sin q ) ◊ Á dq ◊ h˜ Ë 2 ¯ 1 p r 2h 2 V 2 (-1 - 1) 3p - 4 3o 4 ¥ 100 $ 3p ) * * + - %% 2r 3p p Ú0 sin q dq ɏ ŷŴŷ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ :/5! .1!krf �! DFOUSPJET!PG!DPNQPTJUF!CPEJFT 8 )«¬µ»°Àɏ»¯¬ɏ³¶ª¨»°¶µɏ¶ɏ ª¬µ»¹¶°«ɏ¶ɏª¶´·¶º°»¬ɏ ©¶«°¬ºȍ ' ' ' ' # 9 Axis of reference x3 ) * x2 ' : ( # & ; ,# # W2 x1 ' C2 '# ( < C1 C : ' # & # W3 ( ' ! 0 9 # # 0 W1 ' X ' ' ( ) ' ' & 0 ' C3 ,# : 0 ' ( ='' ' WX fi W x > W x > W0 x0 fi ) ) W1 x1 + W2 x2 + W3 x3 W1 + W2 + W3 X= SW x SW y SW z , Y = , Z= SW SW SW > > 0* ) W1 x1 + W2 x2 + W3 x3 SWx SW & # 9 ' /, )! A* # # ' ' & r # # #- # ' : ' )! !* ' # ' 'XAMPLE!krf B /, )! A* SV x SV y SV z , Y = , Z= SV SV SV ' ' )r* ' X= 9 )! A* ' # ' ' ) # * & # C # /( # % ' !D ,¶ª¨»¬ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏº¯¨«¬«ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŵŸ¨ȍɏ & ' ( ŷŴŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº y y y 76.66 mm a 40 mm A1 R = 55 mm R = 55 mm 225 mm = b A2 112.5 mm 75 mm O C2 – C1 x x O 100 mm 130 mm x O 50 mm (b) Full rectangle (a) The plate with a cut (c) Semicircular cut 5OLUTION! ! " # $ # ' % && # % () * )) * )) * & % ) 100 225 % )& # % % % % % 2 2 4r 4 ¥ 55 %a% 100 % (+ ++ # 3p 3p # # ) % () * )) % ,& - ! 6 % 2=- 7 S )%% + ) ¥ && % )%%+ )& )&& p ¥ 552 = - 4751.66 2 Ax )%% + )%%+ ) (+ ++ ) &&& ,& ;,+ (( < , (+& (,( ( >( X , Y ) ) % + , S Ax 760 737.7 % = SA 17 748.34 %% .+/ Ay )%% + ), ;+ ( ( ) < , ), " * % S Ay 1913 534.2 % % SA 17 748.34 )& %% ɏ ŷŴŹ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ :/6! .1!krg �! UIFPSFNT!PG!QBQQVT! ! 3»¨»¬ɏ¨µ«ɏ·¹¶½¬ɏ 0¨··¼ºɏ»¯¬¶¹¬´ºȎɏ¨µ«ɏ ¨··³Àɏ»¯¬º¬ɏ»¯¬¶¹¬´ºɏ »¶ɏª¶´·¼»¬ɏ»¯¬ɏº¼¹¨ª¬ɏ ¨¹¬¨ɏ¨µ«ɏ½¶³¼´¬ɏ¶ɏ ¨ɏ©¶«Àɏ¯¨½°µ®ɏ¨¿°¨³ɏ ºÀ´´¬»¹Àȍ ! " �! 9ORTHY!OF!0OTE Uifpsfn! J ! % K L # N $ Qsppg;! > ! ,+&D " " E # ) ! ÚL dA % ÚL % 7" L )((; + , # " " + & ' # $ " % p ¥ $# " ! $ !# &;,)& # #M ! $ E ! NJ ' " # #" ! p y dL % p Ú y dL $ M ! ! L y A 1 6 y 4 L dL 5 C dA C 2 3 y y y y x O x O A dA Path of the centroid dV V (a) Pappus theorem I (b) Pappus theorem II F # Ú y dL $# L 7 # E L # p ! %I Uifpsfn!JJ % GH # % p Ú ydL % 2p ( y L) % ' E p $ > ¥J # ! #" ÚL y dL % y L ŷŴźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! Qsppg; "$ # %& ' $ Ú A dV + ÚA y dA $ " # $ " & * p y dA + p Ú y dA A $ $ $ # # #& " & # & #+ ÚA "$ #+ p ¥ & "$ & ," * " # ÚA y dA + y A $ -. ' / # + p Ú y dA + 2p ( yA) + (2p y ) A A 0 "$ # * p & & ¥3 #+1 'XAMPLE!krg $¬»¬¹´°µ¬ɏ»¯¬ɏ³¨»¬¹¨³ɏº¼¹¨ª¬ɏ¨¹¬¨ɏ¨µ«ɏ½¶³¼´¬ɏ¶ɏ¨ɏ¹°®¯»ɏª°¹ª¼³¨¹ɏª¶µ¬ɏ¶ɏ©¨º¬ɏ¶ɏ ¹¨«°¼ºɏ¹ɏ¨µ«ɏ¯¬°®¯»ɏ¯ɏ¼º°µ®ɏ»¯¬ɏ0¨··¼ºɏ»¯¬¶¹¬´ºȍ & ' ( y y B A x1 h h C x2 O D x A O r r (a) Triangle being revolved 5OLUTION % &" ' & x B (b) Cone of revolution & 14, % $%& ' %& ' ! " ,4 # & 1, + r + h + $ 5* " + 6 1, & + 1, ¥ 3 + # 7 5 1 " # 1 & 7 " 1, r 2 + h 2 ¥ 2p x1 + r 2 + h 2 ¥ 2p ¥ (r/2) + o r r + h D14, + $ "$ & #+ $ ¥ p 1 2 3 + 1 2 & ¥ p¥ & D14, 1 + o 3 " $ # # x2 = r/3 8 & ɏ ŷŴŻ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ 'XAMPLE!krh $¬»¬¹´°µ¬ɏ»¯¬ɏ½¶³¼´¬ɏ¶ɏ¨ɏº¶³°«ɏ®¬µ¬¹¨»¬«ɏ©Àɏ¹¬½¶³½°µ®ɏ¨ɏ¹°®¯»Ɋ¨µ®³¬«ɏ»¹°¨µ®³¬ɏ »¯¹¶¼®¯ɏŵżŴǸȎɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŵŻ¨ȍ & ' ( 5OLUTION % &" ' 9 & D1,3 1 + & 1 2 ¥ 1, ¥ ,3 + 3 8 & 7 $ " $ D1,3 $ 1 2 ¥' ¥' + + 45 + # "$ : ! # + A ¥ px + # $$ BD 90 + 45 + + 9 $$ 3 3 $" & & * " $$ + :65/34!-%4 ¥p¥9 +' y y A 90 mm x C 90 mm x 45 90 mm mm 45 mm (a) Solid of revolution ! x B 90 mm D (b) Triangle revolved #&&+6+10#.!51.8'&!':#/2.'5 'XAMPLE!kri $¬»¬¹´°µ¬ɏ»¯¬ɏÀɊª¶¶¹«°µ¨»¬ɏ¶ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏ»¹¨·¬Á°¼´ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŵżȍ & ' ( 5OLUTION ! $ Ê b - a ˆ (h - y ) ÁË ˜◊ h 2 ¯ ¢ ¢ Ï Ê Ìa + (b - a) Á1 Ë Ó " yˆ ¸ ˜ ˝ dy h¯ ˛ Ê ÁË# - yˆ ˜ h¯ ŷŴżɏ % %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! &' * + !, h h Ú- y dA Ú0 A È yˆ˘ Ê y Ía + (b - a ) Á1 - ˜ ˙ dy Ë ¯˚ h Î A Ê h 2 h3 ˆ ah 2 + (b - a ) Á - ˜ 2 Ë 2 3h ¯ 1 (a 2 È ay 2 Ê y 2 y3 ˆ ˘ + (b - a ) Á - ˜˙ Í Ë 2 3h ¯ ˙˚ ÍÎ 2 A ah 2 h 2 + (b - a ) 2 6 1 ( a + b) h 2 + b) h h (2a + b ) ◊ 3 (a + b) h 0 Ê 2ah 2 bh 2 ˆ 1 Á 3 + 3 ˜ ◊ ( a + b) h Ë ¯ . * # ## y F a 80 mm A b¢ h C D C dy y y E p/4 p/4 B 50 mm O x x b (b – a)/2 (b – a)/2 'XAMPLE!krj 5OLUTION / ) ,¶ª¨»¬ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏº¯¨«¬«ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŵŽȍɏ 4 . 5 . *# + 5 2! 3(p /4) !, ' / ! 9: ; / ! 9$&? S p7 # )%% + p 7 ¥ 8- +- < +7 " p 7 ¥ +"#*<= 7* )%%+ !, Ay )%% + 7# =>7 7+ 4 2 ¥ 50 = 30.01 3p @ +8 * 7 == #8 7+- # !, 182 450.12 3063.05 p7 4 2 ¥ 80 = 48.02 3p =-<= -+ SAy SA a 4 2 ! 3p +- * * 8! 1 3p 2 8! & ' %% ( ɏ ŷŴŽ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ $¬»¬¹´°µ¬ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŶŴ¨ȍɏ 'XAMPLE!krk & ' y ( C2 25 mm C1 C y1 y A (a) 5OLUTION !, ¥ + 5 ! ! ! $ ! 4 -¥ + # - 12 p $ Myth Fact! . 5 / x B O 20 mm (b) A B 20 mm 25 mm y2 ! * 4 +-- 2 $ " - 12 ¥ p ¥ " % & % * % ' ' # & + ' , " ! A1 y1 + A2 y2 A1 + A2 'XAMPLE!krcl 4 4 ¥ 10 25 3p 3p 500 ¥ 12.5 + (-157.08) ¥ 20.76 500 + (-157.08) 25 - " # %% $¬»¬¹´°µ¬ɏ »¯¬ɏ ª¬µ»¹¶°«ɏ ¶ɏ »¯¬ɏ »¯°µɏ ¾°¹¬ɏ ©¬µ»ɏ °µɏ »¯¬ɏ º¯¨·¬ɏ ¶ɏ7ɏ ¨ºɏ º¯¶¾µɏ °µɏ &°®ȍɏŽȍŶŵ¨ȍɏ & ' ( y a a a C1 C2 a a a 3 4 a (a) a C 3 C4 C 60° a/2 x O a (b) ŷŵŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº - 5OLUTION $; ' < / & 9 % ' , , ' : ) / / 9 ¥ 9 3 # = 4 $ % ' SLy SL 'XAMPLE!krcc ¥( 3/4) + ¥( 3/4) + + + ¥( + 3/4) + ¥( 3/4) 3 4 &°µ«ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏ·³¨µ¬ɏ³¨´°µ¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŶŶ¨ȍɏ & ' ( y y 80 mm 80 mm C1 A1 15 mm 15 mm A2 150 mm 150 mm C 2 20 mm C 20 mm 15 mm x O C3 O ' ' , ¥ $; ' x (b) Three rectangular components (a) Channel section / 15 mm 100 mm 100 mm 5OLUTION $ A3 ' : / $ / ?¥ > , , ' 9 / ¥ ' + ' ' 80 2 9 20 2 $ ) $ A1 x1 + A2 x2 + A3 x3 A1 + A2 + A3 ' 15 150 9 2 SA x SA 100 2 + 1200 ¥ 40 + 2400 ¥ 10 + 1500 ¥ 50 1200 + 2400 + 1500 + ' 120 15 @ / 2 2 / %% $ * SA y SA A1 y1 + A2 y2 + A3 y3 A1 + A2 + A3 1200 ¥ 142.5 + 2400 ¥ 75 + 1500 ¥ 7.5 1200 + 2400 + 1500 %% ɏ ŷŵŵ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ 'XAMPLE!krcd &°µ«ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏº¯¨«¬«ɏ³¨´°µ¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŶŷȍɏ 5OLUTION $ ' : / 9 A p¥9 ' A % A < , / p¥ / ' ( # - 12 ¥ / ¥ ' & ' / 9 # / - 13 ¥ / / < ) A1 x1 + A2 x2 + A3 x3 A1 + A2 + A3 < ¥ 1 3 5026.5 ¥ 0 + (- 375) ¥ (-10) + (-314.16 ¥ 20) 5026.5 - 375 - 314.16 / + // / * -% < * A1 y1 + A2 y2 + A3 y3 A1 + A2 + A3 5026.5 ¥ 0 + (-375 ¥ 8.33) + (- 314.16 ¥ 0) 5026.5 - 375 - 314.16 -% y y R = 10 cm 25 cm x 30 cm R 45° O 20 cm A x B R = 40 cm 'XAMPLE!krce !ɏª°¹ª¼³¨¹ɏº¬ª»¶¹ɏ¶ɏŸŹǸɏ°ºɏª¼»ɏ¹¶´ɏ»¯¬ɏª°¹ª³¬ɏ¶ɏ¹¨«°¼ºɏ2ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŶŸȍɏ $¬»¬¹´°µ¬ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏ¹¬´¨°µ°µ®ɏ¨¹¬¨ȍɏ ɏ & ' ( ! 5OLUTION ! + " - # $ % / - #& 9 '** " : + , * ŷŵŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! )%% + : ; " < := A2 = - ! p! p R 2q p R 2 45∞ p R2 ==360∞ 360∞ 8 2 ! sin(p /4) 4 2 = ! 3(p /4) 3p - !3 3 2 ** A1 x1 + A2 x2 A1 + A2 ) Ax )%% + )%%+ 4 2 21o !3 3 2 2 2 p! p! 8 0- - 8 . !3 7p ! 2 3 2 ª - 0 086 y 'XAMPLE!krcf !ɏ º¬´°ª°¹ª¼³¨¹ɏ ¨¹¬¨ɏ °ºɏ ¹¬´¶½¬«ɏ ¹¶´ɏ »¯¬ɏ »¹¨·¬Á¶°«Ȏɏ ¨ºɏ º¯¶¾µɏ °µɏ &°®ȍɏ ŽȍŶŹȍɏ $¬»¬¹´°µ¬ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏ¹¬´¨°µ°µ®ɏ¨¹¬¨ȍɏ ɏ & ' ( #& 5OLUTION D%@A # & : C ! , ! # *> ! #& )%% + ! ¥ : & @AB$ A# < > & ' > & ! - # " S - ! * :CC CC 200 = 100 2 ¥: C : p ¥ 502 = - 3926.88 2 : C: 100 100 + 2 : C1 150 mm C2 100 mm C3 O C" ! + , E 100 mm )%%+ 100 + F B ? )%%+ 2 ¥ 200 3 = *> * A 50 3 ::D D 100 mm Ay )%% + Ax )%% + DDD D CC 100 2 4 ¥ 50 3p x D : : < C CC C< " < :=D D: : : D: ɏ ŷŵŷ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ ! ** SAx SA ) #& 2077 618 21073.12 'XAMPLE!krcg ! Y %% SAy SA 1500021.61 21073.12 %% ɏ&°µ«ɏ»¯¬ɏÀɊª¶¶¹«°µ¨»¬ɏ¶ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏ¨¹¬¨ɏ/!"ɏ©¶¼µ«ɏ©¬»¾¬¬µɏ»¯¬ɏª¼¹½¬ɏ ÀɏǛɏ ax ɏ¨µ«ɏ»¯¬ɏº»¹¨°®¯»ɏ³°µ¬ɏ/"ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŶźȍɏ ! 5OLUTION ! > @ & ! * , & # * ' & # EG > % #& "' = > EF ! ax : ! ! / # FG ! $@ *> 1Ê 0 2Á Ë Ú y dA Ú xˆ Ê ax + ˜ Á 2¯ Ë aÊ Ú0 ÁË ax - a A 1 È ax 2 x3 ˘ - ˙ Í 2Î 2 12 ˚ a 0 È 1/2 x3/2 x 2 ˘ - ˙ Ía 3/2 4˚ Î y a xˆ ax - ˜ dx 2¯ xˆ ˜ dx 2¯ 3˘ 1È 3 Í - ˙ 2 Î 2 12 ˚ 2˘ È2 2 - ˙ Í 4˚ Î 3 a 0 ; = % ! A * = ( ax - x/2) #& > EF : ! * EF PQ PR - QR 1 FG H FG H (PR + QR ) 2 2 2 ! ax & " - 1( 2 1 + aÊ 1 2 0 Á ax Ë - Ú a Ê 1/2 1/2 Ú0 ÁË a x 1Ê 2Á Ë 2) xˆ ax + ˜ 2¯ x2 ˆ dx 4 ˜¯ xˆ - ˜ dx 2¯ 5 3 24 5 2 12 A P y = ax a/2 y1 y Q R x L x x x a/2 a dx 'XAMPLE!krch ¬µ«ȍɏ y L B y2 O y dx 2D x D (a) (b) $¬»¬¹´°µ¬ɏ»¯¬ɏ¿Ɋª¶¶¹«°µ¨»¬ɏ¶ɏ»¯¬ɏª¬µ»¹¬ɏ¶ɏ´¨ººɏ¶ɏ»¯¬ɏ»¨·¬¹¬«ɏº»¬¬³ɏ¹¶«ɏ¶ɏ³¬µ®»¯ɏ ,ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŶŻ¨ȍɏ$°¨´¬»¬¹ɏ¶ɏ»¯¬ɏ¹¶«ɏ¨»ɏ¶µ¬ɏ¬µ«ɏ°ºɏ»¾°ª¬ɏ»¯¨»ɏ¨»ɏ»¯¬ɏ¶»¯¬¹ɏ & ' ( ŷŵŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 5OLUTION ! Ê D - Dˆ ,#Á ˜ ¥ Ë L ¯ ◊ - Ú dV # & Dx L p ' # % & ,# " xˆ Ê D Á$ + ˜ Ë L¯ p 2Ê x2 2 x ˆ D Á1 + 2 + ˜ dx 4 L¯ L Ë Ê x2 2 x ˆ D 2 Á1 + 2 + ˜ 4 Ë L¯ L Ú0 pD Ê L3 2 L2 ˆ L + + 4 ÁË 2 L ˜¯ 3L2 2 * p D2 È x3 2 x2 ˘ Íx + 2 + ˙ 4 Î 2L ˚ 3L Lp L 0 7 p D2 L 12 +, - 9: L Ú0 Ú xdV x p 2Ê x2 2 x ˆ D Á1 + 2 + ˜ dx 4 L¯ L Ë p 2 LÊ x3 2 x 2 ˆ D Ú Áx + 2 + dx 0 Ë 4 L ˜¯ L 7p D 2 L /12 V V 3 È x2 x4 2 x3 ˘ Í + 2 + ˙ 7 L Î 2 4L 3L ˚ L 0 3 Ê $2 $4 2 $3 ˆ + 2 + Á 7 $ Ë 2 4$ 3$ ˜¯ 3 17 $2 ¥ 7$ 12 17 $ 28 y B 'XAMPLE!krci ; 5OLUTION $ Quadrant ,¶ª¨»¬ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏº¯¨«¬«ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ &°®ȍɏŽȍŶżȍɏ & ' ( ! ,& Semi-circle A O ! x 200 mm < ; ,& ! =& - ! $ $>?: )%% + -p>': ¥ @@ 9$ '$A p S ! ¥ )%%+ )%%+ 4 ¥ 200 = 84.88 3p 4 ¥ 100 = 42.44 3p Ax )%% + Ay )%% + ɏ ŷŵŹ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ ! " # $" !" ) SAx SA 'XAMPLE!krcj $" # %& ! #$ 1095787.8 15707.96 %% '#( SAy SA * ! 1 999 937.9 15 707.96 !ɏ¾°¹¬ɏ°ºɏ©¬µ»ɏ°µ»¶ɏ¨ɏª³¶º¬«ɏ³¶¶·ɏ!Ɋ"Ɋ#Ɋ$Ɋ%Ɋ!ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŶŽ¨Ȏɏ°µɏ¾¯°ª¯ɏ»¯¬ɏ ·¶¹»°¶µɏ!"ɏ°ºɏ¨ɏª°¹ª¼³¨¹ɏ¨¹ªȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏ¾°¹¬ȍɏ & ' ( y y 5m B 5m B C2 C C1 5m A A E x D Q 5m P C3 C 10 m C4 E 10 m C 45° C5 10 m 10 m (b) 5OLUTION! ) " *# & " !" ' !" # % !"#+,* " -56 ! #" ;- ' " " #< " & !" # 9 6 9 6 9 6 9 ! 9 # # '! ! > % ) !%" # $ " # % !"# -56 596 9:6 :; ! ;-6 #< " & ?6 -5 :; " # % : #" ! # $ : #" ! !" -56 " !" -E G ! $" ) : #" ! # $ : #" ! #9 !" $" * 1 4 x D (a) > %% ¥ p @ 1 4 ¥ p¥ ;- @ 59 ! 2 2 ¥5 p p 69 69 69 ! 9 $ " D #6 -A EA -A A9 # F @ @ !" 9$ " D #6 #" ! % #9 69 69 69 ! 9 $ 9: B A9 l1 x1 + l2 x2 + l3 x3 + l4 x4 + l5 x5 l1 + l2 + l3 + l4 + l5 @ % " ! # 596 9:6 :; ! ¥ # @ C F @ @ 7.85 ¥ 1.82 + 5 ¥ 7.5 + 15 ¥ 10 + 10 ¥ 5 + 10 ¥ 0 7.85 + 5 + 15 + 10 + 10 " D #6 -; G 9 E -; G A9 # ! F G ¥#! F @ G @ @ @ ! !" 9$ " D #6 l1 y1 + l2 y2 + l3 y3 + l4 y4 + l5 y5 7.85 ¥ 13.182 + 5 ¥ 15 + 15 ¥ 7.5 + 10 ¥ 0 + 10 ¥ 5 7.85 + 5 + 15 + 10 + 10 l1 + l2 + l3 + l4 + l5 % ŷŵźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!krck ,¶ª¨»¬ɏ»¯¬ɏª¬µ»¹¶°«ɏ¶ɏ»¯¬ɏ¾°¹¬ɏ©¬µ»ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŷŴ¨ȍɏ & ' y y C A 100 C mm 30° 100 A 80 mm C1 D x 30° 120 mm B 80 mm C 3 C C mm 2 30° D B x 30°1 20 C4 mm E E (b) Four segments of the wire (a) The bent wire 5OLUTION ) " *# & " >% H !% < !" 5 # ) !" ' % !6 $ ! ) !%" 59 p " ! $9 $ ) "" ' ! !" $ !" & *# # % !"# ' " !" #96969 " # % !" 9:6 " ! " # $ "# !" 2 2 ¥ 80 p ! D #6 " 59 # ! !" ' 96 " F #! * " !# $ )%%+ % ( )%%+ -5 # I #! F ' # lx )%% + )%%+ ! 9 6 # # '! ! %& ! #$ '# '! ! " " %& ! ly )%% + I 59 9: p ¥ :; G # I #! I S ! " # $" ) 'XAMPLE!krdl Sl x Sl ! !" 17 905.06 425.66 96 %% ! * Sly Sl 8 499.86 425.66 %% !ɏª¶´·¶º°»¬ɏ©¶«Àɏª¶µº°º»ºɏ¶ɏ¨ɏº¶³°«ɏ¯¬´°º·¯¬¹¬ɏ¶ɏŷɊª´ɏ¹¨«°¼ºɏ¨µ«ɏ·³¨ª¬«ɏ¶½¬¹ɏ °»ɏ¨ɏ¹°®¯»ɏª°¹ª¼³¨¹ɏª¶µ¬ɏ¶ɏ¹¨«°¼ºɏŷɏª´ɏ¨µ«ɏŽɊª´ɏ¯¬°®¯»Ȏɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŷŵȍɏ4¯¬ɏ «¬µº°»Àɏ¶ɏ»¯¬ɏ´¨»¬¹°¨³ɏ¶ɏ»¯¬ɏ¯¬´°º·¯¬¹¬ɏ°ºɏŻȍżɏ®Ʉª´ŷɏ¨µ«ɏ»¯¨»ɏ¶ɏ»¯¬ɏª¶µ¬ɏ°ºɏŶȍŶɏ®Ʉª´ŷȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ ª¬µ»¹¬ɏ¶ɏ´¨ººɏ¶ɏ»¯¬ɏª¶´·¶º°»¬ɏ©¶«Àȍɏ7¯¨»ɏ¯¨··¬µºɏ»¶ɏ»¯¬ɏª¬µ»¹¬ɏ¶ɏ´¨ººɏ¶ɏ»¯¬ɏª¶´·¶º°»¬ɏ©¶«Àɏ°ɏ ©¶»¯ɏ»¯¬ɏ¯¬´°º·¯¬¹¬ɏ¨µ«ɏ»¯¬ɏ¹°®¯»ɏª°¹ª¼³¨¹ɏª¶µ¬ɏ¨¹¬ɏ´¨«¬ɏ¶ɏ´¨»¬¹°¨³ºɏ¯¨½°µ®ɏº¨´¬ɏ«¬µº°»Àȓɏ & ' ( ɏ ŷŵŻ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ 5OLUTION J & !( :* " #? " ?6 " !" # $ ## $ " K * 6 !" #< L ## $ ! 6 : #" ! $" 1 3 ¥p 1 3 $" ! " # $# ! % " ¥p¥ * V1 y1 + V2 y2 V1 + V2 ¥p¥ 9 cm C2 % ¥ y 2 = 2.25 x y1 C1 3 cm % ¥3 9 4 D #6 m1 y1 + m2 y2 m1 + m2 4 3 " M D #6 - 83 " * ¥ ¥ < !" 9 $ < !" 9 $ & 1 2 ¥ # ¥r - 83 : #" ! ¥p 4 3 # ¥r 6 ! 6 # $ ¥ 1 2 6# #< L ## $ K * $ #< $ y 6r % 6r % ## # ! " D# ) "9 ! 9 ! " ! 6 #< " & ? 441.1 ¥ (-1.125) + 186.6 ¥ 2.25 441.1 + 186.6 * 56.55 ¥ (-1.125) + 84.82 ¥ 2.25 56.55 + 84.82 -% -% -% 'XAMPLE!krdc $¬»¬¹´°µ¬ɏ»¯¬ɏª¬µ»¹¶°«¨³ɏª¶¶¹«°µ¨»¬ºɏ¶ɏ»¯¬ɏª¶´·¶º°»¬ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŷŶȍɏ & ' 5OLUTION ( y ' "* + 1 2 % ¥p¥ %! ¥ + + - * 1 2 ¥ ¥ % % * 4! # 3p : ; : : 2.5 cm 2.5 cm 5 cm ", ! 5 cm A3 % C * 4 ¥ 2.5 # 3p A1 A2 % /*" 5 cm x O 12.5 cm %! 2.5 cm ŷŵżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº A1 x1 + A2 x2 + A3 x3 A1 + A2 + A3 9.82 ¥ 1.439 + 50 ¥ 7.5 + 12.5 ¥ 10 9.82 + 50 + 12.5 ) - % * < % -% < 5+ * 5 3 = =; A1 y1 + A2 y2 + A3 y3 A1 + A2 + A3 9.82 ¥ 2.5 + 50 ¥ 2.5 + 12.5 ¥ 6.67 9.82 + 50 + 12.5 * 'XAMPLE!krdd -% 4¯¬ɏ ¹¼º»¼´ɏ ¶ɏ ¨ɏ º¶³°«ɏ ª°¹ª¼³¨¹ɏ ª¶µ¬ɏ ¯¨ºɏ ¨µɏ ¨¿°¨³ɏ ¯¶³¬ɏ ¶ɏ ŻŹɏ ´´ɏ «°¨´¬»¬¹ɏ ¨ºɏ º¯¶¾µɏ°µɏ&°®ȍɏŽȍŷŷ¨ȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏª¬µ»¹¬ɏ¶ɏ®¹¨½°»Àɏ¶ɏ»¯¬ɏ©¶«Àȍɏ & ' ( y O 300 mm 150 mm 150 mm B A B A 300 mm 300 mm C D 75 mm C 300 mm (a) 5OLUTION! ) # %& $ #*& D 75 mm 300 mm x (b) $>?& >? A +C $ ' " ** @ B #& >- $ ; ɏ ŷŵŽ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ "# $% # )%% + D >- #% 1p! 3 # - 13 p ! #* #p 1 3 & ¥ p ¥ 1 ! ¥ =!! )%%+ / !! !!!p & 600 = 4 4 % ! 300 4 *; & 300 = 2 2 % ! 2 D +C > Ê 150 ˆ - 13 ¥ p Á ¥ 300 # = Ë 2 ˜¯ # p ¥ $; < & ¥ *!! *!! : !!p # / % ,; p >? V1 y1 + V2 y2 + V3 y3 V1 + V2 + V3 * (4500 000 ¥ 150 - 562500 ¥ 375 - 421875 ¥ 150)p (4500 000 - 562500 - 421875)p %% 'XAMPLE!krde &°®¼¹¬ɏŽȍŷŸ¨ɏº¯¶¾ºɏ¨ɏªÀ³°µ«¹°ª¨³ɏº»¶¹¨®¬ɏ»¨µ²ɏ¾°»¯ɏ¨ɏ¯¬´°º·¯¬¹°ª¨³ɏª¨·ȍɏ#¶´·¼»¬ɏ »¯¬ɏ»¶»¨³ɏ½¶³¼´¬ɏ¶ɏ»¯¬ɏ»¨µ²ȍɏ)ɏ¶µ¬ɏ³°»¹¬ɏ¶ɏ·¨°µ»ɏª¶½¬¹ºɏŶɏ´Ŷɏ¨¹¬¨Ȏɏ«¬»¬¹´°µ¬ɏ»¯¬ɏ ¸¼¨µ»°»Àɏ¶ɏ·¨°µ»ɏ¹¬¸¼°¹¬«ɏ¶¹ɏ»¯¬ɏ¬µ»°¹¬ɏ¶¼»¬¹ɏº¼¹¨ª¬ɏ¨¹¬¨ɏ¶ɏ»¯¬ɏ»¨µ²ȍɏ5º¬ɏ»¯¬ɏ0¨··¼ºɏ»¯¬¶¹¬´ȍ & ' ( ɏ y y x1 4m A1 C1 C3 x3 4m 4m X X C C2 10 m x2 C 10 m C4 x4 10 m A2 O x O 4m (a) (b) x 4m (c) 5OLUTION ! ') * ( , 4 4¥4 , (# $3p 3p " # $# % # & + . $#(/ 0 ) , 4 ,) 2 '( ŷŶŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 1 4 ) ( , 1 ) ,( ¥%,% p , 1 4 1 p ¥ %) , ()#67 ) ) ' ) , 1 A1 x1 + A2 x2 12.57 ¥ 1.698 + 40 ¥ 2 , , (#$)A1 + A2 12.57 + 40 ? # ,1 ¥& , ¥ )p ) , *()#67 @ % + ¥ *)p ¥ (#$)-+ , ! A A % * ! #& ( '% , ) 2¥4 , , )#66 p p B , B ! % ,% * 1 4 *)p + , 1 2 C ! $#(/)+ p ¥ % , #)- ,( % , @ ' ) , " # $# % + ! ' % , ( #)- l3 x3 + l4 x4 6.28 ¥ 2.55 + 10 ¥ 4 , , #%% l3 + l4 6.28 + 10 ? ,B ¥& , ¥ )p ) , ( #)- ¥ *)p ¥ #%%+ , D ) % ) , ) , 351.88 , 2 ! ? !# E #, D , 'XAMPLE!krdf ( ¥ 2p ¥ 2p 1 3 @ @ ) % ¥ )p ¥ 2p 4 ) , ()#67 ¥ )p ¥ (# $- @ % ¥ )p ¥ ) , , #)- ¥ )p ¥ )#66 @ ( ¥ )p ¥ % , % % $¬»¬¹´°µ¬ɏ»¯¬ɏº¼¹¨ª¬ɏ¨¹¬¨ɏ¨µ«ɏ½¶³¼´¬ɏ®¬µ¬¹¨»¬«ɏ©Àɏ¹¬½¶³½°µ®ɏ¨ɏ¸¼¨¹»¬¹Ɋª°¹ª¼³¨¹ɏ ¨¹¬¨ɏ¶ɏ¹¨«°¼ºɏ¹ɏ¨©¶¼»ɏ»¯¬ɏÁɊ¨¿°ºɏ»¯¹¶¼®¯ɏ¨µɏ¨µ®³¬ɏ¶ɏŽŴǸɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŷŹ¨ȍɏ & ' ( ɏ ŷŶŵ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ z z z x y r C1 x O r x C3 r x C2 r r C C x O 4r 3p r O (a) (b) 5OLUTION + F " $# 6 #B #& G ( + - , ) , (# p B ( 1 4 , H ) G , (#67( H ¥ 2p A , ( @ + , ) , H ) @ (c) ! '( ') ) , (#6 H A ! $ ' , @ ,) , , (#67(H @ @ , #67( A l x +l x +l x 1.571 ¥ 1.363 + ¥ 1.5 + ¥ 2 , (#6, 1 1 2 2 3 3 , l 3.571 ' $ 2p 2p ¥ 1.58 , , )#%4 4 , C ! ? , ¥ , #6( ¥ )#%- , -#-6 ( , # ( F @)¥ 1 4 ¥p " $# 6 ) , -#-6 ) ) @ (#67( ) , ! ! '# ' , @ I 4 4 ,) I 3p 3p , 14 p # 2p 4 p ¥ p 2 pÊ 4 ˆ Á 2 - ˜¯ 2Ë 3p 2 4 ¥ pÊ 4 ˆ ÁË 2 - ˜¯ 2 3p p2 3 p 3 ! 4 6 o 3 Ê o 1ˆ Á - ˜ 2 Ë 2 3¯ ŷŶŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!krdg $¬»¬¹´°µ¬ɏ»¯¬ɏº¼¹¨ª¬ɏ¨¹¬¨ɏ¨µ«ɏ½¶³¼´¬ɏ¶ɏ¨ɏº¶³°«ɏ¶©»¨°µ¬«ɏ©Àɏ¹¬½¶³½°µ®ɏ¨ɏº¸¼¨¹¬ɏ ¨¹¬¨ɏ¶ɏŸŴɊ´´ɏº°«¬ɏ»¯¹¶¼®¯ɏŵŶŴǸɏ¨©¶¼»ɏ»¯¬ɏÀɊ¨¿°ºȍɏ/µ¬ɏ¶ɏ»¯¬ɏ«°¨®¶µ¨³ºɏ°ºɏ·¨¹¨³³¬³ɏ »¶ɏ»¯¬ɏÀɊ¨¿°ºɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŷźȍɏ ɏ & ' ( 5OLUTION # " # y $ % &' # , x '( ))* ) ' ¥' +% + # $ A C B D O ¥ p ¥ # + 120∞ 360∞ +% p ¥ ))* ) ¥ 1 3 ¥ +)'* 60 mm +)'* E %% " *: / ))* ) 40 mm - /9 9- * ' ¥' +% # 120∞ ˆ Ê ¥ Á 2p ¥ ˜ Ë 360∞ ¯ 'XAMPLE!krdh x 45° +% ¥ p ¥ ))* ) ¥ 1 3 + %% $¬»¬¹´°µ¬ɏ»¯¬ɏ½¶³¼´¬ɏ¨µ«ɏº¼¹¨ª¬ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŽȍŷŻ¨ȍɏɏ & ' 200 mm 120 mm y P D C5 C x1 C6 C C4 C1 3 x2 C C22 240 mm A O E C7 B x 160 mm (a) Solid of revolution (b) Trapezium revolved to get solid ( ɏ ŷŶŷ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ ; 5OLUTION / # < * *=> ? @ =% * $ ? " /9 * - 9 -¥ - + A - + + A1 x1 + A2 x2 A1 + A2 # +% ! + " 2 200 ¥ +% ! + 3 2 A $ F %% ¥- = ¥ p ¥ >*+' +%) *< ' ( % %% E > / - - ? BE 2 ' & ( -&G % 160 - 100 += 2 100 - 60 ) % & 2 AB G & > 2 + ( % & BE 2 + CE 2 " ! ( # 60760.7 627.39 160 - 60 2 "$ $ # % , # & 247.39 ¥ 130 + 40 ¥ 80 + 240 ¥ 60 + 100 ¥ 110 247.39 + 40 + 240 + 100 # *! + ¥ p) % & 602 + 2402 ( ) l4 x4 + l5 x5 + l6 x6 + l7 x7 l4 + l5 + l6 + l7 ) $(( +%) 9600 ¥ 80 + 7200 ¥ 120 9600 + 7200 A ¥ p) > E $ = ) 1 2 + 120 40 + ) 2 2 2 160 - ¥ BE 3 + & 200 - 120 % 2 ¥ B+% ! C D¥ ' ' ¥ ¥ /9 ¥ 9 1 2 /9 ' . A = - 9 A ( ¥ p ¥ # *! %% / ŷŶŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! 57//#4; ! .1!krc ' ( ( ' ( ( ' ) ( /00 - -: G H( 1 0 0234 ) ( ) ( ! .1!kre : D F ;#$! $ < ! < I ( JK ( Underline the concept of centre of gravity, centre of mass and centroid. Find the location of centroid of lines, surfaces and bodies. , ( (, ! .1!krg < ) ( / ( ( , ( , (/, ) : ( ( - , ( ; State and prove Pappus theorems, and apply these theorems to compute the surface area and volume of a body having axial symmetry. 9 ' < , 99 ' < , ( ( ( ( -/ ( , ( , , -/ , , ( ! , ( - = -/ = ( , ( -/ ( : ( , ( ( : , ( +/2146#06!(14/7.#' ; ( /> ; ( > ; ( , ; ( , ; ( ; ( , > > ( > ( Ú x dW ; y = Ú y dW ; z = Ú z dW & ' ( x= Ú x dm ; y = Ú y dm ; z = Ú z dm & ' ( x= Ú xdV ; y = Ú ydV ; z = Ú zdV & ' ( x= Ú xdL ; y = Ú ydL ; z = Ú zdL & ' ( x= Ú xdA ; y = Ú ydA ; z = Ú zdA & ' ( & ' ( x= - /> W m X= V L A W m V L A W m V L A SW x SW y SW z ;Y = ;Z = SW SW SW ɏ ŷŶŹ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ ! 5*146 #059'4!37'56+105 = < !> L , ( B D ( ,, -# < # ,M , - > - - / ( - B ' ' - #? ! B + # ! ; #/ # #? (, / #? - # <> ! #? ! @ ;A / / -# ! > : ! ( & ' / L ! #? ! @ ; #? @ (, #! % A B N , , - ( #<;A - ( ! #? ! @ ; (, ) , % #? E $ , F ) -/ , , #? # < !# < #? ?!#% !# < #? ! - !-$ ! -; < ! ? -$ #$ ?!#% -; < !A ) , ( ( ) ) : ( ( , , - # -, / , B < ( ( B L #? #<; < ?? ! - / ( ! #? % - / - / B # % < % ! < H ( , ( , : D( ! #? % ( ( - % - ! , ( ( , C A ( -, /) , ( /, /) / : F$ ! !G- !-$ ! ! < #? & ' ( & ' ( ( & ' ( & ' ( ( ( ; $ < ?#!A ' & ' ( / - , A , ( , ! @# @ < ; H #$ # #? A ! & ' ( & ' ( G & ' ( & ' ( & ' ( & ' ( $ -';!6'4/5 .1!krc .1!krf .1!krg / + - ! 4'8+'9!37'56+105 " M D ( / ( ) ( " ( - ( - ) D " ( ( M( ( ( ( ( / ( ( ( ( , ( /- ( / ( ( M - (G ( - / ŷŶźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº D ( H : / / + ! ( /G , & ' ( & ' ( & ' ( 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS ' > ' ( ( O P O P - / L ,, , O P O P ' ( N N ) / / O P O P p $ O P p ) < , # p p yL O P # - O P # ( & ' ( & ' ( & ' ( & ' ( & ' ( & ' ( & ' ( & ' ( & ' ( p O P p N - O P O P , ( O P : & ' , =( ( , 3 O P p 4 4 O P 3p ) ( p / O P - , ( , , - / p - F / ) O P N O P ( + ( ( , - / - / ( ( ; ( M,, , p yA ' /( O P O P + ' ( O P V = 2p Ay O P - / - M O P / / - O P $! (ILL $LANKS!3UESTIONS 5 > ' ( / $ (/, ( ,, ) ( - -/ ' , ( ( ' , ( ( , , : QQQQQQQQ , QQQQQQQQ - / -/ < QQQQQQQQ -/QQQQQQQQ %!/ATCH %OLUMNS!3UESTIONS 6 > I# $% 9 I# $% 99 OP O P O P O P O+P OJP OKP OHP / /( ; ( ; ( ; ( ; ( - ) ( , - , ɏ ŷŶŻ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ &!5TATEMENT %ONFIRMATION!3UESTIONS ' > OLP ' )LLP ' ( ( ( ( , ( ( , OP L , O P LL , ( ( ( ( ( ( ( O P L O P !& & ' & ' ( ( ( & ' ( ( LL ( L LL ( ( ( #NSWERS!TO!1BJECTIVE!3UESTIONS ) + J$ GI # - K$ )L+ : K$ GL # # R X ( , R Smx R Sm X SAx R SA )I+ J - GI# $% K$ # O P % OHP O P% O+P O P% OJP O P % OKP )M+ % GI# D!% # K$ # OP ! 24#%6+%'!241$.'/5 ( ( , ) ; * S y y y O!# ## ## # P D E 4 cm C 100 mm 15 cm x O 50 mm 70 mm 8 cm 5 cm x O 30 cm B A 10 cm 6 cm x ŷŶżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ( ( ( ( , ) $ ; "U ) ; S O ! *P ( T & ' ( S O# ! ( P( T & ' y y A y 15 cm B F Q C x O ( ( $) - 20 cm E x D 20 cm , ) - ) ; S ; O * " ( , $ ( (, ; ! = ( P ( S ; x O 7.5 cm P 15 mm 10 mm R = 10 cm 40 cm ) S O #* OV S ( O ; T & ' ) P( T & ' P( T & ' ( ( ( ( PT & ' ( T & ' ( !#P T & ' ( P T & ' ( y 400 mm y 100 mm 300 mm D C 200 mm 200 mm 150 mm E A B F O x 75 75 mm mm 450 mm ( ( $ ( ' ( ( ( ( ) / ) ; ; ! # S ,( , L=- ) ; ( 75 75 mm mm O *# ##P ( ( S ( x 100 mm ( S O# # ( O # ɏ ŷŶŽ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ y 30 m y 400 mm 50 mm 100 m 70 mm 20 m x O 70 m 20 m ' ( ( ( ) ; * ; ( y 50 mm x O 800 mm 15 m F - 1000 mm , ( ( S ) O ! ; S ( *# P O &* T , ) , & ' ( &!PT & ' ( 50 mm y 500 mm y=a 400 mm a 100 mm O x y= 100 100 mm 50 mm mm ( O ( - -/ , x2 a x a - , ) S ( ( ) ; ! S O O #* y=6- x2 6 ; ! y y 6 B 5 y = 2x2 2 45° A x 0 6 x ! PT & ' ( PT ( & ' ŷŷŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº " ; ( ! ' , / ( , ( , (/, , ) (/, S y !( T & ' ( 150 mm Wooden plank 15 mm h O 12 cm r2 r1 x 75 mm Steel plate h $) ! ( , F ! ! / - , (F ( ! ) /, - ; (F ! " I ( M: ) 'F ) $ (/, , (/, ( ( , , , ) , F / , ! ** ! T & ' S ( ( , ( ) )( ) G ( S D # ! ; ! - H ( ( T ( ( , / & ' ( T & ' ( ( ( , 300 mm Walls 300 mm ......... . . . . Heap of sand .. .................. ...................... ...................... ...................................... .. .. .... . ..................... ....................... .. ................................................................................... ....... . . . ..... .. .........................................................3...m. ........................ ......... . ................ ... Floor 200 mm ; !! ) 2m M W( , S ( ɏ ŷŷŵ #¬µ»¹¬ɏ¶ɏ'¹¨½°»Àɏ¨µ«ɏ#¬µ»¹¶°«ɏ $ ( ( ,) , ( , ) ( : ) , , , ' ( / ( , *!F ,( , , *# F & ) ; !# ' ( ( #! T & ' S ( 4.2 m 6m C r 3.5 m 2m (a) Control wheel (b) Cross-section of wheel ' , L ( , < ) , ( ,( , S ; ! # ( * , ( T & ' ( / ( ŷŷŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº #¯¨·»¬¹ 21 Npnfou!pg!Jofsujb .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ .1!clrcɏ $¬ķµ¬ɏ½¨¹°¶¼ºɏ»À·¬ºɏ¶ɏ´¶´¬µ»ºɏ¶ɏ°µ¬¹»°¨ɏ¨µ«ɏ»¯¬°¹ɏº°®µ°ķª¨µª¬ȍ .1!clrdɏ 5º¬ɏ«°Ĺ¬¹¬µ»ɏ´¬»¯¶«ºɏ»¶ɏ«¬»¬¹´°µ¬ɏ¨¹¬¨ɏ¶¹ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏ®°½¬µɏ³¨´°µ¨ɏ¶¹ɏ¨ɏ©¶«Àȍ .1!clreɏɏ $¬»¬¹´°µ¬ɏ·¶³¨¹ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨µɏ¨¹¬¨ȍ .1!clrfɏ &°µ«ɏ·¹¶«¼ª»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏ®°½¬µɏ¨¹¬¨Ȏɏ¨µ«ɏ«¬«¼ª¬ɏ·¬¹·¬µ«°ª¼³¨¹Ɋ¨¿°ºɏ»¯¬¶¹¬´ȍ .1!clrgɏɏ %½¨³¼¨»¬ɏ¹¨«°¼ºɏ¶ɏ®À¹¨»°¶µȍɏ .1!clrhɏ %´·³¶Àɏ·¨¹¨³³¬³Ɋ¨¿°ºɏ¨µ«ɏ·¬¹·¬µ«°ª¼³¨¹Ɋ¨¿°ºɏ»¯¬¶¹¬´ºɏ»¶ɏ®¬»ɏ´¶´¬µ»ºɏ¶ɏ°µ¬¹»°¨ɏ¶ɏª¶´·¶º°»¬ɏ ©¶«°¬ºȍ ɏ .1!clriɏ %º»°´¨»¬ɏ·¹°µª°·¨³ɏ´¶´¬µ»ºɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨µɏ¨¹¬¨ȍ ɏ ɏ ɏ ɏ ɏ .1!clrc 21/2! �! JOUSPEVDUJPO $¬ķµ¬ɏ½¨¹°¶¼ºɏ»À·¬ºɏ¶ɏ ´¶´¬µ»ºɏ¶ɏ°µ¬¹»°¨ɏ¨µ«ɏ »¯¬°¹ɏº°®µ°ķª¨µª¬ȍ .1!clrd 5º¬ɏ«°Ĺ¬¹¬µ»ɏ´¬»¯¶«ºɏ »¶ɏ«¬»¬¹´°µ¬ɏ¨¹¬¨ɏ¶¹ɏ ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ ¶ɏ¨ɏ®°½¬µɏ³¨´°µ¨ɏ¶¹ɏ¨ɏ ©¶«Àȍ 21/3! �! NPNFOUT!PG!JOFSUJB!PG!QMBOFT!BOE!TPMJET 21/3/2! Bsfb!Npnfou!pg!Jofsujb ! % s " & ' #$ # ɏ ŷŷŷ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ ' ¥ '( ' y ' x * )¥ ' dA y Cross-section of a column 2 2 ' Ú dM = Ú kx dA = k Ú x dA Úx + * dA ' Ú x * dA & Úy ' * M s = kx (#$ #) dA (#$ *) Linear stress variation in a column - &, # $ " 21/3/3! Nbtt!Npnfou!pg!Jofsujb z & C r ! dm ! " ' #$ * % Úm r * dm * &, 21/4! .1!clre $¬»¬¹´°µ¬ɏ·¶³¨¹ɏ ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ ¨µɏ¨¹¬¨Ȏɏ¨µ«ɏ«¬«¼ª¬ɏ ·¬¹·¬µ«°ª¼³¨¹ɏ¨¿°ºɏ »¯¬¶¹¬´ȍ ! ! (#$ .) " �! QPMBS!NPNFOU!PG!JOFSUJB!PG!BO!BSFB ! " #$ . % Myth Fact! + ' , * / ' Ú dJ = Ú r 2 dA (#$ -) ŷŷŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº * & * ' * 0 ' Ú ( x 2 + y 2 )dA = Úx 2 dA + Ú y 2 dA J ' I y + Ix fi (#$ 1) y Thin strip of area A z y dA ky x r y x Plane area A A x O % 21/4/2! " & " Qfsqfoejdvmbs.Byjt!Uifpsfn ! ' ! .1!clrf 21/5! &°µ«ɏ·¹¶«¼ª»ɏ¶ɏ°µ¬¹»°¨ɏ ¶ɏ¨ɏ®°½¬µɏ¨¹¬¨ȍ ' ! �! QSPEVDU!PG!JOFSUJB! & ! ' $ " " # & # $ % Ú A xy dA ' " ( / )*+, - .0 $ " " " $ + $ " ! ! " ! + " # ! " " % % .1!clrg %½¨³¼¨»¬ɏ¹¨«°¼ºɏ¶ɏ ®À¹¨»°¶µȍ 21/6! �! SBEJVT!PG!HZSBUJPO! 0 ' ! 1 ! ! ɏ ŷŷŹ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ 2 " 3 " # + * " " !" . . 0 " / 0 fi & Ix A 5 " ! % Iy & A " ¥ ! ! &4 & 0 # * ! ! ¥ ! ! " / 0 fi & 0 % I m & 6 0 ! " 0 21/7! .1!clrh �! QBSBMMFM.BYJT!UIFPSFN! ! - %´·³¶Àɏ·¨¹¨³³¬³Ɋ¨¿°ºɏ ¨µ«ɏ·¬¹·¬µ«°ª¼³¨¹Ɋ ¨¿°ºɏ»¯¬¶¹¬´ºɏ»¶ɏ®¬»ɏ ´¶´¬µ»ºɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ ª¶´·¶º°»¬ɏ©¶«°¬ºȍ ! $ ! ' ' ' ! " �! 9ORTHY!OF!0OTE ! " % Qsppg % 2 2 # ! " % " 2 ( ) % 0 * 2 & 28) ! % " 2 " ( ! ! ( 7 " - % !" 0 ) 2 ! % Ú dA & A / Ú Y dA & 4 Ú Y dA & 4 2 & 0 ! / 0 ( 7 Ú y dA & Ú ( yC + Y ) dA = Ú yC dA + Ú Y & yC2 Ú dA + Ú Y 2 dA + 2 yC Ú Y dA & " * " " - " 2 ( ! 2 dA + Ú 2 yCY dA 2 ( ! & ( ! & ( (8 / 2 ŷŷźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº \ ¥ 8 ( 8/ 2 ¥ I x = IX + AyC2 fi . / 2 & > 0 ! & 21/7/2! ) % / 2 8 Qbsbmmfm.Byjt!Uifpsfn!gps!Qpmbs!Npnfou!pg!Jofsujb - # " " y 7 Y X % x 7 ? " & A 8 dA ! " > Y xc X C 7 & ( 8 ( / 2 8 8 ) / 2 8 & ( 8 8 ) / 2 yc / 2 8 y @ / 2 8 / 2 ) * ! & &A / & x O 2 & 7 " 2 JO = J C + Ar 2 \ 21/7/3! Qbsbmmfm.Byjt!Uifpsfn!gps!Qspevdu!pg!Jofsujb " " " % &)8 7 &(8 2 ! & Ú xydA 2 & Ú ( X + xC )(Y + yC ) dA = Ú XY dA + xC Ú Y dA + yC Ú X dA + xC yC Ú dA Ú Y dA Ú XY dA Ú X dA % 0 " 1 ! ( ! () " ) " ! I xy = I XY + AxC yC 21/7/4! / Npnfou!pg!Jofsujb!pg!Dpnqptjuf!Bsfbt0Cpejft " " ! " (% / * 0 " % ! + B " 0 # D " D " 2 " " " > " 1 ɏ ŷŷŻ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ $ 2 ! + ? " " % 0 % " " % ! " $ 'XAMPLE!clrc $¬»¬¹´°µ¬ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏ¹¬ª»¨µ®¼³¨¹ɏ¨¹¬¨ɏ¾°»¯ɏ¹¬º·¬ª»ɏ»¶ɏș¨Țɏ°»ºɏ ª¬µ»¹¶°«¨³ɏ¨¿¬ºɏ·¨¹¨³³¬³ɏ»¶ɏ°»ºɏº°«¬ºȎɏ¨µ«ɏș©Țɏ°»ºɏ©¨º¬ȍɏșªȚɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ·¶³¨¹ɏ ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¨©¶¼»ɏ°»ºɏª¬µ»¹¶°«Ȏɏ¨µ«ɏș«Țɏ·¹¶«¼ª»ɏ¶ɏ°µ¬¹»°¨ɏ¾¹»ɏ°»ºɏ©¨º¬ɏ¨µ«ɏ³¬ļɏ¬«®¬ȍɏ 5OLUTION! ! % ) "# $ ' % ) *! ) ! ! % + ! & y Y ( ) ( ( % ) dY h 2 ,- "# " Y ( h/2 ( Ú * h 2 h/2 2 Y dA * - h /2 Ú 2 Y ¥ b dY - h /2 O h/2 È h3 Ê h3 ˆ ˘ bh3 ÈY 3 ˘ = bÍ - Á- ˜˙ * * bÍ ˙ 12 ÍÎ 24 Ë 24 ¯ ˙˚ Î 3 ˚-h / 2 ) ! ! ! + . ,- "# 0 1 6 7 & ( * ( & 7 ) * ' ! * ! 6 ) * 2 3 x b 2 hb 3 12 * 56 ! 3 ( b 2 " % * X C "# $ 1 3 bh bh bh bh Ê hˆ 7! ¥ Á ˜ = + = Ë 2¯ 12 12 4 ! + 9 ,- "# * bh3 hb3 bh + = 12 12 12 + ( *! "# : * ; (¢ ŷŷżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº y 9 6 ! ¥ ¥ ! 6 * * ! 6 dy h 2 1 % % * Ú dI xy = Ú 1 h b 2 h2 b2 È y 2 ˘ y dy = Í ˙ = 2 2 Î 2 ˚0 4 < hb 0 *# 2 C¢ b 2 y h 2 1 x O "# "5"> b " 'XAMPLE!clrd Derive an expression for moment of inertia of a circular lamina about (a) an axis perpendicular to its plane and passing through centroid, and (b) one of its diametral axes. 5OLUTION! & % + ( "# ? ! * 6 * 6p % * 6p % . @ 9 ,- *# * R Èr4 ˘ o 4 * Ú dI z = Ú 2p r dr = 2p Í ˙ = 2 Î 4 ˚0 0 R ( * 3 y l dy dr y r x x C R x q C x R y (a) Ring-element for determining JC (b) Strip-element for determining Ix , ! ( ! * " A "# ?! & q q 1 % *6 q * q 1 * q ɏ ŷŷŽ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ * * 6 * ¥ q ¥ A . 6 *6 6 6 6 q q *6 6 q q q 6*6 q q¥ 6 6 q q q 1 ,p /2 * Ú dI x = Ú -p / 2 p /2 4 p56 q q p /2 2 R 4 cos 2 q sin 2 q dq = 1 4 1 - cos 4q R dq 2 -pÚ/ 2 2 q ∵ 1 4 q * B p56 sin 4q ˘ 1 È = Íq - 4 ˙ Î ˚ -p /2 4 4 q q Ê p sin 2p p sin(-2p ) ˆ + + ÁË ˜¯ 2 4 2 4 o !" # # % $ # $" " JC p R4 / 2 o = = 2 2 fi &' * # + ,-. 'XAMPLE!clre $¬¹°½¬ɏ¨µɏ¬¿·¹¬ºº°¶µɏ¶¹ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏª°¹ª¼³¨¹ɏ«°ºªɏ¶ɏ´¨ººɏ-Ȏɏ»¯°ª²µ¬ººɏ »Ȏɏ¹¨«°¼ºɏ2ɏ¨µ«ɏ«¬µº°»Àɏrɏ¨©¶¼»ɏș¨Țɏª¬µ»¹¶°«¨³ɏ¨¿°ºɏ·¬¹·¬µ«°ª¼³¨¹ɏ»¶ɏ°»ºɏ·³¨µ¬Ȏɏ¨µ«ɏ ș©Țɏ¶µ¬ɏ¶ɏ°»ºɏ«°¨´¬»¹¨³ɏ¨¿¬ºȍɑ 5OLUTION 0 $ 6 3 # 5 " 5 # 5 ¥ ¥r 6 * &+ p pr 7 # $ 5 # , 5 . - # 8 " R Èr4 ˘ p t r R4 Ú dI z = Ú-p / 2 2p t r r dr = 2p t r Í 4 ˙ = 2 Î ˚0 R $ 0 # (p R 2 t r ) R 2 MR = 2 3 ∵6 # " p r # 3 ŷŸŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº y l dy dr y r C R x q x x x C R y (a) (b) , ! $ < # ; # # " " 8 * q + q " " 8 # 5 0 3! q q 6 " " ¥ 6 ¥ ¥r fi # ; # ¥ # + q¥ ¥r¥ " r q q¥ r # q p /2 r q q q r q q # q 2 R 4 t r cos 2 q sin 2 q dq = -p / 2 1 4 1 - cos 4q R tr Ú dq 2 2 -p / 2 q ∵ q q q p /2 1 4 È sin 4q ˘ 1 Ê p sin 2p p sin(-2p ) ˆ R t r Íq = R 4t r Á + + ˜¯ ˙ Ë2 4 4 ˚ -p /2 4 4 2 4 Î > 5 p # Myth 2 r 1 p 4 MR = 4 4 # Fact! ! ' # $ + " #@ # A " 6BD # # " % # " fi # ! # $ r 2 " # q " " r" p p, " p, p /2 Ú dI x = Ú fi q q * #@ # # # ! J C MR 2 / 2 MR 2 = = 2 2 4 &' * # + ,? , . ɏ ŷŸŵ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ 'XAMPLE!clrf $¬»¬¹´°µ¬ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏº¶³°«ɏ¹°®¯»ɏª°¹ª¼³¨¹ɏªÀ³°µ«¬¹ɏ¶ɏ¹¨«°¼ºɏ 2ɏ¨µ«ɏ¯¬°®¯»ɏ¯ɏ¨©¶¼»ɏș¨Țɏ°»ºɏ³¶µ®°»¼«°µ¨³ɏ¨¿°ºȎɏ¨µ«ɏș©Țɏ¨µɏ¨¿°ºɏª¶µ»¨°µ¬«ɏ°µɏ¶µ¬ɏ¶ɏ °»ºɏ¨ª¬ºɏ¨µ«ɏ·¨ºº°µ®ɏ»¯¹¶¼®¯ɏª¬µ»¹¬ɏ¶ɏ»¯°ºɏ¨ª¬ȍɏ 5OLUTION < 5 - # ! 8 5 p ¥ " . F + + ¥ G6 # # E $ 0 D# r # # " # # Ú dI y = Ú r 0 r . p r - dm = Ú r 2p r r hdr = 2pr h Ú r dr 0 E # # # # ∵ ! 5 $ ! 6 0 # " # " # 2 dmR % 4 p R dy r ¥ R 4 ¥ . r # r 6 , H p # 2 p 8 * " , R 3 0 &+ Èr4 ˘ pr hR 2 R2 2pr h Í ˙ = = (p R 2 hr ) 2 2 Î 4 ˚0 R 2 MR ! ¥ " R 2 * " 5 " R " # * 2 p r¥ ! h Ê p R 4 dy r ˆ 2 2 dI = Ú x Ú ÁË 4 + p R y dy r˜¯ 0 h È R2 y y3 ˘ + ˙ pR rÍ 3 ˚0 Î 4 2 fi È R 2 h2 ˘ + ˙ Í 3˚ Î 4 h Ê R 2 dy ˆ p R2 r Ú Á + y 2 dy ˜ 4 ¯ 0Ë È R 2 h h3 ˘ + ˙ p R2 r Í 3˚ Î 4 p ∵ p È R 2 h2 ˘ + ˙ r Í 3˚ Î 4 "# r y y R R dr r h h y x (a) Shell element for determining Iz dy O R x (b) Disc element for determining Ix $ %! %&%%' ŷŸŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!clrg &°µ«ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏ¯¶³³¶¾ɏªÀ³°µ«¬¹ɏ¨©¶¼»ɏ°»ºɏ¨¿°ºȍɏ4¯¬ɏ´¨ººɏ¶ɏ »¯¬ɏɏªÀ³°µ«¬¹ɏ°ºɏŹɏ²®Ȏɏ°µµ¬¹ɏ¹¨«°¼ºɏ°ºɏŵŴɏª´Ȏɏ¶¼»¬¹ɏ¹¨«°¼ºɏ°ºɏŵŹɏª´ɏ¨µ«ɏ¯¬°®¯»ɏ°ºɏɏ ŶŴɏª´ȍɏ 5OLUTION * + , 56 ! . %! . %5 . # r fi 7 p M r 2 5000 2 p ( R - r )h 2 p (15 - 102 ) ¥ 20 $ 9 ! 89: & %5 %! $ $ 4 4 rp hR rp hr rp h 4 = (R - r 4 ) 2 2 2 'XAMPLE!clrh 0.637 ¥ p ¥ 20 4 (15 - 104 ) 2 ɑ!ɏ¹¬ª»¨µ®¼³¨¹ɏ·¨¹¨³³¬³¬·°·¬«ɏ¯¨ºɏ»¯¬ɏ¶³³¶¾°µ®ɏ«°´¬µº°¶µºȏ length along x-axis = a ; breadth along y-axis = b height along z-axis = h ; density of the material = r. Determine the mass moment of inertia of the parallelepiped about (a) its edge along x-axis, and (b) the centroidal axes. 5OLUTION ; > %! %% < < ¥!¥ << ? ! , ¥ ? < ¥ + $ < + Úm r dm ÚV ( y 2 + z 2 )( r dV ) ∵ hba Ú Ú Ú (y 2 + z 2 ) r(dxdydz ) ∵ . 000 hb hb a r Ú Ú ÈÎ( y 2 + z 2 ) x ˘˚ dydz 0 00 b Èy ˘ ra Ú Í + z 2 y ˙ dz 3 ˚0 0Î h r Ú Ú ÈÎ( y 2 + z 2 )a ˘˚ dydz 3 00 Ê b3 ˆ ra Ú Á + z 2 b˜ dz 3 ¯ 0Ë h ɏ ŷŸŷ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ h È b3 z3 ˘ ra Í z + b ˙ 3 ˚0 Î3 È b3 h3 ˘ r abh 2 (b + h 2 ) ra Í h + b˙ = 3 3 3 Î ˚ fi /¥ ∵ ¥!¥ z z X dm z r y h C d h/2 y a b/2 b x (a) Rectangular parallelepiped ! C y X ! (b) Front view of the parallelepiped (yz plane) ( ( ( ( ! "# ""! $ Ê bˆ Ê hˆ ÁË ˜¯ + ÁË ˜¯ \ % ( & ' ! & % ! ÈÊ b ˆ Ê hˆ ˘ ÍÁ ˜ + Á ˜ ˙ Ë ¯ ˙ ÍÎË ¯ ˚ % Ê b2 h2 ˆ Á 4 + 4˜ Ë ¯ Ê1 ÁË 3 ! ) ! ) * 12 %º»°´¨»¬ɏ·¹°µª°·¨³ɏ ´¶´¬µ»ºɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ ¨µɏ¨¹¬¨ȍ 21/8! 12 * 12 *+ .1!clri 1ˆ ˜ 4¯ $ + �! QSJODJQBM!NPNFOUT!PG!JOFSUJB!PG!BO!BSFB 8 9 $ Úy dA: Úx dA Ú xydA "# ","-/ ŷŸŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº y s Ê Ix - Iy ˆ ÁË 2 ˜¯ dA A s y cos q q y r q 2q1 x sin q q O 2q2 Ixy x Ê Ix - Iy ˆ -Á Ë 2 ˜¯ y sin q z, t –Ixy x x cos q r (a) Rotated axes system 2 Ê Ix - Iy ˆ 2 ÁË 2 ˜¯ + I xy (b) Coordinate axes rotated by angle q 8 "# " q ; < ! ! q q% q > $ Ús Ú Ú ( y cos q - x sin q ) dA fi Ix + I y Ir = 2 dA q q% + 2 q% q q Ix - I y 2 q q q cos 2q - I xy sin 2q > "# "& q ∵ q q% q q q $ Úr Ú Ú ( x cos q + y sin q ) dA q fi Is = Ix + I y 2 Ix - I y 2 $ Ú rs dA Ú q Ú dA q q - 2 q q @ q q q q cos 2q + I xy sin 2q "# "? ! q q0 q% q q q q q% q ɏ ŷŸŹ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ % fi q Ix - I y I rs = 2 !" " % $ ' % ! ! q sin 2q + I xy cos 2q Ix + I y & q% q Ix - I y + fi # ! $ % !" " # '% ! & & ! " % ' ! " * " !" " & & ! " & # ! ! ! $ % $ % ! " Qsjodjqbm!Npnfout!pg!Jofsujb ! & # ! * " # & ' , ! ! " & "%" # ' +' "%" ! ' , " ! # ! ' & dI r dq fi % ! ' q 1 * % q/ ¥ q 1 ( I x - I y )/2 q q # ## ! q # q ' # q q ∓ I xy q ( 2 I xy + ( I x - I y )/ 2 6% ' - I xy ! 5 ## ! Ê Ix - I y ˆ / ¥Á ˜¯ Ë , % ' & & ! ' " " &! " , % # " " # ! ! & ! !" ! ' q % ! % . ! q $ , , % Ix + I y + Ix - I y ¥ ) ( $* 3 4 q " *$ ! $ ' 2 " & "%" ± ( I x - I y )/ 2 ( 2 I xy + ( I x - I y )/ 2 Ix + I y \ 6 " &" , , " $ ( ± ( I x - I y )/ 2 q ( " ) / "%" , % ¥ ( ) ) ÏÔÊ I - I ˆ ¸Ô x y + I ÌÁ xy ˝ ˜¯ ÔÓË Ô˛ 1 ± ! $* ! 2 2 # ) 2 " " # ! ∓ I xy ( 2 I xy + ( I x - I y )/ 2 Ê Ix - I y ˆ ± Á ˜¯ + I xy Ë " & # ! ) 2 + ( I x - I y )/ 2 I xy 2 + ( I x - I y )/ 2 I xy Ix + I y , $ ) 2 8 , , ŷŸźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 9 % ' " % ! %' Ix - I y Ix - I y # ! # ! ' q $ , , % ( 2 I xy + ( I x - I y )/ 2 ) ( ± ( I x - I y )/ 2 ¥ 2 ) ( 2 + ( I x - I y )/ 2 I xy fi " *$ % ' q ∓I xy ¥ # # !$ ) 2 ' "$ : ' # " ! &¹¶´ɏ »¯¬ɏ ķ¹º»ɏ ·¹°µª°·³¬ºȎɏ «¬»¬¹´°µ¬ɏ »¯¬ɏ ·¹¶«¼ª»ɏ ¶ɏ °µ¬¹»°¨ɏ ¶ɏ ¨ɏ ¹°®¯»Ɋ¨µ®³¬«ɏ »¹°¨µ®³¬ɏ¶ɏ©¨º¬ɏ©ɏ¨µ«ɏ¨³»°»¼«¬ɏ¯ɏ¾¹»ɏ¿Ɋɏ¨µ«ɏÀɊ¨¿¬ºɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŵŷȍ 'XAMPLE!clri 5OLUTION 9 % ' ! # ; ; , ! ' #' #' ! ! ! # # ! ! # '- & " " *"" !* #! " #! " & & h Ê ˆ ÁË∵ From geometry, y = ¥ x˜¯ b ! %' # ! # ! y hx = 2 2b ! " ¥ ! dI xy @% % ! ! ' ' ? ! # # %' ! # $ % $ % ! ' ! ' & : ¥ ¥ ! ! ' Ú b b h2 Ú0 2b2 ! & 2 y h h2 = x ¥ dx ¥ 2 x 2 = 2 2 2b 2b ! ! %' # ! = x ¥ dx ¥ #! " dI xy & dI xy ! 2 \ ' ¥ ! ! ! b x3 dx = h2 È x4 ˘ Í ˙ 2b 2 Î 4 ˚ 0 h2 b4 ¥ 4 2b 2 b 2 h2 8 y y 2 mm 2 mm y y= 4 mm A2 h x b 10 mm (x, y) 10 mm y 2 mm x (x, y) dx b C1 A1 h x O 6 mm (a) C2 8 mm 2 mm O 6 mm (b) x ɏ ŷŸŻ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ 'XAMPLE!clrj &°µ«ɏ»¯¬ɏ·¹°µª°·¨³ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¨©¶¼»ɏ»¯¬ɏ¶¹°®°µɏ/ɏ¶ɏ»¯¬ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ &°®ȍɏŵŴȍŵŸ¨ȍɏ 5OLUTION! D , 9 ' ' ! ' # E "" ¥ "" . ! $ ' ! 5 ¥1 #! ' $ ! ' E¥ 1 "" G " # ! # $ % & G " # ! # $ % & # ! # # ! 9 #9 ' ' $ % $ % 6! %' # ! # ! ' & 6! %' # ! # ! ' & ¥ ¥ I ! 6! %' # ! #9 ' / ? 8 ! ' " " Ix + I y ! EI ! 1 ! 18 "" 18 188 "" "" b 2 h 2 62 ¥ 102 = 4 4 81E "" # ' & ' / 81E # " &" ' ! 3 " 3 Ê 10 ¥ 63 ˆ Ê 8 ¥ 43 2ˆ Á 3 ˜ - Á 12 + 32 ¥ 4 ˜ Ë ¯ Ë ¯ / . "" 6 ¥ 10 bh = "" 3 3 bh3 4 ¥ 83 ¥1 12 12 & / / & $ 3 G " H" !* " " "" ¥ 1 "" # ! ! J # 3 "" " !! ' "" # 9 ' ! ' & ! $ Ê Ix - I y ˆ ± Á ˜¯ + I xy Ë 2 677.33 + 165.33 Ê 677.33 - 165.33 ˆ 2 ± Á ˜¯ + 132 Ë 2 2 ± EE fi ! " & " #&&+6+10#.!51.8'&!':#/2.'5 'XAMPLE!clrk 5OLUTION 5 %! " # ! " %$ 3¯¶¾ɏ»¯¨»ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏ»¯°µɏª°¹ª¼³¨¹ɏ¹°µ®ɏ¶ɏ´¨ººɏ-ɏ¨µ«ɏ´¬¨µɏ ¹¨«°¼ºɏ2ɏ¾°»¯ɏ¹¬º·¬ª»ɏ»¶ɏ°»ºɏ®¬¶´¬»¹°ªɏ¨¿°ºɏ°ºɏ-2 Ŷȍ ! 9 p , !* " # r " #" ! r q ! % * # ' ! # qKG # 9 $ " ! # ! " '! ! ' J 5 q¥ ! ! ! ¥r # " ! ! ! ŷŸżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº y y Rdq R C ' , J # !q # $* " #! " ' J x C (a) Thin ring H ' qR dq x (b) Peripheral element in the ring ! # r q ! " " " " " " # ! # ! $ # " ! $* $ % J p 2p Ú dJ C = Ú0 J p R3Ar dq = R3Ar [q ]02p p r L9 r 'XAMPLE!clrcl $ I #¨³ª¼³¨»¬ɏ»¯¬ɏ¨¹¬¨ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏº¯¨«¬«ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŵź¨Ȏɏ ¨©¶¼»ɏ»¯¬ɏ¿Ɋ¨¿°ºȍɏ y y a a dy x = ky2 a a x O y x O (a) 5OLUTION J ! G " # ! ! ! 5 # ! # x = ky2 x (b) '1! 9 $ % ! # & ! ' ! # #! " ! ! ¥ & ¥ " " # ! # ! $ % #! " a % È y5 ˘ a ka 4 Ú dI x = Ú0 ky dy = k ÍÎ 5 ˙˚0 = & $ $* ! - " M ɏ ŷŸŽ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ 5 ! N fi ! 1 \ 5 ¥ = 5 'XAMPLE!clrcc 4 5 $¬¹°½¬ɏ¨µɏ¬¿·¹¬ºº°¶µɏ¶¹ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏº¬´°Ɋª°¹ª¼³¨¹ɏ¨¹¬¨ɏ¨©¶¼»ɏ°»ºɏ «°¨´¬»¹°ªɏ©¨º¬ȍɏ 5OLUTION l dy ! "# " q $ ! q " ¥ " q& ¥ " %# X y q q %∵ " q q"# ' q q& # # C x R q 4R 3p X x q q ! # ¥ " "# # # q&# " # q¥ q¥% ) * " p /2 Ú dlx = Ú0 2 R 4 cos 2 q sin 2 q dq " %∵ " 1 4 p /2 4 sin 4q ˘ È ÍÎq - 4 ˙˚ 0 " 1 4 4 # 1 2 ( # # q %& q q +, % & q" p-#! cos 4q dq 2 q" #q % .# p /21 R4 0 Ú q # #q& " sin(0) ˆ o 4 Ê p sin 2p +0+ = 0.393 4 ÁË ˜= 8 2 4 4 ¯ 7 ) (q& -(8 �!0OTE '9: % + ; #& '9: 'XAMPLE!clrcd !ɏªÀ³°µ«¬¹ɏ¶ɏŹŴŴɊ´´ɏ«°¨´¬»¬¹ɏ¨µ«ɏŵŶŴŴɊ´´ɏ¯¬°®¯»ɏ¯¨ºɏ¨ɏ´¨ººɏ«¬µº°»Àɏ¶ɏżŴŴŴɏ ²®Ʉ´ŷȍɏ&°µ«ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏªÀ³°µ«¬¹ɏș¨Țɏ¨©¶¼»ɏ°»ºɏ¨¿°ºȎɏ¨µ«ɏ ș©Țɏ¨©¶¼»ɏ¨ɏ³°µ¬ɏ¾¯°ª¯ɏª¶°µª°«¬ºɏ¾°»¯ɏ¨µɏ¬µ«ɏ¨ª¬ɏ¶ɏ»¯¬ɏªÀ³°µ«¬¹ɏ¨µ«ɏ·¨ºº°µ®ɏ»¯¹¶¼®¯ɏ»¯¬ɏª¬µ»¹¬ɏ¶ɏ »¯°ºɏ¨ª¬ȍɏ 5OLUTION! < ' % & ) > "? * " ! ? " rp ! " # # "@ * MR 2 1884.9 ¥ 0.252 = " " 2 2 " # !r"@ - A ¥ p ¥ % ?-#&# ¥ # " @@( B ! ŷŹŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº %!& $ + (! * È R 4 h2 ˘ + ˙ " @@( B ¥ "MÍ 3˚ Î 4 È 0.252 1.22 ˘ + Í ˙" 3 ˚ Î 4 $¬»¬¹´°µ¬ɏ ´¨ººɏ ´¶´¬µ»ɏ ¶ɏ °µ¬¹»°¨ɏ ¶ɏ ¨ɏ º³¬µ«¬¹ɏ ¹¶«ɏ ¶ɏ ³¬µ®»¯ɏ ,ɏ ¨©¶¼»ɏ °»ºɏ ª¬µ»¹¶°«¨³ɏ¨¿°ºɏµ¶¹´¨³ɏ»¶ɏ»¯¬ɏ¹¶«ȍɏ 'XAMPLE!clrce y %! @ 5OLUTION *r x 9! L/2 9 ' ' ! x O dx L/2 "r # ¥ " ! ' " %r & # * " L/2 L/2 Ú- L / 2 dI m = Ú- L / 2 (r Adx) x 2 = r AÚ L/2 -L/ 2 x 2 dx L/2 È x3 ˘ È ( L/2)3 (- L/2)3 ˘ È L3 L3 ˘ r AL3 = rAÍ " pA Í ˙ ˙ = rAÍ + ˙ = 3 ˚ Î 24 24 ˚ 12 Î 3 ˚- L / 2 Î 3 " mL2 12 'XAMPLE!clrcf %∵ ' " r %& ! &°µ«ɏ »¯¬ɏ ´¨ººɏ ´¶´¬µ»ɏ ¶ɏ °µ¬¹»°¨ɏ ¶ɏ ¨ɏ ¹°®¯»ɏ ª°¹ª¼³¨¹ɏª¶µ¬ɏ¶ɏ©¨º¬ɏ¹¨«°¼ºɏ2ɏ¨µ«ɏ´¨ººɏ-ɏ¨©¶¼»ɏ 7 ) -# 8 y °»ºɏ¨¿°ºȍɏ dy 5OLUTION B x ! " R % . & h ' O ! " rp # ! * r ' 7) -##8! # " # y ! # " rp # ¥ # 1 rp # ( 1 { } rp R (h - y ) 2 h 4 R x ɏ ŷŹŵ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ ) * h Ú0 " Ú dl y " fi rp R 4 " " " ! h È ( h - y )5 ˘ Í ˙ Î -5 ˚0 4 rp Ï R rp R 4 ¸ Ì (h - y ) ˝ dy = 2 Óh 2h 4 ˛ rp R 4 h 10 3m p R2h ÈÎ- (h - h)5 + (h - 0)5 ˘˚ = 10h 4 1 3 p fi r r rp R 4 h p R4h 3m = ¥ 10 10 p R4h 3 10 ! "# "$ %& 'XAMPLE!clrcg !ɏ©¹¨ººɏª¶µ¬ɏ¾°»¯ɏŸŴŴɊ´´ɏ©¨º¬ɏ«°¨´¬»¬¹ɏ¨µ«ɏŶŶŹɊ´´ɏ¯¬°®¯»ɏ°ºɏ·³¨ª¬«ɏ¶µɏ¨ɏ ½¬¹»°ª¨³ɏ¨³¼´°µ°¼´ɏªÀ³°µ«¬¹ɏ¶ɏŷŴŴɊ´´ɏ¯¬°®¯»ɏ¨µ«ɏŸŴŴɊ´´ɏ«°¨´¬»¬¹ȍɏ$¬µº°»Àɏ¶ɏ ©¹¨ººɏǛɏżŹɏ².Ʉ´ŷɏ¨µ«ɏ«¬µº°»Àɏ¶ɏ¨³¼´°µ°¼´ɏǛɏŶźȍŵɏ².Ʉ´ŷȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ »¯¬ɏª¶´·¶º°»¬ɏ©¶«Àɏ¨©¶¼»ɏ»¯¬ɏ½¬¹»°ª¨³ɏ®¬¶´¬»¹°ª¨³ɏ¨¿°ºȍɏ 5OLUTION! ' *+ , * " -##$ ## /. 67$ -##$ ## r % " 67$ r" + , ; ,* < 1 3 " < ; < , , ? , ; 3 10 " " A 3 10 1 2 8 p # . " 8 # / %9 ¥ "# 6 $ : # 8## 8 8 ¥p¥# 1 3 p r p¥# ! , ! ; ! , ,, ? ¥ /" 9" ¥ # A 1 2 #8 8 %" ¥ "# 6 $ " "r" . 8 . ¥ / %9 ¥ "#8 ¥# ¥#8¥ @ %" ¥ "# 8 ; , /" 9" 6 >/ - 6 ,; @ ¥ >/ - ¥ # , ,, ! "# "$"" "# "$ %& 'XAMPLE!clrch $¬»¬¹´°µ¬ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏ»¯°µɏ¬¸¼°³¨»¬¹¨³ɏ»¹°¨µ®¼³¨¹ɏ·³¨»¬ɏ¶ɏ ´¨ººɏ´ɏ¨µ«ɏ»¯°ª²µ¬ººɏ»ɏ¨©¶¼»ɏ»¯¬ɏ¨¿°ºɏ·¬¹·¬µ«°ª¼³¨¹ɏ»¶ɏ»¯¬ɏ·³¨µ¬ɏ¨µ«ɏ·¨ºº°µ®ɏ »¯¹¶¼®¯ɏ»¯¬ɏª¬µ»¹¬ɏ¶ɏ´¨ººȍɏ"¨º¬ɏ¾°«»¯ɏǛɏ©Ȏɏ¨µ«ɏ¯¬°®¯»ɏ¶ɏ½¬¹»¬¿ɏ¨©¶½¬ɏ©¨º¬ɏǛɏ¯ȍɏ$¬µº°»Àɏ¶ɏ»¯¬ɏ ´¨»¬¹°¨³ɏ°ºɏ¾ȍɏ 5OLUTION ? @ ! J 6 + , ? "# # ! , 7 ? OC ¥ FG OA ,? C @ , C ! b/2 ¥ I h !; C ! ,B ,? , , , b h I @ , 6 , ! ŷŹŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº < '¥ ,? < ¥ ¥ , ,? ! b ' h ¥ < b h ' , @ wtb h ! ¥ I , I ,? 8 I ! h wtb wtb È hy 3 y 4 ˘ wtb È h 4 h 4 ˘ wtbh3 (hy 2 - y 3 ) dy = Í ˙ = Í - ˙= 4 ˚0 4˚ 12 h h Î 3 h Î3 h Ú dI x Ú0 dy y, Y y, Y A A R x y X G B O P¢ h Q P G x C Q¢ O x b B b , ' ¥ 12 ! ¥ ,? x dx C (b) Determining IY (a) Determining IX < h Xy fi ' m bht ; 3 2m tbh3 1 2 wtbh = ¥ = mh 12 12 6 bht K 2 , , L ? , ,? Wh 2 6g @ , ! ! , ,, , @?, 2$ !; ( @ ? , , , ;! , ' ( ( \ I ( & A , M M 1 6 I $8 M Ê ˆ ¥Á ˜ Ë 3¯ 2 ! 2 mh 18 ( @ @ 2 2 m(b 3 / 2) mb = 18 24 ∵ ! 8$ , ; * ) ! ! " # OA h !h Ê b ˆ ¥$ %& '# ¥ $!*! & ' # Á - x˜¯ OC b/2 b Ë! ( ) $ , , ɏ ŷŹŷ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ + #'¥ ¥ ,¢-¢ ¥ #'¥ !h Ê b ˆ Á - x˜¯ ¥ b Ë! ¥ # ! wth Ê b ˆ Á - x˜¯ dx b Ë! + 2 ˆ ! wth Ê b ˆ ! 2 wth Ê bx - x3 ˜ dx ÁË - x˜¯ dx ¥ # ÁË ¯ b ! b 2 $ ). ' 0 !*! 2 ˆ ˆ b / 2 2 wth Ê bx 4 wth b / 2 Ê bx 2 - x3 ˜ dx = - x3 ˜ dx # 2 Ú dI y = 2 ¥ Ú Á ÁË Ú Ë ¯ ¯ 0 0 b 2 b 2 # ) ! ¥ # # b/2 4 wth È bx3 x 4 ˘ 4 wth È b 4 b 4 ˘ wthb3 # - ˙ = Í Í - ˙= b Î 6 4 ˚0 b Î 48 64 ˚ 48 ' 70 $ ' , # ) 2m thb3 mb 2 ¥ = 24 bht 48 # ) 9 # * ( ; 'XAMPLE!clrci ) ) * ) # mb 2 mb 2 mb 2 + = 24 24 12 : < * >? $¬»¬¹´°µ¬ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏ¹¬ª»¨µ®¼³¨¹ɏ·³¨»¬ɏ¶ɏº°Á¬ɏ¨ɏ¥ɏ©ɏ¨µ«ɏ »¯°ª²µ¬ººɏ»ɏ¨©¶¼»ɏ»¯¬ɏª¬µ»¹¶°«¨³ɏ¨¿¬ºȍɏ y ! 5OLUTION ¥!¥ @ : x dx t % @ r # r ¥ $! + : x O b ' + # ! # ! ¥ r ¥ $! ' # r! ! $' + a : # & *! : # a/2 Ú- a / 2 dlm = Ú a/2 - a/2 pbta Ma 2 = 12 12 # pbtb3 Mb 2 = 12 12 x3 3 a/2 È a3 a3 ˘ = rbt Í + ˙ Î 24 24 ˚ -a/2 3 9 # rbt x 2 dx = rbt ; *! $ #r ! # ' : 3 <@ * B? ŷŹŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!clrcj !ɏ»¯°µɏ·³¨»¬ɏ¶ɏ´¨ººɏ´ɏ°ºɏª¼»ɏ°µɏ»¯¬ɏº¯¨·¬ɏ¶ɏ¨ɏ·¨¹¨³³¬³¶®¹¨´ɏ¶ɏ»¯°ª²µ¬ººɏ»ɏ¨ºɏ º¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŶŶȍɏ$¬»¬¹´°µ¬ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏ·³¨»¬ɏ¨©¶¼»ɏ»¯¬ɏ ¿Ɋ¨¿°ºȍɏ 5OLUTION D ! 0 y !D !! + 0 Plate-2 t X & E + , , ' < 7 70 $ ' # & !E ∵ + , x #! (! # b ! ! 70 $ $' 7 G' 2 (m/2)h mb = 18 36 + $ ! b z 1 $ 2 2 b 3 * >? F G (m1 )h 2 mb 2 = 6 12 Plate-1 X b $ ; ! ' # (! # mb 2 m Ê 2 ˆ mb 2 2mb 2 9mb 2 mb 2 + ¥ Á b˜ = + = = 36 2 Ë3 ¯ 36 9 36 4 ∵ ! ! : 2 ! 3 # ! # : 2 # ; ! # mb 2 mb 2 4mb 2 mb 2 + = = 12 4 12 3 'XAMPLE!clrck !µɏ¨ºº¬´©³Àɏ¶ɏ»¯¹¬¬ɏº³¬µ«¬¹ɏ¹¶«ºɏ¬¨ª¯ɏ¶ɏ³¬µ®»¯ɏ³ɏ¨µ«ɏ´¨ººɏ´ɏ°ºɏ·°½¶»¬«ɏ¨»ɏ°»ºɏ ¨·¬¿ɏ/ɏ¨ºɏº¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŶŷ¨ȍɏ$¬¹°½¬ɏ¨µɏ¬¿·¹¬ºº°¶µɏ¶¹ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ ¶ɏ»¯¬ɏ¨ºº¬´©³Àɏ¨©¶¼»ɏ¨µɏ¨¿°ºɏ·¨ºº°µ®ɏ»¯¹¶¼®¯ɏ/ɏ¨µ«ɏ·¬¹·¬µ«°ª¼³¨¹ɏ»¶ɏ»¯¬ɏ·³¨µ¬ɏ¶ɏ»¯¬ɏ¨ºº¬´©³Àȍɏ #¶´·¼»¬ɏ»¯¬ɏ½¨³¼¬ɏ¶ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ°ɏ³ɏǛɏŶŴɏª´ɏ¨µ«ɏ´ɏǛɏŻŹɏ®ȍɏ O O d1 l l d2 60° l (a) Assembly of slender rods A C2 C1 C3 l (b) Centroids of rods B ɏ ŷŹŹ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ 5OLUTION ml 2 12 ! "#" $! % & ' % - &( ) &$ * ) 3 2 + , " . ( " " ) ) 2 È2 ¥ I rod + m ¥ d12 ˘ Î ˚ AO,OB + ÈÎ I rod + m ¥ d 2 ˘˚ AB ) 2 2 È ml 2 È Ê ml 2 Ê 3l ˆ ˘ Ê l ˆ ˆ˘ ˙ Í2 ¥ Á +Í +m¥Á + m ¥ Á ˜ ˜˙ Ë 2 ˜¯ ˚˙ AB Ë 2 ¯ ¯ ˙˚ Ë 12 ÍÎ 12 ÍÎ AO,OB 2 2 5 2 ml + ml 3 6 3ml 2 2 # 04 " ) 3 ¥ 04 ¥ 2 'XAMPLE!clrdl $¬»¬¹´°µ¬ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏ4Ɋº¬ª»°¶µɏº¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŶŸ¨ɏ¨©¶¼»ɏ»¯¬ɏ ¯¶¹°Á¶µ»¨³ɏ¨µ«ɏ½¬¹»°ª¨³ɏ¨¿¬ºɏ·¨ºº°µ®ɏ»¯¹¶¼®¯ɏ»¯¬ɏ#'ɏ¶ɏ»¯¬ɏº¬ª»°¶µȍɏ y 10 cm 10 cm 10 cm C2 2 cm 2 cm A2 10 cm 10 cm 2 cm x C C C1 C2 10 cm C1 A1 (a) (c) ¥ " " #" " 9! 7 ¥ B 8 cm (b) 5OLUTION "7 8 & & & & ; A 2 cm 2 cm < * " 8 & : = " 9 ŷŹźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! > % % ?@ 4 & & = " " % % - A1 y1 + A2 y2 A fi = 20 ¥ 5 + 20 ¥ 11 40 D CD4 $ D DC $ & & " C " = È I C,1 + A1 y12 ˘ + È I C,2 + A2 y22 ˘ Î ˚ Î ˚ È 2 ¥ 103 ˘ È10 ¥ 23 ˘ + 20 ¥ 32 ˙ + Í + 20 ¥ 32 ˙ Í Î 12 ˚ Î 12 ˚ . " ' #" " @ 7 9 ( % " ¥ * " & * " ¥C . : " A1 y1 - A2 y2 120 ¥ 6 - 80 ¥ 5 = 120 - 80 A1 - A2 ( " ;E 7 = Ay ;E fi $ F$ $$ D ' fi ;E " " ¥9 " ;E ' " ;E C " ;E - * " 10 ¥ 123 8 ¥ 103 3 3 $ F$ $$ 9 D Ay DC (¥C ! > G . 7 . . & = & " 10 ¥ 23 2 ¥ 103 + 12 12 'XAMPLE!clrdc $¬»¬¹´°µ¬ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏº¸¼¨¹¬ɏ·³¨»¬ɏ¶ɏº°«¬ɏ¨ɏ¾°»¯ɏ¨ɏª°¹ª¼³¨¹ɏ ¯¶³¬ɏ ¶ɏ ¹¨«°¼ºɏ ©Ȏɏ ¨©¶¼»ɏ »¯¬ɏ ¨¿°ºɏ ¶ɏ ¹¶»¨»°¶µɏ »¯¶¼®¯ɏ »¯¬ɏ ¯°µ®¬ɏ /ɏ º¯¶¾µɏ °µɏ &°®ȍɏɏŵŴȍŶŹȍɏ'°½¬µɏ»¯¨»ɏ¨ɏǛɏŵȍŶɏ´Ȏɏ©ɏǛɏŴȍŵŶɏ´Ȏɏ»¯°ª²µ¬ººɏ¶ɏ·³¨»¬ɏ»ɏǛɏŸŴɏ´´ɏ¨µ«ɏ«¬µº°»Àɏ¶ɏ´¨»¬¹°¨³ɏ rɏǛɏŻżźŴɏ²®Ʉ´ŷȍ 5OLUTION H 7 > ! 9 9 r 0C+ :" $ ɏ ŷŹŻ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ @ 0C+ ¥ r )I ¥ 9 94 09 :" @ C 1 12 ' = 7 0C+ p ¥ rp ! 1 12 ( ¥ ¥ 94 09 ¥ ' 9 9 = ( C ++ :" :" )I C O 1 2 ! 1 2 ¥ ¥ 2a/3 b a a 1.2 ¥ 3 " !! # $ % & ' ( ' ) *' ( ) + ¥ !! ( ) *' ( ¥ !! ) 'XAMPLE!clrdd !ɏĸÀ¾¯¬¬³ɏș&°®ȍɏŵŴȍŶźȚɏª¶µº°º»ºɏ¶ɏ¨ɏ¹°´ɏ¶ɏŶŹŴŴɊ²®ɏ´¨ººɏ¨µ«ɏ¶¼¹ɏº·¶²¬ºɏ¬¨ª¯ɏ¶ɏ źŴɊ²®ɏ´¨ººȍɏ4¯¬ɏ¹°´ɏ¯¨ºɏ°µµ¬¹ɏ¨µ«ɏ¶¼»¬¹ɏ¹¨«°°ɏ¶ɏŵȍŵɏ´ɏ¨µ«ɏŵȍŹɏ´Ȏɏ¹¬º·¬ª»°½¬³Àȍɏ 4¯¬ɏº¯¨ļɏ¨»ɏ»¯¬ɏª¬µ»¹¬ɏ¶ɏ»¯¬ɏ¾¯¬¬³ɏ¯¨ºɏ¨ɏ«°¨´¬»¬¹ɏ¶ɏŴȍŶŹɏ´ɏ¨µ«ɏ¨ɏ´¨ººɏ¶ɏŵŶŴŴɏ²®ȍɏ$¬»¬¹´°µ¬ɏș¨Țɏ»¯¬ɏ ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏĸÀ¾¯¬¬³ɏ¨©¶¼»ɏ°»ºɏ¨¿°ºɏ¶ɏ¹¶»¨»°¶µȎɏ¨µ«ɏș©Țɏ°»ºɏ¹¨«°¼ºɏ¶ɏ®À¹¨»°¶µȍɏ 5OLUTION # - /7 9:$ & % & ; 7 '> % Rim # % < * % & Spoke 1 2 ¥ ¥ 7 0.15 m % & ; @ ; # # ? ) mL2 60 ¥ 0.952 = 12 12 @ " # ? ) 1 2 & '> % % & # % & # 1.5 m 1.1 m C ŷŹżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 0.95 ˆ Ê ( ! ¥ ÁË1.1 ˜ 2 ¯ & @ > ¥ (! ¥ % & % & 1 2 - + ! # ¥ + 7 * 1 2 / 7 ¥ # ¥- * / 9:$ ( 9:$ -!/ B ; & 2 ( I flywheel : 'XAMPLE!clrde ( 1425.3 1200 + 4 ¥ 60 + 2500 = M ( $¬»¬¹´°µ¬ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏ¹¬ª»¨µ®³¬ɏ¨©¶¼»ɏ»¯¬ɏ¿Ɋ¨¿°ºɏ¨ºɏº¯¶¾µɏ°µɏ &°®ȍɏŵŴȍŶŻ¨ȍɏ s -1 Ê 4 ˆ ÁË ˜¯ 5 x x m m 15 0 sin m m y m m m m 0 0 10 10 0 15 x Ê 4ˆ sin -1 Á ˜ Ë 5¯ x q O r (a) 5OLUTION D E F ! < ; G +! & H # % $ 7 & ; # + % # Ir - Is # Ê 4ˆ ÁË ˜¯ 5 * * q % & Ir + Is G (b) ; % & 3 bh 100 ¥ 150 = 3 3 + ¥ % & 2 b h 100 ¥ 150 = 4 4 ; # 3 ! ¥ $ $ ;$ IJ / / ; 3 K ;& 2 2 # - - # q E : ! + q$ q* & ; + - I# hb3 150 ¥ 1003 = 3 3 - // ¥ + ɏ ŷŹŽ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ > % & + ( # : G : ; ; ; L Y : ; % & ( # '> % ? E $ ; dy # x ) dm ¥ r 4 # rp r dy ¥ r 4 rp r dy 4 X x y l X O % & ; ( ( rp 4 7 *? ¥ rp 7 # # r 7 H : ( # ! + $ q $¬¹°½¬ɏ¨µɏ¬¿·¹¬ºº°¶µɏ¶¹ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏªÀ³°µ«¬¹ɏ¶ɏ³¬µ®»¯ɏ³Ȏɏ¹¨«°¼ºɏ¹ɏ ¨µ«ɏ´¨»¬¹°¨³ɏ«¬µº°»Àɏrɏ¨©¶¼»ɏ»¯¬ɏª¬µ»¹¶°«¨³ɏ»¹¨µº½¬¹º¬ɏ¨¿°ºȍɏ ; $ ; Ê 11.25 + 5 11.25 - 5 ˆ + cos 2 ¥ 36.87∞ - 5.625 sin 2 ¥ 36.87∞˜ ¥Á Ë ¯ 2 2 'XAMPLE!clrdf 5OLUTION! @ # rp r dy ( -rp 4 ¥ / ( rp : ; % & ( # % ; %: ( (? l/2 3 Ê rp r 4 dy rp r 4 l/2 2 Èy ˘ 2 2 ˆ rp [ y ] + r + rp dI = r y dy = Í ˙ l / 2 X ˜ Ú Ú-l / 2 ÁË 4 4 ¯ Î 3 ˚ -l / 2 l/2 ( rp r 4 È l Ê l ˆ ˘ rp r 2 - Á- ˜ + 4 ÍÎ 2 Ë 2 ¯ ˙˚ 3 Èl3 Ê l3 ˆ ˘ Í - Á- ˜˙ ÍÎ 8 Ë 8 ¯ ˙˚ ( rp r 2 l )r 2 ( rp r 2 l )l 2 Mr 2 Ml 2 + = + 4 12 4 12 'XAMPLE!clrdg rp r4 l rp r2 l 3 + 4 12 ∵ rp &¶¹ɏ¨ɏº¬´°Ɋª°¹ª¼³¨¹ɏ¨¹¬¨ɏ¶ɏ¹¨«°¼ºɏ2Ȏɏ«¬¹°½¬ɏ¬¿·¹¬ºº°¶µºɏ¶¹ɏ°»ºɏș¨Țɏ´¶´¬µ»ɏ¶ɏ °µ¬¹»°¨ɏ¨©¶¼»ɏ°»ºɏª¬µ»¹¶°«¨³ɏ¨¿°ºɏ·¨¹¨³³¬³ɏ»¶ɏ°»ºɏ©¨º¬Ȏɏș©Țɏ·¶³¨¹ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ ¨©¶¼»ɏ°»ºɏª¬µ»¹¬Ȏɏ¨µ«ɏșªȚɏ·¶³¨¹ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¨©¶¼»ɏ°»ºɏª¬µ»¹¶°«ȍɑ ŷźŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 5OLUTION! ! !$ & ! ! ! ! ( % ! ' p + " 2 2 4 4 - p X x x z (a) Polar moment of inertia about centre O ' - ? 'XAMPLE!clrdh @: ! ! " !"# ! ! % 9 C ! - X x R O (b) Polar moment of inertia about centroid C "# !- ! % & %! p 4 o 2¥ @ ∵ 8 & 9 " ! & ! "# ! B( ) 9 fi ! # # % ## ;! # ! (' ) p 4 ; ,' 8 & 9 ! -' % # 9! 4R 3p r O 9 " !"# ! ! ! 9 & dr R # , y, Y y fi 4 + 3p ( % p 8 Ê4 ˆ ¥Á ˜ = ª Ë ¯ 8 2 3p 8 9p ! ! 9 % ! # % ; <! ! 9 p > ! > ! -" !"# ! ! # R R R 4 Èr ˘ o 2 2 ? Ú dlz = Ú r dA = Ú r p rdr = p ÍÎ 4 ˙˚0 0 0 p - % , 4 ( A ! " !"# ! ! % :9 ! 4 8 ! :9 # ( * ( " !" p \ ! fi ! " !"# ! ! # " ! ! fi ( - 1 ' ( 4 ∵ ! #9 " ) , ! 4 p ?* 4 - p 2 Ê4 ˆ Á ˜ 2 Ë 3p ¯ 2 #¶´·¼»¬ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏ¯¬´°º·¯¬¹¬ɏ¨©¶¼»ɏ°»ºɏ«°¨´¬»¹¨³ɏ©¨º¬ɏ¶ɏ ¹¨«°¼ºɏ2ȍɑ ! " # "# ! ! ! % C# ! ! " !"# ! ! 9 ! #9 $ " ! ! # ɏ ŷźŵ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ & "% " ! r -" !"# ! " 5OLUTION % F r # A ! " !"# ! ! & ! ! # -" !"# ! !9 r¥ " " # ! ! ! p D y x2 + y2 = R2 "E R " x dx rp ¥ y O ! -" !"# ! " # - " : 9#! # ? R -x ! " > ! * # x " # D ! 2 9! 9 % y dm ( R 2 - x 2 ) Ê rp 2 ˆ rp 2 = ¥Á ( R - x 2 ) dx˜ = ( R - x 2 ) 2 dx Ë 2 ¯ 2 2 4 ! " ! G ' % 9 R rp rp R 2 2 2 4 4 2 2 Ú dlx = Ú- R 4 ( R - x ) dx = 4 Ú- R ( R + x - 2 R x ) dx 3 R rp È 4 x5 2 x ˘ - 2R ÍR x + ˙ 4 Î 5 3 ˚- R rp È Í 4 Î 5 5 + 5 - 5 2 3 2 p 3 5 5 + r + 5 - 2 fi r ˘ 4 ˙ = rp 3 ˚ 15 3M ! 5 5 2p R3 r 4p R5 3M ¥ 15 2p R3 'XAMPLE!clrdi 5OLUTION * 2 5 ! " #$ #%&' $¬¹°½¬ɏ»¯¬ɏ¬¿·¹¬ºº°¶µɏ¶¹ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨ɏ¯¶´¶®¬µ¬¶¼ºɏº·¯¬¹¬ɏ¶ɏ ¹¨«°¼ºɏ2ɏ¨µ«ɏ´¨ººɏ«¬µº°»Àɏrɏ¾°»¯ɏ¹¬¬¹¬µª¬ɏ»¶ɏ°»ºɏ«°¨´¬»¬¹ȍɏ #$ # + " /, / / * y , - . #$ #! y x2 + y2 = R2 O x2 + y2 = R2 R R x y x O x (a) Sphere of radius R + dx (b) Disc element within the sphere / ŷźŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 0 R6 - x6 / / 6 rp / " ; , 6 6 7 - . rp . ! " #$ #%66' y 2 dm ( R 2 - x 2 ) ¥ rp ( R 2 - x 2 ) dx rp 9 = = : 2 2 2 " - . : 0 9 76 6 6 / R 3 rp 4 rp È 4 x5 4 2 2 2 x ˘ Ú dlx = Ú- R 2 ( R + x - 2 R x )dx = 2 ÍÎ R x + 5 - 2R 3 ˙˚- R R rp È Í 2 Î 5 5 + - 5 2 5 5 + 5 3 4 p r 3 <r + 5 ˘ ˙ 3 ˚ 5 4p R3 2 5 6 " % . #$ 6> " 2 6¥ 5 6¥ 5 8 qo 15 3M fi r 8rp R5 8p R5 3M = ¥ 15 15 4p R3 2 - 6 - . " 2 2 (2M h ) R 2 = 5 5 ! " #$ #%#?' 'XAMPLE!clrdj &¶¹ɏ¨ɏº¶³°«ɏ¹°®¯»ɏª°¹ª¼³¨¹ɏª¶µ¬ɏ¶ɏ©¨º¬ɏ¹¨«°¼ºɏ2Ȏɏ¯¬°®¯»ɏ¯ɏ¨µ«ɏ´¨ººɏ-Ȏɏ«¬¹°½¬ɏ¨µɏ ¬¿·¹¬ºº°¶µɏ¶¹ɏ°»ºɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¾°»¯ɏ¹¬º·¬ª»ɏ»¶ɏș¨Țɏ¨ɏ«°¨´¬»¬¹ɏ¶ɏ°»ºɏ ©¨º¬Ȏɏș©Țɏª¬µ»¹¶°«¨³ɏ¨¿°ºɏ·¨¹¨³³¬³ɏ»¶ɏ°»ºɏ©¨º¬Ȏɏ¨µ«ɏșªȚɏ¨µɏ¨¿°ºɏ·¨¹¨³³¬³ɏ»¶ɏ°»ºɏ©¨º¬ɏ¨µ«ɏ·¨ºº°µ®ɏ»¯¹¶¼®¯ɏ°»ºɏ ½¬¹»¬¿ȍɏ / 5OLUTION - . " " / * . - ! ! / . / < r" @ + #$ 6 * * R h " #$ 6 / / - . / /, " / 7 / rp / " 2 dm x : 4 - . 2 ¥ 6 6 " "< 2 rp x dy ¥ x : rp 4 6 ¥ 6 - . " ɏ ŷźŷ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ { } rp R (h - y ) 4 h { 4 dy + rp } R (h - y ) h 2 y 2 dy - Ú dlx = Ú h rp R 4 4h 4 h 0 Ú0 { } 4 rp R (h - y ) 4 h (h - y ) 4 dy + h dy + Ú rp 0 rp R 2 h2 { h } R (h - y ) h Ú0 (h - y) 2 2 y 2 dy y 2 dy h h rp R 4 È (h - y )5 ˘ rp R 4 È 2 y 3 y 4 y5 ˘ + 2 + ˙ h h Í ˙ Í 3 4 5 ˚0 4h 4 Î - 5 ˚ 0 h2 Î 4 2 È 3 ˘ rp R rp R h 4 h5 2 h ÈÎ- (h - h)5 + (h - 0)5 ˘˚ + 2 + - 0 + 0 - 0˙ h h 4 2 Í 4 5 ˚ 20h h Î 3 rp R 4 h rp R 2 h3 + 20 30 1 p 3 r !"# $ 3M p R2h ! - ¥ fi 3M r p R2h p R4h 3M p R 2 h3 3 1 + ¥ = MR 2 + Mh 2 4 20 30 20 10 pR h ! ((% ( r fi - ( & ' . * 20 $ - M Ê hˆ 3R 2 + 2h 2 - M ¥ Á ˜ Ë 4¯ 20 ( ) * +, 2 2 fi ( - ! ¢ 20 / - . 3MR 2 Mh 2 Mh 2 Ê hˆ ¥Á ˜ = + Ë 4¯ 20 10 16 3MR 2 3Mh 2 3 M Ê 2 h2 ˆ + = Á R + ˜¯ 20 80 20 Ë 4 ¢ ¢5 & ' 7 ( - 3M Ê 2 h Ê 3h ˆ ÁË R + ˜¯ + M ¥ ÁË ˜¯ 20 4 4 2ˆ $ / +, 2 ˆ 3MR 2 3Mh 2 9 Mh 2 3MR 2 3Mh 2 3 M Ê R 2 + = + + h2 ˜ = = ÁË ¯ 20 80 16 20 5 5 4 : * #*+ ;< ŷźŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº y x¢ 100 mm x¢ Prism 20 mm dy h 4 30 mm x X X y C x Cone 80 mm x R O 40 mm A A A 'XAMPLE!clrdk &°µ«ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏª¶´·¶º°»¬ɏ©¶«Àɏº¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŷŷɏ ¨©¶¼»ɏ»¯¬ɏ¨¿°ºɏ!!ȍɏ$¬µº°»Àɏ¶ɏ»¯¬ɏ´¨»¬¹°¨³ɏ°ºɏŻżȍŹŴɏ².Ʉ´ŷȍɏ4¯¬ɏª¶µ¬ɏ°ºɏ¨Œ¨ª¯¬«ɏ »¶ɏ»¯¬ɏ·¹°º´ɏ¨»ɏ»¯¬ɏª¬µ»¹¬ɏ¶ɏ°»ºɏ³¬µ®»¯ȍɏɏ 5OLUTION > %? A * ! , + #* # A ? * # / # 78.5 ¥ 103 + / A 9.81 ! ¥r #* ¥ # / ¥ # ¥A p R2h p ¥ 0.022 ¥ 0.08 ¥r= ¥ 3 3 BA#C D+ r / / + # / #,A ! ## # " $ 2 0.48 (302 + 202 ) 12 6 2 m1 (b + c ) 12 % / @ # , ¥" ' ! *+ -", # $ 3 Ê R2 ˆ + h2 ˜ ÁË ¯ 4 5 2 ' $ ˆ 3 ¥ 0.268 Ê 20 + 802 ˜ ¥Á Ë 4 ¯ 5 2 # -", 'XAMPLE!clrel & ; ,: $ ,: #¶´·¼»¬ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¨©¶¼»ɏ»¯¬ɏ¿Ɋ¨¿°ºɏ¶ɏ»¯¬ɏº»¬¬³ɏ³°µ²ɏº¯¶¾µɏ°µɏ &°®ȍɏŵŴȍŷŸȍɏ ɏ ŷźŹ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ ' < $ # $ ; r? ! 5OLUTION # / / > ; # ' ; ; ; ; ;$ ;, , ¥ ¥: ;$ ;: ; ; ; ; - @ # ; ; $ / 40 mm x # ;$ # - # 10 mm #$ ; ; A 5 mm 30 mm 5 mm #$ / !"!# ; - ! rp ? ?, ¥ ¥ :r@ , r $ rp ? @ ¥ :! * :- r ? ¥, : :- * r , ,? " ", r ¥ , :-- --- --r , - ¥* :- r¥ ,? : - , , r " :r @!-p 'XAMPLE!clrec 5OLUTION > $ C ; ; ; ; ; ; ; 1 ¥, ¥, 2 * " -" ¥ -" : , r ¥ * : S $ " -"r *r r ¥ * : - @r * r @!-p , !-p ' $ ," ,, , - ! rp ! -+ , !-p (402 + 202 ) 12 *r ! *+ ; -r¥ : r -r '/ # &' , - ¥ @ ¥, ! $%&& "!# ' !"(# % %) *# 7%- & ! ! / &#%! " )"#6""! "!#( +%, %- & %!+ 7%- & $%&& "!# ' !"(# % %) *# "!#( +%, %- & ! $%&& rp ! -+ S ; x $ '/ &' 10 mm $ ; B &' # * r " -" 15853.76 &°µ«ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¨©¶¼»ɏ»¯¬ɏ¯¶¹°Á¶µ»¨³ɏª¬µ»¹¶°«¨³ɏ¨¿°ºɏ¶ɏ»¯¬ɏº¯¨«¬«ɏ ¨¹¬¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŷŹȍɏ # < ;$ ? @ D - ;A ; $ p ¥ 20 2 - / , ; $ ? -@ ' $ ;, - Ep¥ E- , : - 2 - D - ' ? @ ŷźźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ' -E- , : , : ; ; # 4 4 ¥ 20 E E : , !- -E 3p 3p $ ; F$ $ $ / A1 y1 + A2 y2 + A3 y3 - - fi A 800 ¥ 13.33 + 628.3 ¥ (-8.5) + (-314.15) ¥ 0 fi ,* 1114.15 ; ; $ ; # ; / ' ' ; # - :("% !"!# ' &' $ "!# ' !"(# % %) *# "!#( +%, %- & ! ! + x x R = 20 cm ( G E - -- E , * :: 40 ¥ 403 36 / ## $ "!# ' !"(# % %) *# &7%- & !& ! / &#%! " )"#6""! &7%- & %!+ 7%- & bh3 36 40 cm R = 10 cm : , " :"- * , - H ?' , E :E,* * ?6 A $ E- , : - # E - :@ , p , E ¥ !,@ - , E E* ** E : - E,* p ¥ 104 4 E, * E* :, S ' $ ; ; $ ; , " *- G ( 'XAMPLE!clred &°µ«ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏº¯¨«¬«ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŷź¨Ȏɏ¨©¶¼»ɏ»¯¬ɏ ¯¶¹°Á¶µ»¨³ɏª¬µ»¹¶°«¨³ɏ¨¿°ºɏ¨µ«ɏ¨©¶¼»ɏ»¯¬ɏ©¨º¬ɏ!"ȍɏ ɏ ŷźŻ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ y 10 cm 10 cm C2 15 cm C1 C y2 30 cm y1 A 10 cm B 10 cm A 10 cm ; $ ;A - ; A ; ¥, p 2 E 4 E " Ay ! ( + , # " ) , ( - * -& ; ; # p ¥ 152 4 # ! $% A1 y1 + A2 y2 800 ¥ 20 - 176.71 ¥ 30 = 623.29 A fi S ( *,%( < ," bh3 20 ¥ 403 = 12 12 / -( D ( ; # J ) # - $ ; ;" #%! ," * C B ' !"!# $ 10 cm (b) 5OLUTION > A A ;A / I - ! ? - @! & x y (a) ! 30 cm ) / ) # ( - / p / - p ¥ (15/2) 4 4 / > - / /> / / / ?@ #+ A B E E , / ) > / , " ŷźżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº C # " D ! $% ( ) / ( > ) * # # $% $% - & / ( / F > / G + ) @ # $ # + # , $% $% 'XAMPLE!clree !ɏº¸¼¨¹¬ɏ·¹°º´ɏ¶ɏª¹¶ººɏº¬ª»°¶µɏŶŴŴɏ´´ɏ¥ ŶŴŴɏ´´ɏ¨µ«ɏ¯¬°®¯»ɏŸŴŴɏ´´ɏº»¨µ«ºɏ ½¬¹»°ª¨³³Àɏ¨µ«ɏª¬µ»¹¨³³Àɏ¶½¬¹ɏ¨ɏªÀ³°µ«¬¹ɏ¶ɏŷŴŴɊ´´ɏ«°¨´¬»¬¹ɏ¨µ«ɏŹŴŴɊ´´ɏ¯¬°®¯»ȍɏ #¨³ª¼³¨»¬ɏ»¯¬ɏ´¨ººɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏª¶´·¶º°»¬ɏº¶³°«ɏ¨©¶¼»ɏ»¯¬ɏ½¬¹»°ª¨³ɏ¨¿°ºɏ¶ɏºÀ´´¬»¹Àɏ°ɏ»¯¬ɏ ´¨ººɏ«¬µº°»Àɏ¶ɏ»¯¬ɏ´¨»¬¹°¨³ɏ°ºɏŶŴŴŴɏ²®Ʉ´ŷȍɏ 5OLUTION! H D ' A * > > > J+ ¥p¥ rp * ¥ r * J+ # 2 m1 R 70.68 ¥ 0.15 = 2 2 * , + / / + # / > I! I! + , (@ #+ A ) + , (@ #+ A > I! D 2 ) 2 m2 (a + b ) 32 ¥ (0.2 + 0.2 ) = 12 12 J+ " , J J & 'XAMPLE!clref 2 ! ¥ > ¥ 2 # 2 K > I!A r I! >& #¨³ª¼³¨»¬ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏª¶´·¶º°»¬ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŷŻ¨ɏ¨©¶¼»ɏ »¯¬ɏ»¾¶ɏª¬µ»¹¶°«¨³ɏ¨¿¬ºȎɏ¨µ«ɏ°»ºɏ·¶³¨¹ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ȍɏ ɏ ŷźŽ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ y y Y (x3, y3) C3 15 mm A3 A1 (x, y) C C1 (x1, y1) 40 mm 40 mm (0, 0) 30 mm 30 mm (a) Composite area L !+ 1 ¥ 2 ¥/ !+ p ¥ 152 2 ( ' - - - , D +J 40 3 @ / & - 4 ¥ 15 3p / , A1 y1 + A2 y2 + A3 y3 1200 ¥ 20 + 600 ¥ 13.33 + 353.42 ¥ 46.37 = A1 + A2 + A3 1200 + 600 + 353.42 C - - ( , / / ! - D +J / / ++ + , ( ! / / / ! > / D +J 40 2 P !)N + (M ! ¥/ - # - ! C x 30 mm (b) Component areas 5OLUTION $ D +J O - - C2 (x2, y2) A2 x 30 mm X ( , # Ê 30 ¥ 403 ˆ Ê 30 ¥ 403 ˆ + 1200 ¥ 2.47 2 ˜ +Á + 600 ¥ 9.142 ˜ ÁË ¯ rectangle Ë 36 ¯ triangle 12 &( ¥ >/ & > / ¥ ) + ? ! @ #+ B ŷŻŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº - ! C ) ' - A - , > & D +J A / - @ A > , A1 x1 + A2 x2 + A3 x3 1200 ¥ 15 + 600 ¥ 40 + 353.42 ¥ 15 = A1 + A2 + A3 1200 + 600 + 353.42 C - - )E , - ! ! - D +J > / > P ! ++ + , ) Ê 40 ¥ 303 ˆ Ê 40 ¥ 303 ˆ + 1200 ¥ 6.97 2 ˜ + Á + 600 ¥ 18.032 ˜ ÁË ¯ Ë 36 ¯ 12 Êp ˆ & Á ¥ 154 + 353.42 ¥ 6.97 2 ˜ Ë8 ¯ & - ) , # ! ( ! @ #+ ) ' * + !D @ , - ( & 'XAMPLE!clreg # / ) + , ( &/ + ) #J / $¬»¬¹´°µ¬ɏ»¯¬ɏ¨¹¬¨ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨µɏ¬³³°·º¬ɏ¨©¶¼»ɏ°»ºɏ»¾¶ɏª¬µ»¹¶°«¨³ɏ¨¿¬ºȎɏ ¨µ«ɏ°»ºɏ·¶³¨¹ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ȍɏ y A A1 x C1 2b x C y y B x a2 x y 2a 5OLUTION! M ! , J + # ++ " ! + y2 b2 =1 y B C (a) Ellipse x2 dx A x (b) Quarter of ellipse ++ " Q - " + , *RS # , + ! J , , ++ + , " ++ # + ! K ! @ ++ *RS ɏ ŷŻŵ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ @ + $-% ++ D # ! ! x" + a" y" b" fi # # ◊ $ # ! 1- $ x x2 a2 2 a2 ◊ ! % " ¥ # # ! 1- &'( a % ! # fi ! q , # # 5 x2 ◊ a2 ¥ " #! " 1- x2 a2 ◊ ! # Ú dI y = Ú0 bx % # ! 1- 2 1- x2 a2 x # a ◊ dx )* q % #+ q q q# fi q # p." q# . # fi q# / )= #"> ' q ! 3 ! 3 4 * )*! # bÚ 0 p /2 (a cos q ) 2 1 - cos 2 q ◊ (- a sin q dq ) # - a 3b Ú 0 p /2 cos 2 q sin 2 q dq #- a 3b 0 sin 2 2q dq 4 Úp / 2 )∵ #- a 3b 0 Ê 1 - cos 4q ˆ Á ˜¯ dq 4 Úp /2 Ë 2 )∵ #- 0 p sin 4(p /2) ˘ p a 3b sin 4q ˘ a 3b È a 3b È q 0 = - + ˙˚ = 16 8 ÍÎ 4 ˙˚p / 2 8 ÍÎ 4 2 4 " # " # +" " * " * 0 \ &'( @ 3 &'( ! > ! #?¥ # > oa 3 b 4 # oab A # > B > # p ab3 p a 3b o ab(a 2 + b 2 ) + = 4 4 4 C% ! %! ."DE ŷŻŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!clreh $¬¹°½¬ɏ¨µɏ¬¿·¹¬ºº°¶µɏ¶¹ɏ»¯¬ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏª°¹ª¼³¨¹ɏº¬ª»¶¹ɏ¶ɏ¹¨«°¼ºɏ2ɏ º¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŷŽ¨ɏ¨©¶¼»ɏș¨ȚɏÀɊ¨¿°ºȎɏș©Țɏ¿Ɋ¨¿°ºȎɏ¨µ«ɏșªȚɏª¬µ»¹¶°«¨³ɏ¨¿¬ºɏ·¨¹¨³³¬³ɏ»¶ɏ ¿Ɋɏ¨µ«ɏÀɊ¨¿¬ºȍɏ'°½¬µɏ»¯¨»ɏ¿Ɋ¨¿°ºɏ°ºɏ»¯¬ɏ¨¿°ºɏ¶ɏºÀ´´¬»¹Àɏ¶ɏ»¯¬ɏº¬ª»¶¹ȍɏ Y y y x R r a a O x O a ds dr q C (x, y) r dq y x, X R (b) Element of size ds ¥ dr (a) Circular sector 5OLUTION , ¥ F ' ' q! $ ) * # & ! ¥ ! G! , H # ! q! ! !3 ' q -I # q ! ¥ # " #) q q*" # *¥) & ! # " q q ! !3 q # Ja Ba % +a 3 a R cos 2 q dq dr = Ú r 3 ÈÍ2 Ú cos 2 q dq ˘˙ dr 0 Î 0 ˚ )∵ 3 ! R È a Ê 1 + cos 2q ˆ ˘ " q d dr )∵ "q # " q + * # Ú r 3 Í2Ú Á ˜¯ ˙ 0 2 Î 0Ë ˚ R a R 3È R 3Ê sin 2q ˘ sin 2a ˆ sin 2a ˆ È r 4 ˘ Ê = a = a # Ú r Íq + dr r + dr + ˜ ÁË ˜Í ˙ Ú0 ÁË 0 2 ˙˚ 0 2 ¯ 2 ¯ Î 4 ˚0 Î # Ú dI y = Ú R 0 Ú- a r * 4 fi ! - # sin 2` ˆ Ê ÁË ` + ˜ 4 2 ¯ ! q ¥ q ¥ q q q q " # R +a 3 Ú dI x = Ú0 Ú- a r a R cos 2 q dq dr = Ú r 3 ÈÍ2 Ú cos 2 q dq ˘˙ dr 0 Î 0 ˚ a !a ɏ ŷŻŷ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ È a Ê 1 - cos 2q ˆ ˘ ∵ q ˜¯ dq ˙ dr Í2 Ú0 ÁË 2 Î ˚ R a R 3È R 3Ê sin 2q ˘ sin 2a ˆ sin 2a ˆ È r 4 ˘ Ê Ú0 r ÍÎq - 2 ˙˚0 dr = Ú0 r ÁË a - 2 ˜¯ dr = ÁË a - 2 ˜¯ ÍÎ 4 ˙˚0 R 3 Ú0 r $% q 4 sin 2` ˆ Ê Á` ˜ 4 Ë 2 ¯ fi - ! ( & ' # 4 sin 2` ˆ Ê Á` ˜ 4 Ë 2 ¯ ( ) # ) fi ! Ax a & 2 sin a 3a # * + sin 2a ˆ Ê Áa + ˜ -a 4 Ë 2 ¯ ) 2 2 4 Ê 2 sin a ˆ ¥Á = ˜ Ë 3a ¯ 4 , $-. sin 2` ˆ 4 Ê ÁË ` + ˜2 ¯ 9` +# 'XAMPLE!clrei & ( ,/ a p-: > &* sin 2 ` # $" $-8/ $¬»¬¹´°µ¬ɏ»¯¬ɏª¬µ»¹¶°«ɏ¨µ«ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ»¯¬ɏ¨¹¬¨ɏº¯¶¾µɏ°µɏ&°®ȍɏŵŴȍŸŴ¨ɏ ¨©¶¼»ɏ»¯¬ɏª¬µ»¹¶°«¨³ɏ¿Ɋ¨¿°ºȍɏ 7 fi 4 7 ) ' ; $" :"! < 56 , ? & ( , 7 7 6 & * # # 56 4 5OLUTION 9 a p- ( % Ax ) ) (( 7 2 sin a 2 sin (3p /4) 4 2 = = 3a 3 ¥ (3p /4) 9p & y y R R O (a) x a C O (b) y X x ŷŻŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ( 4 sin 2a ˆ Ê Áa + ˜ 4 Ë 4 ¯ > 4 4 Ê 3p sin 2(3p /4) ˆ + ÁË ˜¯ = 4 4 4 16 ( ' fi ( ( ( ( fi A%)," p%$ ". ? : 7 ! Ay % Ay ( ( ( ". ? : % 3p 4 ¥ " ! > $ B<% " "!# ' C!"(# % D y Y ( h 2 bh3 12 h 2 b 2 ! ! & ) b 3h 12 () " X C bh bh bh b2h2 4 +5 x b 2 ( $" $/ # y Y ( a h X C x () b2h2 72 bh3 36 bh3 12 I xy = b3h - b 2 ha + bha 2 36 b3h + b 2 ha + bha 2 12 ) b2h2 24 b Y 4 p p 2 X !! 5 4 p " R Z A A , " ɏ ŷŻŹ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ # y, Y R 4 p ( - 8 X C 8 4 9p 4 p ) 8 p $ " () % x & O "$ z ' y Y ( R ) p 4 4 4 16 9p X O (9p - 32) 72p () x p 4 16 $$ 4 4 8 z & y 4 4 sin 2a ˆ Ê Áa ˜ 4 Ë 2 ¯ Y ( R sin 2a ˆ Ê Áa + ˜ 4 Ë 4 ¯ 4 O a a C x, X ) sin 2a ˆ 4 Ê Áa + ˜4 Ë 2 ¯ 9a 4 sin 2 a () # & y " 2 5 C O 83 320 ( " X ") x R & R " 1 2 * 3 2 " Z ( z *& + Y a ( b X 1 ) 1 1 2 " 1 4 " , !" - !" , " ŷŻźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº . + / z Z R " * # " " / z, Z " 1 2 * ( ) 12 R X h ( 12 Y " " - " Ê R 2 h2 ˆ + ˜ ÁË 4 3¯ " - ( & x " y / & Z r1 h r2 Y 0 + X ( 1 12 ) " 1 2 * ( " - " " " " - " & Z R ( ) ) * * 2 3 2 5 Ê Á Ë Y X Z r2 X r1 ( Y 5 5 2 - 1 ˆ 3 3˜ 2 - 1 ¯ , " ɏ ŷŻŻ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ R 7 5 2 5 * Z z Z 1 12 1 2 R ' w ! z ( 12 "! # "! # ) 12 " # " # * 12 " !# " !# x¢ Z h Y X $ $ $ y ¢ a x¢ 12 # "%! & b x z Z ( x X Y a b y 1 2 ! 3 4 ! ) 1 2 * 1 12 1 3 3 4 " !# " !# ! y, Y ( C Z h X * Mh 2 18 72 "% ) $! # Mb 2 24 Mh 2 6 & x b , " ŷŻżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº Z z 1 % 12 * 1 3 % $ L Z * ( 1 2 ) Y ' r X Z * r 1 2 ( 1 4 ) Y X ( ) * 2 Ê 1 16 ˆ Mh ÁË - 2 ˜¯ + 4 9p 4 + ( y Y ) h # "$ X R z Z 12 * 12 x , - Ê 1 16 ˆ ÁË - 2 ˜¯ 2 9p $ Ê R 2 h2 ˆ + ˜ ÁË 4 3¯ % # "$ 1 2 . 3 7 */ 0 $ 4 7 s Z 4 Z ( ) Y ( X ) 5 9 * * 1 6 " # "( 0# s , " ɏ ŷŻŽ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ Z, z ( r A 3 20 ) Ê h2 ˆ M Á R2 + ˜ Ë 4¯ 3 M 5 A X 3 10 * Ê r2 2ˆ ÁË + h ˜¯ 4 h Y 20 x y ( Y p ab3 4 p a 3b 4 p ab(a 2 + b 2 ) 4 ) 2b X C 2a ! 57//#4; ; " * " <" D *( *!+"(&#%!+ ! < = > ?@ " " /" " .1!clrcɏ $¬ķµ¬ɏ ½¨¹°¶¼ºɏ »À·¬ºɏ ¶ɏ ´¶´¬µ»ºɏ ¶ɏ °µ¬¹»°¨ɏ ¨µ«ɏ »¯¬°¹ɏº°®µ°ķª¨µª¬ȍ ! %! "$ " " # "$ % ! &# ! " # "$ "$ )"# (" "$ * "% ! "$ ' % ! &# # 566 "7 " ! 6 " 689: .1!clreɏ $¬»¬¹´°µ¬ɏ·¶³¨¹ɏ´¶´¬µ»ɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨µɏ¨¹¬¨ȍ +" " "$ %! ( ) p !, p a 3b 4 ! ! "$ " p ab(a 2 + b 2 ) 4 .1!clrfɏ Find product of inertia of a given area. + " # "$ "$ / 8 : .) : $ " $ ' ." . "$ $ '" " )" ! "$ ' %! ! ! /" ! " " ! "$ . / ! " . : # " "$ ! / 8 # " % ! " ! ! &# "$ "$ ŷżŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº .1!clrgɏ %½¨³¼¨»¬ɏ¹¨«°¼ºɏ¶ɏ®À¹¨»°¶µȍɏ )" . ! .) / . ! $" "$ &# B A ! ! " " ". $" ! %! ! ! " " " "$ )"# "$ .1!clrhɏ %´·³¶Àɏ·¬¹·¬µ«°ª¼³¨¹Ɋ¨¿°ºɏ¨µ«ɏ·¨¹¨³³¬³Ɋ¨¿°ºɏ»¯¬¶¹¬´ºɏ»¶ɏ®¬»ɏ´¶´¬µ»ºɏ¶ɏ°µ¬¹»°¨ɏ¶ɏª¶´·¶º°»¬ɏ ©¶«°¬ºȍ ! ! ' ! ' ! " ! ! ! $ ! ' ' ' .1!clriɏ %º»°´¨»¬ɏ·¹°µª°·¨³ɏ´¶´¬µ»ºɏ¶ɏ°µ¬¹»°¨ɏ¶ɏ¨µɏ¨¹¬¨ȍ C! * "% 8 # "$ ! " "$ # C! : ! * "% # 8 # * "% " # "$ B "% ! +/2146#06!(14/7.#' D " "$ D + " # "$ Ú y dA Ú xydA ' ' Ú x dA A D ( " "$ D +" " "$ : Úm r ' "$ dm ' " D @ D @ "$ /. " "$ # "$ /. Iy ' A I m " "$ )" .' D Ix A E & 8 & D (" "$ " "$ ' " "$ ' " "$ "$ ( ' I x = I X + myC2 F ' "$ )"# / q% ! Ir = ' Ix + I y 2 + Ix - I y 2 cos 2q - I xy sin 2q ! $ " ! 8 ɏ ŷżŵ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ / G H q % ! Ir = D + " # "$ "$ ! Ix + I y Ix + I y 2 % - Ix - I y 2 cos 2q + I xy sin 2q ' I rs = Ir + Is ' Ix - I y 2 sin 2q + I xy cos 2q J O ,t = J O , z ; I max,min = Ix + I y 2 2 Ê Ix - I y ˆ 2 + I xy ± Á Ë 2 ˜¯ tan 2q = -2lxy (I x - I y ) I rs = 0 ! 5*146 #059'4!37'56+105 E 6 6 ,, D * +"!# 'D 6< < ' #<" #6 & <"("& <%F ! &% " %! #<" %&& %!+ &% " + % "#"( & & , + ( < ,, 6G "!# ' !"(# % )" !" %# F"G %! #<" ( +* # ' !"(# % )" !" %# F"G ! # H<%# & #<" <D& %, & ! I %! " ' % ! % H<%# & #<" %!%, & D )"#6""! H<%# & #<" !" "&&%(D " " # $ $ "!# ' !"(# % %!+ (%+ *& ' D(%# !G $ # %&& ' % ) +D %!+ #& %&& "!# ' !"(# %G !+ # ! ' ( #<" %(%,,",7%- & #<" (" G ! %! #<" "( "!+ *,%(7%- & #<" (" )" % , "+ 6<"! #<" %- & , "& *#& +" % ,% !%G ! C! ("%, , '" "!"(%,,D #<" &#(* #*(%, " )"(& %(" & ( "!#"+ #<%# "!# ' !"(# % )#% !"+ & #<" %- * H<DG ' $ * H<%# & #<" & ! I %! " ' % # + ,%( "!# ' !"(# %G #- ŷżŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº -';!6'4/5 .1!clrd .1!clre .1!clrf .1!clrg .1!clrh / # . .1!clri ! ! ! 4'8+'9!37'56+105 1! #3 + - +!- 1! #3 + - + -& 4 1! ! 1! + - 3+ ! 6 5 4 5 +!- / 3 # + - ! # 6 ! 1! 3+-& + - $ + - ! $ 1! #3 + # $ + -7 1! ! #3 + - + + -/ ! # + - ! + $- ! ! 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS , ' ' 5 & + + - +!+ - & + - $ ! 8 98 8 +!- ; + + - # 9: ! + - ! +!- < + % : 98 + - ! +!+ - # 7> : 9: ɏ ŷżŷ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ & ! + - p :9? +!- p :9@A + - p :9B8 # # + - p : #$ 9A: $! (ILL $LANKS!3UESTIONS ! ' 5 @ ; ! DDDDDDDDD 8 ! B " DDDDDDDD : . F DDDDDDDDDDD ! DDDDDDDDD E # # DDDDD DDDDDD $ DDDDDD %! /ATCH %OLUMNS!3UESTIONS ' 5 ,* ! C ,* ! CC ! + +- % + - 7 + + $- / # + +H+/+ - # ,* ! C +- - G @@ : p :9: ! B9@8 ! B9BA ,* ! CC & 8 9F + - 8 ! + - & # ! +H- + - & +/- 8 + $- & + - 7 "" # $ 8 98 8 9B 8 $ ,* ! C ! ,* ! CC + - 8 8 +H- B 8 + - 7 +/- 8 8 + $- % + - +- 7 + - 9B 9@G 9F 8 98 DDDDDD ŷżŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº &! 5TATEMENT %ONFIRMATION!3UESTIONS , $ +"- / ' # #$ # +""- / ' 5 ! ! # # +- " + - "" + - " + $- "" " "" #NSWERS!TO!1BJECTIVE!3UESTIONS : $*,# ,"7 < " J*"&# !& ! K ,,7K,%! & J*"&# !& I < I < I I $%# <7 ,* !& J*"&# !& + - 0+ - + -0+H- + -0+ - + $-0+/+ -0+ - + -0+/- + -0 +H- + $-0 + / B#%#" "!#7 + -0+H- + -0+ - + -0+ - + $-0+/- !I( %# ! J*"&# !& + - ! 24#%6+%'!241$.'/5 ! J:!& ? @A?@:@ ; # @G :@ : K y 40 mm R = 55 mm 40 mm 100 mm 200 mm 60 mm 75 mm O 100 mm 7 x ; # @G :8 J:!& 8LF ML@ GG: 150 mm : 450 mm < ?L FG8 @@M : ! : K ɏ ŷżŹ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ ; < ; # @G :B J:!& + - B:: A:8 ?F? ! + # I +!- 8 MG: G@M ?F? +!K : : y y 20 mm 100 mm y 100 mm Y 150 mm 50 mm x C 25 mm X a q x 40 mm 20 mm 150 mm x b 7 ( ! ; # @G :: : :!& 8?A AAA AF # ; # @G :F # N ; # @G :M ! J:!& + B! ; # @G :A J:!& @G? 8A J:!& +AG ?G- :@ 8GG GGG : # # B q9@8 ! MM MA K : 8F 8GG GGG K Y 30 mm y 50 mm X C 9m 50 mm R x 9m 30 mm 120 mm 30 mm 9m N 9m ; # @G :? . < ! $ J:!& +M F L # +; # @G :L! 1 2 8 +!- ! - 8@?M : K + - # 3 2 8 ŷżźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº :!& % & ' " ( % * Ê y = b Á1 Ë t L ) & x2 ˆ ˜ a2 ¯ a b q b % y = kx 2 x x a x x O ( ( $ È L3t cos 2 q ˘ Í Ans. ˙ 3 Î ˚ y y y !"# + * * !, ," - % & ! :!& ' " & " ' " " . # $ & ( È 5ab 5a b ˘ , Í Ans. ˙ 17 33 ˚˙ ÍÎ 3 3 y s 100 mm y Ê xˆ =Á ˜ b Ë a¯ r 3 C 2b b q 80 mm y 400 mm x t t x a % ( ( ," * * !, / 4 ," ( 4 q, 7 8 7!8 ' " È ˘ ab a b , , 0.267 m 4 , 0.333 m 4 ˙ Í Ans. 30 6 ÍÎ ˙˚ 3 % % 300 mm 2a 5 / :!& ". & ' " . & # 3 ( . 4 # 6 # ( & ' & :!& 7 8 " # 6# 46 " 0* ," . . 4 .! .. !" # $ & 9 7!8 # . $ ( ) 4!," ɏ ŷżŻ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ % & ¥" ¥" ( ( :!& ; & < ( * ( :!& !6 ' . y 4 : 6.! # !. " . $ & ( ) 4 . ! 4 54 6 5$ y 20 cm 20 cm 250 mm 20 cm 10 cm 20 mm x 30 cm = = ( 4 7!8 :!& 7 8 x 20 mm 30 cm & 6 !.! # ' " # ) & . 4 "". 6!. !.! # ' & ' 300 mm 7 8 ( 4 7 8 . 9 7!8 ". #!! . " ! 0* ," :!& ," 50 mm ( . " 6# 6 ! 6 9 7 8 "" 5 " " " 5$ . 4!, 4 ,. . " 50 mm 25 mm y 75 mm a c 75 mm c X b X d 120 mm b c x c ' & ' & ( ' ' " 6 ( ( :!& "" .! ! 6 . ## . $ " ; :!& 7" . 4 84 6 $ 4 ŷżżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº y 10 mm 10 mm D 10 mm 15 mm 30 mm C B 50 mm 25 mm l l 40 mm O R = 20 mm 200 mm O x A ' " " l 100 mm & : % ( > 0* ' 4 ' " ( :!& ! .! ! # * " & ( 4 ; $ :!& & 4r,#! ¥ #! & ¥ ! 6 " :!& $ ¥! ' " ¥ 4 6 6!" " $ Cubic cut of side 20 mm x2 30 mm a2 + y2 b2 y s =1 y b R x y q 100 mm r q x a 80 mm % x & ( 4 & ' " È 2mb 2 ˘ Í Ans. ˙ 5 ˚˙ ÍÎ % 7 8 ( ' " ( 4 " :!& 6 # 7!8 5& . 4 6 # ( 4 . 4 $ & & . ɏ ŷżŽ -¶´¬µ»ɏ¶ɏ)µ¬¹»°¨ɏ y a y y c d 650 mm b C x A ! R z Z z " x # % h $ % & ' ) (:!& ) *+ # + ) ' ! . , - % $ # # ) (:!& )' / + # $ 0 . 1' !1! ! " " 1 1 (:!& ) +* ' )) % $ , % ) , * $ # $ (:!& )Ê1 16 ˆ ÁË - 2 ˜¯ 2 9p !) ) , ŷŽŴ 22 #¯¨·»¬¹ Wjsuvbm!Xpsl .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ !.1!ccrc .1!ccrd .1!ccre .1!ccrf .1!ccrc 22/2! �! JOUSPEVDUJPO! Xijmf!efbmjoh!xjui!frvjmjcsjvn!pg!sjhje!cpejft-!uif!tusbufhz!tp!gbs!ibt!cffo!up!Ýstu! ejwjef!uif!tztufn!joup!tvjubcmf!tvctztufnt!boe!uifo!tpmwf!uifn!cz!vtjoh!frvbujpot! pg!frvjmjcsjvn/!Uijt!qspdftt!cfdpnft!ufejpvt!bt!uif!tztufn!tj{f!hspxt-!uifsfcz! jodsfbtjoh! uif! ovncfs! pg! tvctztufnt! boe! gpsdft/! Npsfpwfs-! uif! bobmztjt! pg! uif! tusvduvsft!dpotjtujoh!pg!joufsdpoofdufe!sjhje!cpejft!xijdi!dbo!npwf!sfmbujwf!up!fbdi! puifs-!jt!wfsz!ufejpvt!jg!xf!vtf!dpowfoujpobm!frvbujpot!pg!frvjmjcsjvn/ Dbo!uifsf!cf!b!nfuipe!up!ejsfdumz!dpotjefs!uif!frvjmjcsjvn!pg!b!xipmf!tztufn!xjuipvu!csfbljoh!ju!joup! nboz!tvctztufnt@!Uif!dpodfqu!pg! !bggpset!vt!kvtu!up!ep!uibu/!Ju!jt!bo!bmufsobujwf!bqqspbdi!up! bobmztf!uif!cpejft!jo!tubujd!frvjmjcsjvn-!jowpmwjoh!pomz!tpnf-!opu!bmm-!volopxo!gpsdft!bdujoh!po!uif!tztufn/ 22/2/2! Xpsl Uif! epof!jt!efÝofe!bt!uif! !nbef!cz!tpnf!gpsdft!)ps!dpvqmft*!up!dibohf!uif!qptjujpo!pg!b!cpez!jo! ufsnt!pg!jut!ejtqmbdfnfou!)ps!spubujpo*/! Xpsl!Epof!cz!b!Gpsdf! Mfu!vt!dpotjefs!b!cmpdl!cfjoh!qvtife!cz!b!gpsdf! bdujoh!bu!bo!bohmf! !xjui!uif! ejsfdujpo!pg!ejtqmbdfnfou!pg!uif!cpez!bmpoh!uif!tvsgbdf-!bt!tipxo!jo!Gjh/!22/2 /!Uif!dibohf!jo!uif!qptjujpo!pg! uif!cmpdl!gspn!B!up!B¢ jt!sfqsftfoufe!cz!uif!wfdups! -!lopxo!bt! /!Cz!efÝojujpo-! /!Ifodf-! uif!xpsl!epof-! ! ! >!) !dpt!a*! ! )22/2* ŷŽŵ Uif!tbnf!frvbujpo!jt!pcubjofe!jg!uif!nbhojuvef!pg!gpsdf! !jt! nvmujqmjfe!cz!uif!sfdubohvmbs!dpnqpofou!pg!uif!ejtqmbdfnfou! bmpoh!uif!mjof!pg!bdujpo!pg!gpsdf-!bt!tipxo!jo!Gjh!22/2 /!Uivt! >! ) !dpt!a*! )22/3* Opuf! uibu! Frt/! )22/2*! boe! )22/3*! bsf! fggfdujwfmz! uif! tbnf/! Ju! tipxt!uibu!xpsl!jt!b! !bt!jut!wbmvf!jt!tbnf!xifuifs! uif!gpsdf!jt!sftpmwfe!bmpoh!uif!ejtqmbdfnfou!ps!wjdf!wfstb/ �! 9ORTHY!OF!0OTE Zpv! nbz! xpoefs! ipx! uif! ejsfdujpo! pg! ejtqmbdfnfou! dbo! cf!pqqptjuf!up!uif!ejsfdujpo!pg! uif!xpsljoh!dpnqpofou!pg!uif! bqqmjfe!gpsdf/!Zft-!ju!jt!qpttjcmf! cfdbvtf! puifs! gpsdft! nbz! bmtp! cf!xpsljoh!po!uif!cpez/ Xpsl!epof!cz!b!gpsdf!jt!qptjujwf!jg!jut!xpsljoh!dpnqpofou!jt! jo!uif!tbnf!ejsfdujpo!bt!uif!ejtqmbdfnfou!)Gjh/!22/2*/!Ipxfwfs-! ju!cfdpnft! !jg!uif!xpsljoh!dpnqpofou!pg!uif!gpsdf!jt!jo! b!ejsfdujpo!pqqptjuf!up!uif!ejsfdujpo!pg!ejtqmbdfnfou!)Gjh/!22/3*/!Uivt! >!Ï ) !dpt!q*! ! )22/4* -!xf!dbo!tbz!uibu!uif!xpsl!epof!cz!b!gpsdf! !jo!ejtqmbdjoh!b!cpez!cz!b!ejtqmbdfnfou! !jt!hjwfo! bt! !>! ! !dpt!a-!xifsf!a!jt!uif!bohmf!cfuxffo!uif!gpsdf!wfdups!boe!ejtqmbdfnfou!wfdups/!Jg!a!jt!mftt!uibo!:1¡-! xpsl!epof!jt! <!boe!jg!a!jt!hsfbufs!uibo!:1¡-!xpsl!epof!jt! /!Xifo!a >!:1¡-!xpsl!epof!jt!{fsp/ F A A¢ a F cos a F A A¢ s s a s co (a) Component of force along displacement sa (b) Component of displacement along force F q q s a M ! Xpsl! Epof! cz! b! Dpvqmf! Xpsl! jt! bmtp! epof! cz! dpvqmft! ps! npnfout! pg! gpsdft! dbvtjoh! bohvmbs! ejtqmbdfnfou!)j/f/-!spubujpo*/!Gjhvsf!22/4!tipxt!b!cpez!spubufe!cz!b!npnfou! uispvhi!bo!bohmf!q/!Uif!xpsl! epof!po!uif!cpez!jt!tjnqmz!uif!qspevdu!pg! boe!q/!Uivt-! ! >! !q! )22/5* Uif!xpsl!epof!cz!b!dpvqmf!jt!qptjujwf!jg! ibt!uif!tbnf!tfotf!bt!uibu!pg!spubujpo-!boe!ofhbujwf!jg! ibt!bo! pqqptjuf!tfotf/!Uif!TJ!voju!pg!xpsl!jt!uif!kpvmf!)K*/ �!%AUTION Ublf!bohmf!q!jo!sbejbot-!opu!jo!efhsfft/ ŷŽŶ 22/2/3! Wjsuvbm!Xpsl!boe!Frvjmjcsjvn Cfgpsf!jouspevdjoh!uif!dpodfqu!pg!wjsuvbm!xpsl-!mfu!vt!Ýstu!efÝof! /!Dpotjefs!b!qbsujdmf! jo!tubujd!frvjmjcsjvn!voefs!uif!bdujpo!pg!b!tztufn!pg!gpsdft/!Jg!uif!qbsujdmf!jt!ejtqmbdfe!cz!bo!bttvnfe!boe! bscjusbsz! !d bxbz!gspn!jut!obuvsbm!qptjujpo!dpogpsnjoh!up!uif!tztufn!dpotusbjout-!uif! qbsujdmf!jt!tbje!up!cf! /!Tvdi!ejtqmbdfnfou-!d !jt!dbmmfe!uif! /!Uif!xpsl! epof!cz!b!gpsdf! !bdujoh!po!uif!qbsujdmf!uispvhi!uif!wjsuvbm!ejtqmbdfnfou!jt!lopxo!bt!uif! !boe! dbo!cf!xsjuufo!bt ! d ! >! ◊ d !>! d !dpt!a! )22/6* Ifsf-! jt!uif!nbhojuvef!pg!uif!gpsdf! - d !jt!uif!nbhojuvef!pg!uif!ejtqmbdfnfou!d boe!a!jt!uif!bohmf!cfuxffo! boe!d /!Tjnjmbsmz-!uif!wjsuvbm!xpsl!epof!cz!b!dpvqmf! uispvhi!b!tnbmm!wjsuvbm!spubujpo!dq!jt!hjwfo!bt d ! >! !dq! )22/7* Frvjmjcsjvn! B!cpez!jt!tbje!up!cf!jo!frvjmjcsjvn!xifo!uif!tvn!pg!bmm!uif!gpsdft!boe!npnfout!bdujoh!po! uif!cpez!jt!{fsp/ Dpotjefs!b!qbsujdmf!pg!ofhmjhjcmf!nbtt!jo!frvjmjcsjvn!voefs!b!tztufn!pg!gpsdft! - - -!É-! !bt!tipxo!jo!Gjh/!22/5/!Mfu!vt!hjwf!b!tnbmm!wjsuvbm!ejtqmbdfnfou!d !up!uif!qbsujdmf/!Uif!upubm! wjsuvbm!xpsl!epof!cz!bmm!uif!gpsdft!jt!hjwfo!bt d ! >!S ◊!d !>! !◊!d !,! !◊!d !,!É!,! ◊!d ! )22/8* Uijt!frvbujpo!dbo!cf!xsjuufo!jo!ufsnt!pg!uif!tdbmbs!dpnqpofout!pg!uif!wjsuvbm!ejtqmbdfnfou!boe!gpsdft!bt d ! >!S ◊!d !>!) S " ,! S ,! S #* ◊ ( d " ,! d ,! d #) Frvjmjcsjvn!pg!b!Qbsujdmf ! ! >!S " d "!,!S d !,!S # d #! )22/9* 2 1 F2 3 dd 4 dd F3 F1 5 F5 F4 (b) Free body diagram (a) Particle displaced $ ! Gps!b!qbsujdmf!up!cf!jo!frvjmjcsjvn-!xf!nvtu!ibwf!S >!1/!Uijt!jnqmjft!uibu!uif!tvn!pg!uif!tdbmbs!dpnqpofout! pg!bmm!uif!gpsdft!bmpoh!uif!uisff!byft!bsf!bmm!joejwjevbmmz!{fsp/!Uibu!jt-!Ȧ " >!Ȧ !>!Ȧ #!>!1/!Uifsfgpsf-!Fr/! )22/9*!sfevdft!up ! d ! >!1! )22/:* Frvbujpo!)22/:*!jnqmjft!uibu!jg!uif!wjsuvbm!xpsl!epof!cz!uif!gpsdft!uispvhi!b!wjsuvbm!ejtqmbdfnfou!jt!{fsp-! uif!cpez!ibt!up!cf!jo!frvjmjcsjvn/!Uijt!jt!lopxo!bt!uif! /!Uijt!qsjodjqmf-!ipxfwfs-! jt!opu!pg!nvdi!ifmq!jo!tjnqmjgzjoh!uif!qspcmfnt!sfmbufe!up!frvjmjcsjvn!pg!b!qbsujdmf-!tjodf!gps!b!qbsujdmf-!cpui d !>!1!boe!S !>!1!qspwjef!uif!tbnf!jogpsnbujpo/ Frvjmjcsjvn!pg!b!Sjhje!Cpez B!sjhje!cpez!dbo!cf!dpotjefsfe!bt!b!tztufn!pg!qbsujdmft!sjhjemz!buubdife!up! pof!bopuifs/!Tjodf!uif!wjsuvbm!xpsl!epof!po!b!qbsujdmf!jo!frvjmjcsjvn!jt!{fsp-!ju!gpmmpxt!uibu!uif!upubm!wjsuvbm! xpsl!epof!po!b!sjhje!cpez!jt!bmtp!{fsp/ ŷŽŷ Frvjmjcsjvn!pg!Joufsdpoofdufe!Sjhje!Cpejft Mfu!vt!dpotjefs!b!tztufn!dpnqptfe!pg!uxp!)ps!npsf*!sjhje! nfncfst!mjolfe!uphfuifs!boe!tvqqpsufe!cz!gsjdujpomftt!ijohft-!bt!tipxo!jo!Gjh/!22/6 -!tvdi!uibu!uif!sfmbujwf! npujpo!cfuxffo!uif!uxp!nfncfst!DB!boe!BC!jt!qpttjcmf/ A A P1 RA P2 –RA A A C B C B RC RB (a) Active forces (b) Reactive forces (c) Internal forces % Uijt! tztufn! jt! jo! frvjmjcsjvn! voefs! fyufsobm! ! gpsdft! $2 boe! $3-! xijdi! bsf! dbmmfe! Myth Fact! cfdbvtf!uifz!bsf!sftqpotjcmf!gps!wjsuvbm!xpsl!epof! uispvhi! boz! qpttjcmf! wjsuvbm! ejtqmbdfnfout/! Uif! Op/!Ju!jt!wbmje!pomz!gps!uif! upubm!wjsuvbm!xpsl!epof!cz!uif!bdujwf!gpsdft!nvtu!cf! cpejft!xijdi!bsf!jo!tubujd! {fsp!gps!uif!tztufn!up!cf!jo!frvjmjcsjvn/ frvjmjcsjvn/! Bt! gbs! bt! uif! - & C boe! & D! )Gjh/!22/6 '-!pggfsfe!cz!uif!tvqqpsut-!bsf!dpodfsofe-! uiftf! ep! opu! dpousjcvuf! up! xpsl! epof! vomftt! uif! tvqqpsut!uifntfmwft!bsf!hjwfo!wjsuvbm!ejtqmbdfnfout/!Bopuifs!dbufhpsz!pg!gpsdft!jt! -!xijdi! efwfmpq!bmxbzt!jo!qbjst/!Uifz!fyjtu!bt!b!qbjs!pg!frvbm!boe!pqqptjuf!dpnqpofout-!gps!fybnqmf!jo!Gjh/!22/6 -! uif!gpsdft!&B!boe!ċ&B!bu!uif!dpoofdujpo!B/!Uifsfgpsf-!uif!ofu!wjsuvbm!xpsl!epof!cz!uif!joufsobm!gpsdft!dbodfm! fbdi!puifs-!xijdi!wfsjÝft!uif!tubuf!pg!frvjmjcsjvn/! .1!ccrd 22/3! �! QSJODJQMF!PG!WJSUVBM!XPSL! Ju!tubuft!uibu! ) ( ! # Myth Bewboubhft! pg! Vtjoh! Wjsuvbm!Xpsl!Qsjodjqmf ! ! ! ! 2/! Uifsf!jt!op!offe!up!ejtnfncfs!uif!tztufn!jo! psefs!up!xsjuf!uif!dpowfoujpobm!frvbujpot!pg! frvjmjcsjvn/ 3/! Sfmbujpotijq! cfuxffo! bdujwf! gpsdft! nbz! cf! efufsnjofe! xjuipvu! sfgfsfodf!up!uif!sfbdujwf!gpsdft/ 4/! Uif! frvjmjcsjvn! pg! uif! tztufn! jt! fyqsfttfe! jo! ufsnt! pg! gfxfs! volopxo!gpsdft!bdujoh!po!uif!tztufn-!uifsfcz!nbljoh!uif!bobmztjt! fbtjfs/ ) Fact! Op/!Uijt!nfuipe!jt!opu!wbmje! gps!b!tztufn!jo!xijdi!joufsobm! gpsdft!qfsgpsn!tjhojÝdbou! bnpvou!pg!wjsuvbm!xpsl-!xijdi! dboopu!cf!dbmdvmbufe/!Gps! fybnqmf-!gsjdujpo!bu!ijohft! epft!ofhbujwf!xpsl-!cvu!ju!jt! jnqpttjcmf!up!nfbtvsf!uibu! bnpvou!pg!xpsl!epof/! ŷŽŸ Bobmztjt!Qspdfevsf! ! ! ! ! ! 2/! Esbx! b! gsff.cpez! ejbhsbn! pg! uif! foujsf! tztufn! tipxjoh! pomz! uif! bdujwf! gpsdft/! Tvdi! b! ejbhsbn! jt! lopxo!bt! * / 3/! Hjwf!wjsuvbm!ejtqmbdfnfou)t*!)spubujpo!ps!efÞfdujpo*!up!uif!tztufn!bu!dbsfgvmmz!diptfo!qpjou)t*/!Uif! ejtqmbdfnfout! tipvme! npwf! uif! qpjout! pg! volopxo! gpsdft! boe! uiftf! tipvme! cf! dpotjtufou! xjui! uif! hfpnfusjdbm!dpoejujpot!pg!uif!tztufn/ 4/! Efufsnjof! uif! upubm! wjsuvbm! xpsl! epof! cz! Myth Fact! bmm! uif! gpsdft! uispvhi! dpssftqpoejoh! wjsuvbm! ejtqmbdfnfout/ Op/!Npnfout!boe!dpvqmft!bmtp! 5/! Ublf! joup! bddpvou! uif! wjsuvbm! xpsl! epof! cz! ep!xpsl!xijmf!dbvtjoh!spubujpo! uif!sfbdujpot!pomz!jg!uif!tvqqpsut!uifntfmwft! pg!uif!cpez/ bsf!ejtqmbdfe!wjsuvbmmz/ 6/! Frvbuf!uif!upubm!wjsuvbm!xpsl!epof!up!{fsp!boe!efufsnjof!uif!volopxo! dpnqpofout!pg!npnfout!ps!gpsdft/ Tjho! Dpowfoujpo Uif!wjsuvbm!xpsl!epof!cz!b!gpsdf0sfbdujpo!jt! !jg!uif!ejsfdujpo!pg!uif!gpsdf0 sfbdujpo!jt!tbnf!bt!uibu!pg!uif!wjsuvbm!ejtqmbdfnfou/!Jg!uif!ejsfdujpot!pg!gpsdf0sfbdujpo!bsf!pqqptjuf!up!uif! wjsuvbm!ejtqmbdfnfou-!uif!wjsuvbm!xpsl!epof!jt! /!Tjnjmbsmz-!uif!xpsl!epof!jt!qptjujwf!jg!uif!ejsfdujpo!pg! npnfou!jt!tbnf!bt!uibu!pg!wjsuvbm!spubujpo/ ! 'XAMPLE!ccrc # " $ %% & 5OLUTION Lffqjoh!uif!tvqqpsu!C!tubujpobsz-!xf!mjgu!uif!tvqqpsu!B!vqxbset!cz!b!tnbmm!wjsuvbm!ejtqmbdfnfou! d -!bt!tipxo!jo!Gjh/!22/7 /!Mfu!uif!dpssftqpoejoh!ejtqmbdfnfout!bu!qpjout!D!boe!E!cf!d !boe!d -!sftqfdujwfmz/! Uif!ejtqmbdfnfou!bu!uif!qpjou!C!jt!{fsp/!Frvbujoh!uif!upubm!wjsuvbm!xpsl!epof!cz!uif!gpsdft!bdujoh!po!uif!cfbn! up!{fsp-!xf!hfu )* &B!¥!d !Ï!23!¥!d !Ï!21!¥!d !,!&C!¥!1! >!1! Ifsf-!uif!xpsl!epof!cz!ejtqmbdfnfout!d boe!d !bsf!xsjuufo!xjui!ofhbujwf!tjho!cfdbvtf!uiftf!ejtqmbdfnfout! bsf!pqqptjuf!up!uif!ejsfdujpo!pg!dpssftqpoejoh!gpsdft/ Gspn!tjnjmbs!usjbohmft!BB¢C-!DD¢C!boe!EE¢Cd d d !>! ! >! ! fi! d !>!6d ! boe! d !>!4/6d ! 10 8 3 Tvctujuvujoh!uif!wbmvft!pg!d !boe!d !joup!Fr/!) *-!xf!hfu &B!¥!6d !Ï!23!¥!4/6d !Ï!21!¥!d !,!&C!¥!1!>!1 ps! &B!¥!6!Ï!53!Ï!21!>!1! fi! &B!>! Opx-!up!efufsnjof!&C-!mfu!vt!mjgu!uif!tvqqpsu!C!vqxbset!cz!wjsuvbm!ejtqmbdfnfou!d ¢-!lffqjoh!uif!tvqqpsu! B!tubujpobsz/!Uif!wjsuvbm!ejtqmbdfnfout!bu!D!boe!E!bsf!d ¢!boe!d ¢-!sftqfdujwfmz!)Gjh/!22/7 */!Bhbjo-!frvbujoh! uif!upubm!wjsuvbm!xpsl!epof!cz!uif!gpsdft!up!{fsp-!xf!hfu &C!¥!d ¢!,!23!¥!)Ï d ¢*!,!21!¥!)Ï d ¢*!,!&B!¥!1!>!1!! ) * Gspn!tjnjmbs!usjbohmft-!BCC≤-!BEE≤ boe!BDD≤d ¢ d ¢ d ¢ !>! !>! ! fi! d ¢!>!2/36d ¢ boe d ¢!>!1/486d ¢ ! 10 9 4 ŷŽŹ A 12 kN 10 kN C D 3m 5m RA 2m C F¢ 0.444db C E B D db A 1.25dd¢ dd¢ 0.375dd¢ RC B¢ 1.089db 1.567db B≤ D≤ C 2m D¢ E¢ (b) C≤ 2.5 m RB (a) B D F 2.5 m 1.5m D¢ dd C A B RA 3.5dd A D 3.5 m C¢ 5dd E A RB (a) A¢ 6 kN 5 kN B B D RA F RC RB (c) (b) d ¢ d ¢ d ¢ & ¥ d ¢ ¥ 0.375d ¢ ¥ d ¢ &! ¥ " # " fi & " & ¥ $ % & & ' & S " ( &! & " fi &! & " " + & , & ( &! & " # - " )* % , & ' 'XAMPLE!ccrd ! )* % # $ " $ 5OLUTION . % , & 2 > % % %% ) d & ! + /0 % & & % & % , & % % 1 2 d d d , 3 2 11¢+ ¢+ 22¢+ d 7 2 db d f " d d " d " ###d fi d " = 4 4.5 4.5 4.5 2 ! ¢ !11¢ d d 3.5 3.5 7 " fi d " d " ¥ d " ;<d 3.5 5 5 4.5 , & ) % , &! ¥ ¥d & ¥d - ¥ d &1 ¥ " ¥ ;<d & ¥d - ¥ ###d " fi & " 'XAMPLE!ccre ! $ 5OLUTION ? 3 2 ( , & ; d ' , % 4 2 " %% * + % ' ) % & ! ŷŽź 80 kN 40 kN 30 kN D C E A B 1m 4m 2m 2m RA RB (a) E¢ B¢ D¢ 0.125de 0.75de 0.5de C A C¢ D B de E (b) C≤ A≤ dc 0.286dc D≤ 0.857dc C E A (c) D E≤ ¢! 11¢! ++¢! + 0.286dc B ¢! % , & % d dd dc de " = = fi d " 4 d d " d d " d 4 1 8 ! 3 % , & ) # ¥ d ; ¥ d & ¥ 4 d @ ¥ d " @ " fi & " fi # & ¥ 4 * & , , & d % + 2 ; + !!≤ 11≤ ≤ ++≤ % , & % d dd de dc " = = fi d " ; 4d d " ;-d d " ;-d 2 2 7 ! 3 % , & ) ; ¥ ;-d @ ¥ ;-d " # ¥ d &! ¥ ; 4d fi # &! ¥ ; 4 ;; ; ; " fi &! " ! 3 & & ' & S " A # &! ; & @ " fi &! & " # ; @ " )* )* % , & % + & , & ( &! & " ;- -4 -@ @@ " 'XAMPLE!ccrf ! , ( $ -./ + %% 1( ( ./2 ' /- 5 3 0 4 ŷŽŻ 5OLUTION! 2 2 < " !B q" C % % % % E & & 3 % d , 3 1 d " C 3' % q " !+ " ! q" ? % !' , , 3B % % % 0 q ◊ dq d " q ◊ dq q q" d '3 " +"! , & , q % D d q ◊ dq d " �!0OTE F% % q F% & % & % % & & % % % 3 L !" & 3 3 % ) % " &! ∵ 3 % % % ) & % % , & , & ) '3 % % G ¥ Hd H & ¥ + ¥ Hd H " ! ¥ Hd H &! ¥ ¥ q ◊ dq ¥ q ◊ dq + ¥I C q ◊ dqJ " ! K ¥# K @ ¥ #C K" !¥# @ - ! 4 " # fi @ - ! 4 "# % 3 fi fi fi ! % ' , % , "@ fi A m m&! E , + B fi "@ @ ! " ! !" " A B l B l a FB = mRB RB (a) x l b h A q D C a C RA –h W = 350 N a FA = mRA B A G P W W (b) P ŷŽż ' $ 'XAMPLE!ccrg a %% %/ 6 d" 5OLUTION $ ! d "# $ ¥ d" & ' ¥ $ ¥d ( % )* d $ + $ , aˆ a Ê fi d " ( ÁË cos ˜¯ da 2 2 d" d "# ) * aˆ Ê Ê aˆ $ ¥ ÁË cos ˜¯ da & ' ¥ ¥ ÁË sin ˜¯ da ( 2 4 2 a ( - cos 2 2 " ( 2 sin - tan a 'P ( 2 mg 22/4! .1!ccre fi Ê aˆ Á sin ˜¯ da 4Ë 2 d ( P mg a( �! QPUFOUJBM!FOFSHZ $ . - $ . $ / . $ 22/4/2! Fmbtujd!Qpufoujbm!Fofshz , $ $ $ - # " - $ - . " μ" . $ F F Uncompressed length xm (a) Spring compressed by force Fmax kx Fm F Fm = dUe = kx.dx 0 0 xm x dx (b) Load-deflection curve x ( " 0 ŷŽŽ Tqsjoh!Dpotubou!ps!Tujggoftt , + $ 1 ( " # " $ # " ( " " - $ ◊ " ( "◊ " ( - - - $ $ - $ " xm Ú0 ( kx ◊ dx = 12 kxm2 = 12 (kxm ) xm = 12 Fm xm * 3 5 ) * ) * ) '* ) 7* ) 8* ) 9* $ $ �!0OTE - $(. . $* ) # $ 6 $ # 1 P x = 2 m m ( 1 "# ) $ - Fm xm * $ . # /") ( ◊ )& d"* ( & " ◊ d" d ) - 1 2 1 "# 1 '* $ d" 1 q ( q q Ú0 T ◊ dq = Ú0 Kq ◊ dq = 12 Kq # 22/4/3! 2 q 0 Hsbwjubujpobm!Qpufoujbm!Fofshz - - # )( ( * ( ( ! ¥! $ ( $ ŸŴŴ 1 $ # 5 1 Wjsuvbm! Xpsl! Qsjodjqmf! gps! Fmbtujd! Cpejft ) " * .1!ccrf 22/5! " �! TUBCJMJUZ!PG!FRVJMJCSJVN , # # : dU dx " " ! " # (a) Stable % (b) Unstable 2/!Tubcmf!Frvjmjcsjvn &# %# % $% & 3/!Votubcmf!Frvjmjcsjvn &# % * % ! 4/! Ofvusbm! Frvjmjcsjvn $% % # . $% (c) Neutral % % % % %# # % * $% + % # ' ' % #% &# % # # % % # $% * , % " $% - & # $% % )b*!Tubcmf!Frvjmjcsjvn/ dU dx d *U dx * / fi % 3 %# ' ŸŴŵ )c*!Votubcmf!Frvjmjcsjvn/ d *U dU dx dx * 4 fi % 5 )d*!Ofvusbm!Frvjmjcsjvn/ d *U dU dx dx * $ # 'XAMPLE!ccrh 5OLUTION 6 : " # 7 fi %% %- " %/ * "89 1 2 & 5 " ! % 1 2 $% ;% ;% % " # 2 " kx 5 dU dx % fi fi " "5 " # <> ? kx 2 mg 10 ¥ 9.81 = k 2000 mg k <> ? +$ 1 2 ¥ 2000 ¥ (0.04905) 2 - 10 ¥ 9.81 ¥ 0.04905 = - 2.41 Nm 5 �!0OTE +$ d *U / dx * & % $% % y k = 2 kN/m b C U=0 q +x h k x m m = 10 kg x ŸŴŶ ' 'XAMPLE!ccri 3 $ 6 ' %% %, 7 q 5OLUTION : " # 1 q 2 # # # % : " % q + 1 2 ! 1 2 $% kx 2 = 12 kb 2 sin 2 q fi * fi (kb q 2 q5 1 2 q ) cos q - 12 mgb ◊ q fi q q q fi 1 2 d U mg kb q q dq q mg kb ! ! q 1 2 q " 1 2 q q q ! "* # d U $! ! mg % kb mg " & kb " ' fi fi mg b mg % b & mg kb q ! "* # mg ˆ Ê ÁË1 ˜ 2kb ¯ 1 2 dq d U dq ( +' ' ( 12 b cos q ) # kb 2 sin 2 q + 12 mgb cos q dU dq % U g = mgh = mg and È Ê mg ˆ 2 ˘ 1 Ê mg ˆ kb Í2 Á ˜¯ - 1˙ - mgb ÁË ˜ Ë 2 kb 2 2kb ¯ Î ˚ 2 m2 g 2 m2 g 2 - kb 2 2k 4k ÈÊ mg ˆ 2 ˘ 2 2 kb 2 ÍÁ ˜ - 1˙ = kb ÈÎcos q - 1˘˚ ÎË 2kb ¯ ˚ d U % " ) ' dq ' " - . ! * #$" "%& $ #' & q1 * * +' & mg * b ' , ŸŴŷ ! #&&+6+10#.!51.8'&!':#/2.'5 'XAMPLE!ccrj ' 7 $ 8/ 9 7 %% %. ( .// + 5OLUTION " "" ' " dq ¥ dq *5 6 ' + ! ¥ dq ¥ dq dq* 3 8 %/ )! ! ' " / *0 " 3 ¥ dq ' *, ! " ¥ dq* " ! ! ' )! 500 N A "! ' 7 +' ) ! ' 7 B ) / ¥ fi 'XAMPLE!ccrk 3 5OLUTION 9 ' ! ' ! ' ) ! "" 3: ¥ dq +¥ 20 cm 10 cm +¥ C dq fi + 4 $ %% %& ( 6 %/// + 6 +' ; )* ! dq q fi d q * / ( q ; &/2 $ : W 3: * < * " ) " : 6; ! ' ! > ' * ' q dq * / (2.25 sin q.dq) 1000 N F 1m E A E¢ D¢ C¢ E C (1.25cos q.dq) 1.25 m D dq q B dq q B A (a) 1000 N F F¢ W D W C 7 "+ (b) ŸŴŸ ( 8 ?+' ! ' " " 6; ! ' ) + ¥ @d @ $ fi *0 " " ;" q * / 7 fi q + ¥ @d"@ 'XAMPLE!ccrcl d" * / *0 " fi 1000 ¥ 2.25 sin q ◊ 1.25 cos q + 8 "" ) 6 A q dq 8 +¥ * / ) ¥ q dq $ < ' % 0 8 3 $ q dq * / ( %% %) 4 ( m ( % ; 5 8 a ( + �!0OTE ! ! ' ? B* B ) +' ' " 7 3 6 * T y T B W T A mN1 T B N1 A N2 a a mN2 W (a) (b) (c) 5OLUTION m2 m2 ! d 2 $+ a ! " # 2 $+ m2 ! + fi ! m$ ! a ¥ d & m2 ¥ d ' m2 ( ! % " $ . m2 ¥ d *+! !% $+ a ¥ d & m2 ¥ d & m 2 ¥ d $ , fi +d sin a 2 sin(a /2) cos(a /2) = tan (a /2) $ (1 + cos a ) 2 cos 2 (a /2) % ) ! " ! ) a & m+ d fi $ a & m+d $ , m % ŸŴŹ 'XAMPLE!ccrcc $ %% %* ' < ,/ + # 5OLUTION ! d %d %d ( ! ! ! d % ! d ! 5 ! 3% "% 4 ! 0 0 *% % dq 0% ' d a d p db de d = = = fi d $ , 5d d $ , ;<d d $ , <<d dq $ $ , <<d 7.5 6 4 2.5 7.5 ! % & ¥ d > ¥ ?&d @ > , ¥ < ; ¥ A& ?d > d @B C > D, ¥ ?& dq@ > <, ¥ d $ , ?@ D, E 4 3! d *+ ? @% & ¥ d > ¥ ?&, 5d @ > , ¥ < ; ¥ A& ?d > , ;< d @B C % dq fi & & F G & ;< ;; & ; < > , $ , 1.5 m 30 kN 12 kN 40 kNm 20 kN/m A > D, ¥ ?& , <<d @ > <, ¥ , <<d $ , fi & $ D B P E C 3.5 m 2m 7.5 m 2.5 m (a) A¢ da A RA P¢ B¢ dp C¢ db P dq 40 kNm dc B C 3.5 m D RD 30 kN E de E¢ (b) 'XAMPLE!ccrcd ! : ' # $ 3 %% %1 ! ; %* +( ; 1 +( ; - & " ' ( ;/1 !"( ŸŴź RA C¢ RB C da D B A (2.7 – x) D¢ dd dc A Q P x (3.6 – x) A¢ c C RA l B D 0.9 m x RB 3.6 m (b) (a) +! +! ! % E S " $ ,H & > &" $ $ > 3 $ I % &"$ , ;& % & > , ;& $ fi & $ 5 E E % ! ! ! d d d % % F "% d dc dd (3.6 - x)d a $ $ fi d $ 3.6 3.6 - x 2.7 - x 3.6 ! % & ¥ d > $ ¥ ?&d @ > 3 ¥ ?& d @ $ , 5OLUTION 4 d $ 0! ! (2.7 - x)d a 3.6 (3.6 - x)d a (2.7 - x)d a &F¥ $, 3.6 3.6 5 & ; ?< G & "@ & ; ? & "@ $ , fi " $ fi 5¥d & 5¥ fi 'XAMPLE!ccrce ! < $ %% 8/ ( 6 B A P l a E D F l 200 N H J a C G ¥ " 5OLUTION ! #" d % d d " \ $ d da " a da d % &d & ! a d " &d & a a da $ a " a da a " a da da a ŸŴŻ " " " ! ' (! $ $ ¥ &d & , )) ¥ &d & ) fi fi $ a da. , )) ¥ - ' $$ ¥ - 200 4 $ 'XAMPLE!ccrcf ! !" 8//=+ $ )// + 5OLUTION / 1 3 88 8 ; 3 5 q 8 / 6 5 / q " " q dq ! $5 " fi $ $ fi "" (! S S " d 8 6 ' (! " = / q 6 q ! " ! " d '. " 7 d " d 8 q dq d ' = > 'XAMPLE!ccrcg $8 ! $ ! (! " ¢" J F R $8 + G ¢ h1 M q h2 Rough floor A ) FA Smooth wall a C RA . 158.77 900 ( 6 " . FB = 0 RB 200 N 700 N 30° %% 88 ( " # 88 JJ¢ B % q 89 9002 + 158.77 2 RA2 + FA2 & q 7 q dq 89 ! q & 5OLUTION 3J % " J¢ J " 5): ¥ &d & , )) ¥ &d 8& , ?)) ¥ &d & ) ¥ -5 q dq . , )) ¥ 6 q dq , ?)) ¥ 8 9 q dq 600 cos 60∞ + 1050 cos 60∞ 89 ?? * 6 sin 60∞ (! ! + )1 $ &3 ) fi &3 + )1 & $ )) $ ?)) ) fi & C)) * D ! % q 89 8 7 " " d %. 7 /- ! & -/2 ' 0 ( ( ( < % " )) * + a da. ) ! J; dq & " &3 8)) * < ! . ! dq % 88 J ŸŴż ( DJKJ¢ 88 D;J JJ¢ ^ ;J ) + JK JJ¢ 5): KJ¢ ^ ; " dq ¥ ) 55 # $ ¥ JK L ' L ' 8)) * M L ' % " – JJ¢K J J¢K JJ¢ $ ) 55 " – J; 5): % 5): dq ¥ ) 9 dq $8)) ¥ J¢K J DJKJ¢ $ 9) dq dq ª dq 8))** " 8)) ¥ ¢ 8)) dq $ ) 55 dq $ 9) dq , 8)) dq ! ' " ¢ " ' " $) 55 dq $ 9) dq , 8)) dq 100 N ) fi ) 55 100 N B 100 N E C RB D F F A E C l RA ) 100 N B D A fi 9) l RA = 100 N RB = 100 N (a) (b) 100 N D¢ F D O dq E¢ dq C D¢ 60° E l D O RB = 100 N (c) 'XAMPLE!ccrch (d) ! ;/; / %. ( ; 8/// + 3 $ %% 8- $ 6 ŸŴŽ G q F P P F r C A r C (r–h) A h h (a) 5OLUTION / 1 < q D dq D C )6 3 ) 89 ! ! " fi "" " " $ dq BF BC + CF 0.15 + 0.3 = = BC BC 0.15 $6 q dq ! ' fi 6 fi $ ))) ¥ 6¥; qdq , $ ¥ 6 $ ! dq dq q ! q dq "# ( 3/2 ) dq ' #" " + dq ! " O3; fi d "8 q dq ) 2000 ¥ cos q 2000 ¥ cos 30∞ = 3 sin q 3 sin 30∞ – d 88 6 % " / $ "" 88 6 * * A (c) N " ) q ))) * J $ 3 ¥ &d & , $ ¥ &d"8& fi dq B " D 3; CB (r - h) 0.3 - 0.15 = = q ) 9 fi q 6): CA r 0.3 L 3 ' ! " J " ; ! + " " %' " + " " ; q q " q L q dq " #" d q dq d" -$ q.dq $ q dq % ! d" " q * ! + " - d"8. " " ; - d ". " ; L " dq ! " % + " " 3 O3 FH CE d"8 " dq Er (b) ; #" % H Q G Q D " " 6d " ŸŵŴ ! D$ +"#, -4"6 7 q8 : & % & $ $ – $ - +"# 7 "#89 "# ! % D ;< –< ; – $ "# ! % < "# ! ;^$ ! > d" < q -$ dq8 % & @ ; : & , 3 ¥ Dd D G $ ¥ Dd " D fi ( 2000 ¥ 3/2 1.5 $ 'XAMPLE!ccrci " fi , """ ¥ ( 3/2 dq G $ ¥ $ 3/2 dq ) " ( a 4a2 - b2 I & % ; & % D J K F ; * q a ; M $J W q ( /2) cos q ◊ dq % q ; -% & J J; % & @ '% J > % ,I+ ¥ d ; G ¥d " a 8 J - % $ E W % ; B A > % dq ! G¢ q G ¢ E = (1/2) CE = ( /2) sin q ; b G W $J q q W % % J C % $ ! ? dq 2W ( 2 a 2 - b 2 ) % ! d ? dq < 3 ; $ "# dq ( ! –J ) 3 – ) 4 5OLUTION % )( ( "# * D$ $ ; $ dq '% -8 -q9 8 8 d % -q9 8 -q9 8dq % & @ & & fi I+ ¥ d y; db I+ ¥ (a/2) cos q dq 2W cos q = a cos (q /2) dq cos (q /2) - 8 Ÿŵŵ q % q cos 2 \ q 1 - sin 2 q , ( 2 2 ( 'XAMPLE!ccrcj 4a 2 4a ) 2 = ) 4a 2 - b 2 /2a ! 4a 2 - b 2 = 4a 2 b2 , 2W 2a - b /2a - 8 b2 1- 2 q '% BG (b/2) b = = BC a 2a $ = 4a 2 - b 2 2a a -b 2 a 2W (2a 2 - b 2 ) a 4a 2 - b 2 %% 8. %./ C B P 25° C 175 mm q B q C A 75 mm 100 mm + E 175 mm q B (a) 5OLUTION K $ D A (b) ?" ¥ 4 + IN ? : O & % ? % * $ > & + D$J q ^ $J < > ! fi $ $ fi $ BC 75 = "I + fi q ? +# AC 175 ^$ – – J$ q q "I + $ $ $ & @ ?# ¥ G$ ?# ¥ ,+¥ ?# ¥ " I + G$ ?# ¥ " 4" 0.903+ (cos 25∞ ¥ 0.428 + sin 25∞ ¥ 0.903) ? +# * P q " 4" ?# $ ?# : & " , + ¥ " 4" " % % *& @ ŸŵŶ ' 'XAMPLE!ccrck !" "#( q 6 ' ( ; 8)/ +( $ %% 8& $ 3 ; ,./ +( a ; -/2 ! !" "# B b (150° – q) N1 E q Q D 120° P C a A P (a) ! #!$ " &"' % (b) – a 5OLUTION – ! " b db d * " !& + " ! $ ! ! " )' ! $!"( ! * ' -!"( ! +! $ -!"( ! +! 3 2' ! & " ' $!"( ! 3 "! / fi * " ! )! b " " %! ! ($ & d "! " b ! b " ! b db " $ + b ! 3 ) db " , " !& + " / 0 b db ¥ .d . ¥ .d . //1 ! b db fi b 225 233.8 : / fi b ; : ( ) !) > P T = sin (150∞ - q ) sin 120∞ 'XAMPLE!ccrdl & b db 4 //1 ! b db 0 q q ! b "! T q ) ?? / ++ < %= $ % $" fi !" % ! ! "! " ! 270 ¥ sin 120∞ sin (150∞ - 16.1∞) ! $ %% 8) D ( E8 ( 6 " Ÿŵŷ 5OLUTION H % ) % )! ( " & ! < \ ' ) q ( ! ) ! %G " '% *! 2' )" '% ! )! ( ' "! )! ( !$ > ?? /I * +! " ! +! ! ¥ $ " ! " ! ) ! ( )!& '% >"!% > ?? /I hˆ Ê q ÁË R + ˜¯ ! q 4 &q / ÈÊ hˆ ˘ ¥ ÍÁ R + ˜ cos q + Rq sin q ˙ 2¯ ÎË ˚ >!" 2' )" '% $ %' & h dU Ê ˆ mg Á - R sin q - sin q + R sin q + Rq cos q ˜ Ë ¯ 2 dq fi R (a) W = mg Rq sin q Rq B q A y R Datum DU Ê h ˆ = mg Á - sin q + Rq cos q ˜ Ë 2 ¯ dq O q = 0∞ )! ( !) q C h 2 * )!& ! ! J !" q * ' ! ! !" 2' )" '% ! % q #!$ !" H % ) ! % $ "% ! "& & ! q d 2U Ê h ˆ mg Á - cos q + R cos q - Rq sin q ˜ Ë 2 ¯ q = 0∞ dq 2 >!" h m 2' )" '% $ %' (b) hˆ Ê ÁË R + ˜¯ cos q 2 Ê h ˆ ÁË - + R˜¯ / & 2 d U dq 2 ! K fi - q = 0∞ / 4&K !" & " +! )! + & 57//#4; .1!ccrcɏ 2¬³¨»¬ɏ ¨µ«ɏ ¨··³Àɏ »¯¬ɏ ª¶µª¬·»ɏ ¶ɏ ½°¹»¼¨³ɏ ¾¶¹²ɏ ¶µɏ ½¨¹°¶¼ºɏº»¹¼ª»¼¹¨³ɏºÀº»¬´ºȍ )! !% +! +"! ' ! " !" % $ !' ++ L%!% " + !" !"" +! % &"' & 455 ! + ! ( ./&' & "' O PQ ! ! ,-", N !" ! ! - 5 " 5677 % .1!ccrdɏ 5µ«¬¹³°µ¬ɏ »¯¬ɏ ·¹°µª°·³¬ɏ ¶ɏ ½°¹»¼¨³ɏ ¾¶¹²ɏ ¨µ«ɏ ¨··³Àɏ °»ɏ »¶ɏ ¨µ¨³Àº¬ɏ ºÀº»¬´ºɏ ª¶µº°º»°µ®ɏ ¶ɏ °µ»¬¹ª¶µµ¬ª»¬«ɏ¹°®°«ɏ´¬´©¬¹ºȍ + % ! ! ! " 3 "! ) ' % )" ( ! !" ! % "% % 2' )" '% '% ! $!"( ! ' ( !$ !" %!% ! ')* % M" " % ) & !" "!' &"' $ ! ! !"% ! ŸŵŸ .1!ccreɏ $¬ķµ¬ɏ¬³¨º»°ªɏ·¶»¬µ»°¨³ɏ¬µ¬¹®Àɏ¨µ«ɏ¨··³Àɏ»¯¬ɏ½°¹»¼¨³Ɋ¾¶¹²ɏ·¹°µª°·³¬ɏ»¶ɏ¬³¨º»°ªºɏ©¶«°¬ºȍ Uif!xpsl!epof!po!bo!fmbtujd!cpez!)tvdi!bt!b!tqsjoh*!jt!tupsfe!bt! jo!uif!cpez/!Uif!cpez!ufoet!up! mptf!uijt!fofshz!jo!epjoh!frvbm!bnpvou!pg!xpsl!cz!uif! /! ! !ps! jt!efÝofe!bt!uif!gpsdf!sfrvjsfe!up!qspevdf!voju!dpnqsfttjpo!ps!fmpohbujpo!jo!uif!tqsjoh/ .1!ccrfɏ %¿¨´°µ¬ɏ»¯¬ɏº»¨©°³°»Àɏ¶ɏ¨ɏºÀº»¬´ȍ tubuft!uibu!fwfsz!tztufn!ufoet!up!qpttftt!b!tubuf!jo!xijdi!jut!qpufoujbm!fofshz!jt! b!njojnvn/!Jo!tvdi!b!tubuf-!uif!tztufn!jt!jo! frvjmjcsjvn!boe!uif!fyqsfttjpo! 0 "!>!1!ipmet!usvf/ ! +/2146#06!(14/7.#' ! ! �! Gpsdf!efwfmpqfe!jo!b!tqsjoh-! !!!!$ 1 " �! Fmbtujd!qpufoujbm!fofshz!tupsfe-! !>!)203*! "3/! ! �! Gps! !frvjmjcsjvn-! !!!! ! �! Gps! ! �! Gps! ! ! dU !>!1 dx boe d 3U !?!1 fi dx 3 !jt!njojnvn/! !frvjmjcsjvn-! dU !>!1 dx boe d 3U !=!1 fi dx 3 !jt!nbyjnvn/ !frvjmjcsjvn-! ! dU !>!1 dx boe d 3U !>!1 fi dx 3 !jt!tubujpobsz/ 5*146 #059'4!37'56+105 0-" -" 1/' / " / #/ . " 3"5 6 3" "7 8$" ! Xpsl! epof! jt! ofhbujwf! jg! uif! xpsljoh! dpnqpofou! pg! uif! gpsdf! jt! jo! b! ejsfdujpo! pqqptjuf! up! uif! ejsfdujpo! pg! ejtqmbdfnfou/!Gps!fybnqmf-!xpsl!epof!cz!hsbwjubujpobm!gpsdf!po!b!cpez!xifo!ju!jt!npwfe!vqxbset/ 0-" $ / /9 88$ , / /9 -" 3 ' & $:1/' 8' , 8$"5 Ju!jt!opu!wbmje!gps!b!tztufn!jo!xijdi!joufsobm!gpsdft!qfsgpsn!tjhojÝdbou!bnpvou!pg!wjsuvbm!xpsl!)evf!up!gsjdujpo-! fud/*-!xijdi!dboopu!cf!nfbtvsfe0fyqsfttfe!bobmzujdbmmz/ 0-" / 1" " / ,,/& '" , 3" 9/'," -" 3 ' & $:1/' " -/ 5 Uif!sfbdujwf!gpsdft!ep!opu!dpousjcvuf!up!xpsl!epof!vomftt!uif!tvqqpsut!uifntfmwft!bsf!hjwfo!wjsuvbm!ejtqmbdfnfout/! 0-. / "' $ 9/'," / ,/ ' #& " / -" 3 ' & $ 1/' / "5 Joufsobm!gpsdft!efwfmpq!bmxbzt!bt!b!qbjs!pg!frvbm!boe!pqqptjuf!dpnqpofout/!Uifsfgpsf-!uif!ofu!wjsuvbm!xpsl!epof! cz!uif!joufsobm!gpsdft!wbojtift/! ;"< " 3 ' & $:1/' 8' , 8$" 9/' "$ , #/ " Uif!wjsuvbm!xpsl!epof!cz!bmm!uif!fyufsobm!bdujwf!gpsdft!)fydmvejoh!hsbwjubujpobm!boe!tqsjoh!gpsdft*!po!b!nfdibojdbm! tztufn!jo!frvjmjcsjvn!jt!frvbm!up!uif!dpssftqpoejoh!dibohf!jo!uif!upubm!fmbtujd!boe!hsbwjubujpobm!qpufoujbm!fofshz! pg!uif!tztufn!gps!boz!ps!bmm!wjsuvbm!ejtqmbdfnfout!dpotjtufou!xjui!bmm!uif!dpotusbjout/ 0-" 99"'" ," #" 1"" #$" "%& $ #' & "& ' $ "%& $ #' & 5 Xifo! b! tmjhiu! ejtqmbdfnfou!pg! b! cpez! jo! frvjmjcsjvn! dbvtft! bo! jodsfbtf! jo! jut! qpufoujbm! fofshz-! ju! jt! jo! tubcmf! frvjmjcsjvn/!Jg!po!dibohjoh!jut!qptjujpo-!jut!qpufoujbm!fofshz!epft!opu!dibohf-!uif!frvjmjcsjvn!jt!ofvusbm/! ŸŵŹ -';!6'4/5 .1!ccrc .1!ccrd .1!ccre .1!ccrf Wjsuvbm!ejtqmbdfnfou! Wjsuvbm!xpsl Qsjodjqmf!pg!wjsuvbm! xpsl Fmbtujd!qpufoujbm! fofshz! Tujggoftt! Tqsjoh!dpotubou Tubcjmjuz! Frvjmjcsjvn ! 4'8+'9!37'56+105 Tubuf!boe!fyqmbjo!uif!qsjodjqmf!pg!wjsuvbm!xpsl!cz!hjwjoh!tvjubcmf!fybnqmft/! Nfoujpo!uif!gpsdft-!xijdi!bsf!pnjuufe!xijmf!bqqmzjoh!uif!qsjodjqmf!pg!wjsuvbm!xpsl/! Tubuf!uif!wjsuvbm.xpsl!qsjodjqmf!gps!sjhje!cpejft/! Xibu!bsf!uif!bqqmjdbujpot!pg!uif!qsjodjqmf!pg!wjsuvbm!xpsl@! Xibu!bsf!uisff!uzqft!pg!frvjmjcsjvn@! Efsjwf!bo!fyqsfttjpo!gps!fmbtujd!qpufoujbm!fofshz!tupsfe!jo!b!tqsjoh/! Qspwf!uibu!uif!xpsl!epof!cz!b!tqsjoh-!jg!boz-!jt!frvbm!up!uif!ofhbujwf!dibohf!jo!jut!qpufoujbm!fofshz/! Fyqmbjo!uif!qsjodjqmf!pg!wjsuvbm!xpsl!jo!dbtf!pg!mjgujoh!nbdijoft-!cfbnt!boe!gsbnfe!tusvduvsft/! Xibu!jt!qpufoujbm!fofshz@!Efsjwf!uif!fyqsfttjpo!gps!fmbtujd!boe!hsbwjubujpobm!qpufoujbm!fofshz/! ! 1$,'%6+8'!37'56+105 #! /ULTIPLE %HOICE!3UESTIONS 8 ; Pof!kpvmf!)TJ!voju!pg!xpsl*!jt!frvbm!up! ) *! 2!lO0n! ! ! ! ) *! 2!On! ! Jg!uif!wjsuvbm!ejtqmbdfnfou!dpotjefsfe!jt!dpotjtufou!xjui!uif!dpotusbjout!jnqptfe!cz!uif!tvqqpsut!boe!dpoofdujpot-! bmm!sfbdujpot!boe!joufsobm!gpsdft!bsf!fmjnjobufe!boe!pomz!uif!xpsl!pg!uif!gpmmpxjoh!xjmm!cf!dpotjefsfe! ! ! ! ! ! ! ! ! ! ! ! ) *! mpbet! ) *! bqqmjfe!gpsdft! ) *! gsjdujpo!gpsdft! ) *! bmm!pg!uif!bcpwf ! ! ) *! ofvusbm!frvjmjcsjvn! ! ! ! ) *! sfbdujpot!bu!tvqqpsu! ! ! ! ) *! gpsdft!fyfsufe!cz!jofyufotjcmf!dbcmf!boe!dpset! Qpufoujbm!fofshz!pg!b!tztufn!jt!nbyjnvn!jg!ju!jt!jo!! ) *! tubcmf!frvjmjcsjvn! ) *! 21!lO0n! ! ! ! ! ! ) *! :/9!On! ! ! ) *! votubcmf!frvjmjcsjvn! ) *! frvjmjcsjvn! Uif!gpsdft!xijdi!ep!opu!dpousjcvuf!up!qpufoujbm!fofshz!bsf!! ! ! ) *! joufsobm!gpsdft!bu!dpoofdujpot! ) *! bmm!pg!uif!bcpwf! $! (ILL $LANKS!3UESTIONS ; Wjsuvbm!xpsl!epof!cz!b!gpsdf!uispvhi!b!ejtqmbdfnfou!jo!pqqptjuf!ejsfdujpo!jt!````````/! Ÿŵź ! Xpsl!epof!jt!frvbm!up!uif!qspevdu!pg!uif!gpsdf!boe!uif!ejtqmbdfnfou!usbwfmmfe!cz!uif!gpsdf!jo!uif!ejsfdujpo! ``````````!up!uif!gpsdf/! ! Xpsl!epof!ibt!uif!tbnf!vojut!bt!`````````!boe!`````````!ibwf/! %! /ATCH %OLUMNS!3UESTIONS ; ! /! !/$& =! )j*! Hsbwjubujpobm!qpufoujbm!fofshz! )jj*! Qpufoujbm!fofshz!pg!b!tqsjoh! )jjj*! Xpsl!epof!cz!b!tqsjoh!! )jw*! Gpsdf!sfrvjsfe!up!tusfudi!b!tqsjoh! !/$& == )Q*! Ï1/6 "3 )R*! " )S*! )T*! 1/6 "3 /! !/$& !/$& =! * == ! )j*! Votubcmf!frvjmjcsjvn! )Q*! dU !>!1 boe dx d 3U !?!1 dx 3 ! )jj*! Ofvusbm!frvjmjcsjvn! )R*! dU !>!1 boe dx d 3U !=!1 dx 3 ! )jjj*! Tubcmf!frvjmjcsjvn! )S*! dU !>!1 boe dx d 3U !>!1 dx 3 #NSWERS!TO!1BJECTIVE!3UESTIONS >?@ A&$ 8$":!-/ ," B&" ! ! >C@ ! $$:C$ B&" ! / ! ofhbujwf! >!@ A ,-:!/$& ! / ! qbsbmmfm! B&" fofshz-!npnfou / )j* .)S*-!)jj* . )T*-!)jjj* .)Q*-!)jw* .)R*! )j* . )R*-!)jj* .)S*-!)jjj* .)Q* 24#%6+%'!241$.'/5 Bo! 9*n! mpoh! cfbn! sftut! po! tvqqpsut! 6!n! bqbsu! xjui! pwfsiboht! po! cpui! uif! tjeft/! Uif! cfbn! dbssjft! uisff! qpjou.mpbet!pg!31!lO-!261!lO!boe!51!lO!bt!tipxo!jo!Gjh/!22/39/!Vtjoh!qsjodjqmf!pg!wjsuvbm!xpsl-!fwbmvbuf!uif! sfbdujpot!bu!uif!tvqqpsut/! \? 91!lO-!241!lO^! ŸŵŻ 150 kN 20 kN 40 kN 3 kN 3 kN/m A B D C E RA 2m RB 3m A C B 1m 5m 4m 2m Gjhvsf!22/3:!tipxt!b!cfbn!BCD!pg!7*n!tqbo!xjui!pwfsiboh!CD/!Uif!cfbn!dbssjft!b!vojgpsnmz!ejtusjcvufe! mpbe!pg!4!lO0n!uispvhipvu!boe!b!qpjou!mpbe!pg!4!lO!bu!uif!gsff!foe!D/!Efufsnjof!uif!tvqqpsu!sfbdujpot!vtjoh! uif!qsjodjqmf!pg!wjsuvbm!xpsl/! \? 4!lO-!29!lO^! B!3*n!mpoh!cfbn!BC!jt!jo!frvjmjcsjvn!cz!uif!bdujpo!pg!b!gpsdf!$!)Gjh/!22/41*/!Vtjoh!uif!qsjodjqmf!pg!wjsuvbm! xpsl-!Ýoe!uif!nbhojuvef!pg!uif!gpsdf!$ xifo!b!xfjhiu pg!6!lO jt!ivoh!bu!njeqpjou!pg!uif!cfbn/!Jhopsf!uif! xfjhiu!pg!uif!cfbn/ \? 6!lO!^! D B P L A C B 30° 1m 1m q P ! ! 5 kN A B!uijo!spe!pg!xfjhiu!+ sftut!bhbjotu!uif!tnppui!xbmm!boe!Þpps!bt!tipxo!jo!Gjh/!22/42/!Efufsnjof!uif!nbhojuvef! pg!uif!gpsdf!$ offefe!up!ipme!ju!jo!frvjmjcsjvn/! \? )+53*!dpu!q^! ! B!311*O!cmpdl!sftut!po!b!tnppui!tvsgbdf!jodmjofe!bu!33¡!xjui!uif!ipsj{poubm!boe!buubdife!up!b!qvmmfz*mjgujoh! bssbohfnfou!bt!tipxo!jo!Gjh/!22/43/!Efufsnjof!uif!wbmvf!pg!uif!fggpsu!$!up!ipme!uif!xfjhiu!jo!frvjmjcsjvn/! \? 25:/9!O^! P W 22° l B l l ! P A ! q C F Ÿŵż B!gpsdf!$ jt!bqqmjfe!up!uif!foe!pg!b!mfwfs!bt!tipxo!jo!Gjh/!22/44/!Efufsnjof!uif!ipsj{poubm!gpsdf! po!uif!qjtupo! gps!frvjmjcsjvn/! \? $ dptfd!q^! B!xfjhiu!+ jt!qmbdfe!po!b!spvhi!jodmjofe!qmbof-!bt!tipxo!jo!Gjh/!22/45/!Efufsnjof!uif!gpsdf!$!tvgÝdjfou!up! dbvtf!jnqfoejoh!npujpo!pg!uif!cmpdl!vq!uif!qmbof/!Ublf!m!bt!uif!dpfgÝdjfou!pg!gsjdujpo/ \? $!>!+ )m dpt!a!,!tjo!a*^! ! W P Q a P a b B A q l l l D C M P l q l E l F Uif!tztufn!tipxo!jo!Gjh/!22/46!jt!jo!frvjmjcsjvn/!Ofhmfdujoh!gsjdujpo-!qspwf!uibu ! P sin b !>! !! Q sin a ! ! Vtjoh!uif!nfuipe!pg!wjsuvbm!xpsl-!efufsnjof!uif!nbhojuvef!pg!uif!dpvqmf! !sfrvjsfe!up!nbjoubjo!uif!frvjmjcsjvn! pg!uif!nfdibojtn!tipxo!jo!Gjh/!22/47/! \? 4$ !tjo!q^! Efufsnjof!uif!fyqsfttjpo!gps!q!boe!gps!uif!ufotjpo!jo!uif!tqsjoh-!xijdi!dpssftqpoet!up!frvjmjcsjvn!qptjujpo!pg! uif!nfdibojtn!hjwfo!jo!Gjh/!22/48/!Uif!votusfudife!mfohui!pg!uif!tqsjoh!jt! -!boe!uif!dpotubou!pg!tqsjoh!jt! /! Ofhmfdu!uif!xfjhiu!pg!uif!nfdibojtn/! \? q >!tjoÏ2!))$!,!3 *05 *^! B P C a l q l q A k A ! q C ! B P ŸŵŽ Gps!uif!nfdibojtn!tipxo!jo!Gjh/!22/49-!efufsnjof!uif!bohmf!q!up!lffq!uif!tztufn!jo!frvjmjcsjvn!jg!b!ipsj{poubm! gpsdf!$ jt!bqqmjfe!bu!uif!qpjou!B/!Gps!q!>!:1¡-!uif!tqsjoh!jt!votusfudife/!Hjwfo-!$ 1 511!O-! !>!1/6!n!boe! !>!31!lO0n/! \? 89/6¡^! Uif!sjhiu*iboe!foe!pg!b!cfbn!BC!sftut!po!bopuifs!cfbn!DE!uispvhi!b!spmmfs!bt!tipxo!jo!Gjh!22/4:/!Vtjoh!uif! nfuipe!pg!wjsuvbm!xpsl-!efufsnjof!uif!sfbdujpot!bu!bmm!uif!tvqqpsut/! \? Ï34/52!O-!272/15!O-!271/4:!O^! P 100 N 8.5 m 200 N 4m q D C E F 3m 4m D E C B A B A 4m Uif!tdjttpst!kbdl!tipxo!jo!Gjh/!22/51!tvqqpsut!b!mpbe!$/!Efufsnjof!uif!byjbm!gpsdf!jo!uif!tdsfx!ofdfttbsz!gps! frvjmjcsjvn!xifo!uif!kbdl!jt!jo!uif!qptjujpo!q/!Fbdi!pg!uif!gpvs!mjolt!ibt!b!mfohui! boe!jt!qjo.dpoofdufe!bu!jut! dfousf/!Qpjout!C boe!E dbo!npwf!ipsj{poubmmz/! \? 3$dpu!q^! Jg! uif! qpufoujbm! fofshz! gps! b! dpotfswbujwf! pof*efhsff*pg*gsffepn! tztufn! jt! fyqsfttfe! cz! uif! sfmbujpo! !>!9!tjo!q!,!4dpt!3q-!1¡!£!q!£!291¡-!efufsnjof!uif!frvjmjcsjvn!qptjujpot!boe!jowftujhbuf!uif!tubcjmjuz!bu!fbdi! qptjujpo/! \? :1¡!)tubcmf*-!52/92¡!)votubcmf*-!249/2:¡!)votubcmf*^! Gjhvsf!22/52!tipxt!b!dbcmf!BC!buubdife!up!uxp!tqsjoht!bu!jut!foet-!xijdi!qbttft!uispvhi!b!sjoh!bu!D/!Lopxjoh! uibu!uif!tqsjoht!bsf!votusfudife!xifo! >!1-!efufsnjof!uif!ejtubodf! dpssftqpoejoh!up!frvjmjcsjvn/! \? 452!nn^! 0.2 m y C B A C D B A 9m 20 kg k1 = 600 N/m k2 = 300 N/m E F 12 m H G 12 m 12 m 12 m Efufsnjof!uif!ipsj{poubm!npwfnfou!pg!uif!kpjou!E!pg!b!usvtt!hjwfo!jo!Gjh/!22/53-!jg!uif!mfohui!pg!nfncfs!CG!jt! jodsfbtfe!cz!86!nn/! \? 42/36!nn^! 600 N 500 N 1.5 m B A 1.8 m C 2.4 m 1.5 m E D 1.5 m F 1.8 m G ŸŶŴ Gps!uif!cfbn!tipxo!jo!Gjh/!22/54-!efufsnjof!uif!sfbdujpo!bu!E!vtjoh!uif!nfuipe!pg!wjsuvbm!xpsl/!C!boe!F!bsf! ijohfe!kpjout/! \? :13!O^! Uxp! spmmfst! pg! xfjhiut! 9!O! boe! 35!O! sftqfdujwfmz! dbo! tmjef! gsffmz! bmpoh! uif! qmboft!BD! boe! CD-! xijdi! bsf! bssbohfe!bt!tipxo!jo!Gjh/!22/55/!B!spe!EF!pg!ofhmjhjcmf!xfjhiu!dpoofdut!uiftf!spmmfst/!Dbmdvmbuf!uif!wbmvf!pg! q!xijdi!efÝoft!uif!qptjujpo!pg!frvjmjcsjvn/!Vtf!uif!qsjodjqmf!pg!wjsuvbm!xpsl/! \? 8:/22¡^! A 24 N C 8N A 30° D q Cable W E B 60° B q2 2m C 4m q1 2m Xibu!xfjhiu!+!dbo!cf!mjgufe!xjui!uif!B*gsbnf!ipjtu!jo!uif!qptjujpo!tipxo!jo!Gjh/!22/56-!jg!uif!ufotjpo!jo!dbcmf! jt! !>!761!O@!Bttvnf!uibu!uif!qvmmfz!jt!mpdlfe!boe!uif!dbcmf!epft!opu!tmjef!pwfs!uif!qvmmfz/ !\? 56:/3!O^! ɏ ŸŶŵ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ #¯¨·»¬¹ 23 Npujpo!jo!b!Tusbjhiu!Mjof .EARNING!1BJECTIVES ɏ!ļ¬¹ɏª¶´·³¬»°µ®ɏ»¯°ºɏª¯¨·»¬¹ȎɏÀ¶¼ɏ¾°³³ɏ©¬ɏ¨©³¬ɏ»¶ɏ ! .1!cdrc .1!cdrd .1!cdre .1!cdrf .1!cdrg .1!cdrh ! .1!cdri " .1!cdrc ·¶º°»°¶µ «°º·³¨ª¬´¬µ» ½¬³¶ª°»À ¨ªª¬³¬¹¨»°¶µ ºɊ» ½Ɋ» 23/2! ¨Ɋ» �! JOUSPEVDUJPO Xifo!b!cpez!dibohft!jut!qptjujpo!xjui!sftqfdu!up!puifs!cpejft!jo!jut!tvsspvoejoht-!xf! tbz!uif!cpez!jt!jo! /!Ezobnjdt!jt!uif!tuvez!pg!npujpo!pg!uif!cpejft/!Ju!ibt!uxp! qbsut ljofnbujdt!boe!ljofujdt/! !efbmt!xjui!uif! !sfmbujpotijq! pg!b!npwjoh!cpez!xjuipvu!cpuifsjoh!bcpvu!uif!gpsdft!dbvtjoh!uif!npujpo/! jt! uif!tuvez!pg!uif!sfmbujpotijq!cfuxffo!uif!npujpo!pg!b!cpez!boe!uif!gpsdft!dbvtjoh!ju/ Uif! qbui! gpmmpxfe! cz! b! npwjoh! cpez! jt! dbmmfe! jut! usbkfdupsz/! Ju! nbz! cf! b! ! ps! b! /! Dpssftqpoejohmz-!b!cpez!nbz!ibwf!b!sfdujmjofbs!npujpo!ps!b!dvswjmjofbs!npujpo/!Jg!uif!dvswfe!qbui!mjft!jo! b!qmbof-!uif!npujpo!jt!dbmmfe! )ps! *!npujpo!jt!b!tqfdjbm!dbtf!pg! dvswjmjofbs!npujpo/! Jo!nptu!pg!uif!qspcmfnt-!xf!efbm!xjui!cpejft!pg!Ýojuf!tj{f-!tvdi!bt!wfijdmft-!qspkfdujmft!ps!spdlfut/!Tvdi! pckfdut!nbz!cf!dpotjefsfe! -!bt!uif!npujpo!pg!tvdi!b!cpez!jt!dibsbdufsjtfe!cz!uif!npujpo!pg!jut!nbtt! dfousf!)DN*!boe!boz!spubujpo!pg!uif!cpez!jt!ofhmfdufe/ Sfdujmjofbs!ljofnbujdt!pg!b!cpez!jt!dibsbdufsjtfe!cz!tqfdjgzjoh-!bu!boz!hjwfo!jotubou-!jut! !)j/f/-!jut! !xjui!sftqfdu!up!uif!psjhjo*-! !boe! / Tjho!Dpowfoujpo! Gps!sfdujmjofbs!npujpo-!uif!wfdups!rvboujujftÐejtqmbdfnfou-!wfmpdjuz!boe!bddfmfsbujpoÐ dbo!cf!usfbufe!bt!bmhfcsbjd!tdbmbst!)xjui!qptjujwf!ps!ofhbujwf!tjhot*/ Cfgpsf!tubsujoh!up!tpmwf!b!qspcmfn-!xf! offe!up!bttvnf!qptjujwf!ejsfdujpo!pg!uif!wfdupst/!Zpv!dbo!ublf! !ejsfdujpo-!vqxbse!ps!epxoxbse-!sjhiuxbse! ps!mfguxbse-!bt!qptjujwf/!Uif!pqqptjuf!ejsfdujpo!xpvme!uifo!cf!pcwjpvtmz!ofhbujwf/ ŸŶŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº �!0OTE Jo!uijt!cppl-!uif!vqxbse!ejsfdujpo!)jo!dbtf!pg!wfsujdbm!npujpo*!boe!uif!sjhiuxbse!ejsfdujpo!)jo!dbtf!pg! ipsj{poubm!npujpo*!bsf!bttvnfe!qptjujwf/!Tvdi!b!tjho!dpowfoujpo!nbudift!xjui!uif!tjho!dpowfoujpo!gps! uif!byft!jo!dppsejobuf!hfpnfusz/!Ifodf-!ju!cfdpnft!fbtz!up!bepqu/ .1!cdrd 23/3! �! JNQPSUBOU!UFSNT Pomz!b!tjohmf!dppsejobuf!byjt! !jt!tvgÝdjfou!gps!efÝojoh!uif!qbui!pg!b!cpez! jo!sfdujmjofbs!npujpo/!Jo!sfdujmjofbs!npujpo-!uif!cpez!bmxbzt!npwft!bmpoh!uif! byjt/ Ifodf-!xf!dbo!vtf!bo! !up!sfqsftfou!uif!qptjujpo!dppsejobuf!pg!uif! cpez/!Uif!psjhjo!P!po!uif!qbui!jt!b!Ýyfe!qpjou/!Uif!nbhojuvef!pg! !jt!uif!ejtubodf! gspn!P!up!uif!qpjou!Q!)Gjh/!23/2 *-!boe!tfotf!jt!efÝofe!cz!uif!tjho!pg! /!Bmuipvhi!uif! dipjdf!jt!bscjusbsz-!vtvbmmz! !jt!ublfo!qptjujwf!jg!uif!qpjou!Q!jt!po!uif!sjhiu!pg!P/!Mjlfxjtf-! jt!ofhbujwf!jg!Q!jt! po!uif!mfgu!pg!P/! ·¶º°»°¶µ «°º·³¨ª¬´¬µ» ½¬³¶ª°»À ¨ªª¬³¬¹¨»°¶µ P O s s (a) Position P O s s¢ P¢ Ds s (b) Displacement B C s s3 A O s2 s1 s (c) Difference between displacement and distance 2/!Ejtqmbdfnfou! Uif! pg!uif!cpez!jt!efÝofe!bt!uif! jo!jut /!Gps!fybnqmf-!jg! uif!cpez!npwft!gspn!Q!up!Q¢!)Gjh/!23/2 *-!uif!ejtqmbdfnfou!jt D !>! ¢!Ï! Ifsf-!D !jt!qptjujwf!tjodf!uif!cpezÔt!Ýobm!qptjujpo!jt!up!uif! pg!jut!jojujbm!qptjujpo!)j/f/-! ¢!?! */!Jo!dbtf!uif! Ýobm!qptjujpo!pg!uif!cpez!jt!up!uif! !pg!jut!jojujbm!qptjujpo-!D !jt!ofhbujwf/! Uif! !pg!b!cpez!jt!b! /! Myth Fact! Ju!jt!ejggfsfou!gspn!uif! !npwfe!cz!uif!cpez/! Uif! ejtubodf! usbwfmmfe! cz! uif! cpez! jt! b! /!Ju!sfqsftfout!uif!upubm!mfohui!pg!uif! Uif!ejtubodf! Ju!jt!usvf!pomz!jg!uif!qbsujdmf! qbui!usbwfstfe/!Gps!fybnqmf-!dpotjefs!b!cpez!uibu! jt!frvbm!up!uif! npwft!bmpoh!b!tusbjhiu!mjof!boe! tubsut!jut!usbwfm!gspn!uif!psjhjo!P!boe!npwft!up!uif! nbhojuvef!pg! epft!opu!sfwfstf!jut!npujpo/!! qptjujpo!B! )Gjh/! 23/2 *-! uifo! sfwfstft! jut! npujpo! ejtqmbdfnfou/ boe!npwft!up!uif!qptjujpo!C!boe!uifo!Ýobmmz!bhbjo! sfwfstft!jut!npujpo!boe!sfbdift!uif!qptjujpo!D/ ɏ Uifo-! ! ŸŶŷ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ Ejtqmbdfnfou! >!Ï! ! )b!wfdups!xiptf!tfotf!jt!hjwfo!cz!,wf!ps!Ïwf!tjho* Ejtubodf!usbwfmmfe! >! 2!,! 3!,! 4! )b!qptjujwf!tdbmbs*! 3/!Wfmpdjuz! Jg!b!cpez!ibt!b!ejtqmbdfnfou!D evsjoh!uif!ujnf!joufswbm!D -!jut!bwfsbhf!wfmpdjuz evsjoh!uijt! ujnf!joufswbm!jt! Ds ɏ ½bwh!>! Dt Jg!uif!ujnf!evsbujpo!D !jt!nbef!tnbmmfs!boe!tnbmmfs-!uif!ejtqmbdfnfou!D !bmtp!cfdpnft!tnbmmfs!boe!tnbmmfs/! Uifsfgpsf-!uif!jotuboubofpvt!wfmpdjuz!jt!efÝofe!bt ! v = lim Dt Æ0 Ds ds = ! Dt dt )23/2* Uivt-!uif! ! Tjodf!D !)ps! *!jt!bmxbzt!qptjujwf-!uif!tjho!vtfe!up!efÝof!uif! !pg!uif!wfmpdjuz!jt!tbnf!bt!uibu!pg!D ! )ps! */!Gps!fybnqmf-!jg!uif!cpez!jt!npwjoh!upxbset! -!uif!wfmpdjuz!jt! /!Po!uif!puifs!iboe-!jg!ju!jt! npwjoh!upxbset! -!jut!wfmpdjuz!jt! /!Uif! pg!b!cpez!jt!tbnf!bt!uif!nbhojuvef!pg!jut!wfmpdjuz/ Uif!vojut!pg!wfmpdjuz!)ps!tqffe*!bsf!n0t/!Ipxfwfs-!jo!pvs!ebz up ebz!mjgf!xf!fyqsftt!uif!tqffet!pg!wfijdmft-! fud/-!jo!ljmpnfusft!qfs!ipvs!)lnqi!ps!ln0i*/!Uif!frvjwbmfodf!pg!uif!uxp!vojut!dbo!cf!ftubcmjtife!cz!fyqsfttjoh! b!tqffe!pg!47!ln0i!jo!n0t-!bt!gpmmpxt/ 36 km 36 000 m !>! !>! = 1h 60 ¥ 60 s Pgufo-!xf!ubml!pg!bwfsbhf!tqffe/!Uif! pg!b!cpez!jt!bmxbzt!b! !boe!jt! efÝofe!bt!uif!upubm!ejtubodf!usbwfmmfe!cz!uif!cpez!ejwjefe!cz!uif!fmbqtfe!ujnf/! 4/!Bddfmfsbujpo! Jg!uif!wfmpdjuz!pg!b!cpez!bu!Q!jt! Myth Fact! ½!boe!ju!jodsfbtft!up!½¢!bu!Q¢!)bt!tipxo!jo!Gjh/!23/3 *! evsjoh! uif! ujnf! joufswbm! D -! uif! jodsfbtf! jo! jut! Uif!bwfsbhf!tqffe! wfmpdjuz!jt!D½!>!½¢!Ï!½/!Uif!bwfsbhf!bddfmfsbujpo jt!tbnf!bt!uif! evsjoh!uijt!ujnf!joufswbm!jt!efÝofe!bt! nbhojuvef!pg!uif! Dv bwfsbhf!wfmpdjuz/ bwh!>! D Jg!uif!ujnf!evsbujpo!D !jt!nbef!tnbmmfs!boe!tnbmmfs-!D½!bmtp!cfdpnft!tnbmmfs!boe!tnbmmfs/!Uifsfgpsf-!uif! jotuboubofpvt!bddfmfsbujpo!jt!efÝofe!bt ! a = lim Dt Æ0 Dv d v ! = Dt dt )23/3* Tvctujuvujoh!Fr/!)23/2*!joup!uif!bcpwf-!xf!dbo!bmtp!xsjuf !>! d s dt O a P a P¢ O P P¢ v v¢ s v v¢ (a) Acceleration s (b) Deceleration ŸŶŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! " # # $ $ ! & ) $# % " % $ ( D½ * ½¢ + ½ɏ* , ' % Sfmbujpo!cfuxffo!Ejtqmbdfnfou-!Wfmpdjuz!boe!Bddfmfsbujpo! ) ) $# #% $# % *½ ½ . ) # % $# -% $# #% $# % �!0OTE # ! / / ) 2 ' 4 5 2 2 7 bwfsbhf! tqffe bwfsbhf!wfmpdjuz 8 jotuboubofpvt!wfmpdjuz 9 tqffepnfufs! : $ 2 % " / 2 ' ; < $ % vojgpsn!npujpo #, 2 ## # pepnfufs! $ ' % $ % 2 vojgpsnmz!bddfmfsbufe!npujpo ɏ ŸŶŹ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ 23/4! .1!cdre �! NPUJPO!XJUI!DPOTUBOU!BDDFMFSBUJPO > ? ! $ % > / # 8 @ ! $) ½ # # # -% Gjstu! Frvbujpo! ½ *, " t v Úu d v = Ú0 ac dt ) fi ½+ * $# % $ + ,% v = u + ac t $# 4% Tfdpoe! Frvbujpo! , " ) t s *, $# #% t Ús ds = Ú0 v dt = Ú0 (u + act )dt Ê a t2 ˆ + , * Á ut + c ˜ 2 ¯ Ë fi 0 t 0 s = s0 + ut + 12 ac t 2 $# 7% Uijse!Frvbujpo! ) * @ ) v-u a $# 7% Ê v - uˆ 1 Ê v - uˆ + ac $ + ,% * Á Ë ac ˜¯ 2 ÁË ac ˜¯ fi $# 4% $ + ,% * ½+ A½ A 2 + ½ v 2 = u 2 + 2ac (s - s0) ) v s Úu v d v = Ús ac ds $# 8% ½* $# -% fi 0 1 (v 2 2 - 2 v 2 = u 2 + 2ac ( s - s0 ) # , *, $ + ,% Myth Ejtubodf! Usbwfmmfe! jo! oui! Tfdpoe! > $ + #% ) * * Uif!frvbujpot! pg!npujpo!)Frt/! 23/5!up!23/8*!bsf! bqqmjdbcmf!up!boz! ljoe!pg!npujpo!jo! pof!ejnfotjpo/ Fact! ŸŶźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! * ÈÎ s0 + un + 12 ac n 2 ˘˚ - ÈÎ s0 + u (n - 1) + 12 ac (n - 1) 2 ˘˚ * ÈÎ s0 + un + 12 ac n 2 ˘˚ - ÈÎ s0 + un - u + 12 ac (n 2 + 1 - 2n) ˘˚ ! * A * + +# c 2 $ + #% $# 9% ! 'XAMPLE!cdrc #$ % & ' (¨) (©) * 5OLUTION B $ % & C *9 ! ( * 72 000 3600 *7 ) $# 4% * vt = 0 - 20 5 1 2 1 2 ¥ 'XAMPLE!cdrd ! ,+ % $ $++ # ,'++ & 1 at 2 c + $% - 2 fi $% + 1 2 ¥ ¥ / 4& & 8 % 'XAMPLE!cdre % ++. 5OLUTION / 4& % & ! / % % !½ ½ 4 : 8 % ." 0+ 1+ ' & - % . " $% , % - ! 5OLUTION! * ( ½*, ( * , ½ 9 4 & " - v1 + v2 2 40 + 60 = 50 km/ 2 . " ɏ ŸŶŻ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ > %+" / +% + ++ & " A + 'XAMPLE!cdrf B % & C % . /. - % + + %+ ' fi " ¥ /. % È0 ¥ 2 + Î 'XAMPLE!cdrg ! 1 2 fi D$" 2˘ % D$" " " 1 2 4,5 ¥ (- 4) ¥ 12 ˘˚ 2++ % ,+ '5 ! A / % # 6& # ! ! ' ' ! + % # $ !# D$" ½ " " - %" "9 & v2 - u 2 2( s - s0 ) 0 - 3002 2(0.1 - 0) % & " È4 ¥ 1 + Î ¥2¥2 ˚ + " & 5OLUTION $ & & . " 4 2 2 a2 t2 a1 fi & E % $ ' " fi C 0 % 3 . ! "? %+ - 1 2 $ " :+ & Ê v1 + v2 ˆ 2 ÁË v v ˜¯ ! / +." B " / - 4 "@ 2v1v2 2 ¥ 40 ¥ 60 = 40 + 60 v1 + v2 2 5OLUTION + Ê1 1ˆ + ˜ Á 2 Ë v1 v2 ¯ ÏÔ s Ê v + v2 ˆ ¸Ô s = s∏Ì Á 1 ˜˝ t ÓÔ 2 Ë v1v2 ¯ ˛Ô ½ - /. 4 /. + /2 /2 + v1 v2 \ - xspoh /. /. " " ŸŶżɏ # %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! $ !: ɏ % D$" "9 u 2 + 2ac ( s - s0 ) ½ 23/5! .1!cdrf & / . + ' + & % " H ¨Ɋ» /%++ �! HSBQIJDBM!SFQSFTFOUBUJPO!PG!NPUJPO! G ºɊ» ½Ɋ» & 3002 + 2(-450 000)(0.05 - 0) & C ' I I ɏ ɏɏ I J B % H /+ " " - H ' C ½ + ' ' " + %+ ' "A + & % % + . ' " / % % +. ." + & " & + ¥' ' +. + % . & -+ + ' ' . / + . + . + & ! "# u$ % t$ % v$ & '( % " " " ¥ " ¥ ¥ " K ½ ¥ '" " ¥ " ¥ ¥ " K ½ ¥ " ¥ ¥' " K ½ ¥' " ' ¥ " J" ' " '¥ 9" " ' " '¥ " ' J" ½ K K ½ ' 9 '" ' " '¥' '" K ½ ' L" J 9" ' " '¥ 9" K ½ ' M" L L" 9" N' ¥ " ¥ ' ¥ O L M 9" ' 9" N' ¥ " ¥ ' ¥ O 9" " 9 9" N' ¥ ' " ¥ ' ¥' O " + / & ' "@ J "I . I " -+ "'" I / & % - H ½ J ' % % ' ' " J" " - ½ K ½ K K ½ ' ' & % & ' + "@ % ' ¥ ' ½ K +. / & + ' ¥ ' ¥' ' 9 + +. + "I % + ' " ɏ ŸŶŽ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ + . % @ & L & + -+ / P " >% / . % + ": + . 9 & 9 v = 3 m/s 1 3 " v=0 8 Return journey 4 5 7 6 8 v = 3 m/s, a = 0 3 2 5 4 + a2 = –3 m/s2 v = 3 m/s a1 = 1 m/s2 0 + v = 3 m/s 10 2 & & + - v = 6 m/s v=0 0 1 + 6 7 9 8 10 11 Forward journey a2 = –3 m/s2 12 13 14 17 15 16 18 19 20 Displacement, s (m) % 23/5/2! Ejtqmbdfnfou.Ujnf!Hsbqi ! ½# ) # $ % " " " ɏ ½# ½# # " ( ! d d ( s ) = (0.5a1t 2 ) # dt dt ¥ $ # , ! # ! ) ( Myth ) , ! ( ! ) / #3 4! 6 ½# ! & " " Fact! Uif!ejtqmbdfnfou. ujnf!hsbqi!tipxt! uif!usbkfdupsz!pg! uif!qbsujdmf/ #- " &! ' " " ) ) " " ! " 23/5/3! Ejtubodf.Ujnf!Hsbqi / " ) #3 4! 7 " ) " " 4 " 6 ! ! 9 " 8 " " ŸŷŴɏ Displacement, s (m) %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 20 C D 15 E 10 B 5 A 0 1 2 3 7 5 6 8 4 (a) Displacement-time graph 9 Distance, d (m) 25 10 Time, t (s) E D 20 C 15 10 B 5 A Velocity, v (m/s) 0 1 2 3 7 5 6 4 (b) Distance-time graph 1 2 3 4 Speed, v (m/s) 9 10 Time, t (s) 8 9 10 Time, t (s) 8 9 10 Time, t (s) 8 9 10 Time, t (s) 4 2 0 –2 5 6 7 –4 –6 Acceleration, a (m/s2 ) 8 (c) Velocity-time graph 6 4 2 0 1 2 3 7 5 6 4 (d) Speed-time graph 1 2 3 4 1 0 –1 5 6 7 –2 –3 (e) Acceleration-time graph & ɏ Ÿŷŵ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ 23/5/4! Wfmpdjuz.Ujnf!Hsbqi " ! ½# , ! ( " # ! % " 6 , " ) ! " #- ( ! ) 6 3 7 " " 23/5/5! Tqffe.Ujnf!Hsbqi / #3 " ; 7 " 23/5/6! " < ! < ! 4! ( " / 6 # : Bddfmfsbujpo.Ujnf!Hsbqi ! ( ) , ! , " ) Dbmdvmbujpot! Vtjoh! Hsbqit! > 7 " d d # (v ) ɏ ½ # (s) dt dt ) " ! ! 7 ? ) " @ s2 Ús 1 t2 Úv t1 A !# Út 1 v dt #- ' ½ " % " " ! 7 ½' ! " t2 d v = Ú a dt t1 v Av !# t2 Út a dt 1 ½ ! " ' ) " 'XAMPLE!cdrh ! " 1 " " ( ( ½! ! " v2 ds = Ú v dt t2 " # % ! ! ( " " " " " " " " ½ ! ) " / '0 % * $+ #$ % . " " ŸŷŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 5OLUTION B " C ½ # $ 7 ( # 54 000 # $ 3600 ( D½ #, 7 ( # ' 72 000 # 3600 (D # " $ ( ( Velocity, v (m/s) " ½ ) $! " " E / & B 20 15 A 10 5 D C 0 Time, t (s) t = 20 s " ) " ) " ½ " ) #/ 6 v1 + v2 ¥ 2 'XAMPLE!cdri / ! % $ /&F4 # 15 + 20 ¥ 2 ! ,$ % ,$ / 7 8 5OLUTION Velocity, v (m/s) !" # $ ! 12 10 C 0 A " ½ % & D s2 5 s1 s F 3 E t2 t1 t3 B Time, t (s) " ' "! " ( ! !" F AC + BD ¥ CD 2 7 21 ! ,' 4 ) ( " # ) ( % $ / ɏ Ÿŷŷ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ ' " ( " !" * * " ,! " # D,-. * ,! " # ( 12 ¥ 12 ¥ 1 ) * 4 ! ( ! ɏ ( ! ɏ 9 ) \ ( " ½ ( ½ " ' " $ !" ( * fi !" ( * fi # " ( ¥ * .1!cdrg 23/6! ( 12 ¥ 12 ¥ 3 ) * * 46 ( ! fi * ( ! fi * 47 6 .: 4 6 % * ! ¥ 6* -/&. * ,! " # D&/3 * * 8 ¥8 fi ; * ; *8 ; ) �! NPUJPO!VOEFS!HSBWJUZ < ") ( ! % %"!( ( ( ! " " " " !" ! ( = ! " # !" > "! ( % % " ( " ! " " " " !" ? ! ( ' ! ) ( ( ! " " " !" " ( bddfmfsbujpo! evf!up!hsbwjuz ( () ) , " # "! #! " " "! % " " " " �! 9ORTHY!OF!0OTE ) 9 " !" ( !" ! " " " ( " %" " ( % %"!( 4 6 : " 9 % "! ! ( # 4.: @ E6 "! " ") ( ! " ! H " ! !" > ( " ! () ) ( # " ! ) > " "! " %" ! " % " ! " ) # ! " # # " " % " Tjho! Dpowfoujpo < !") ( (! ( ! ! % h* %"!( " (" # % " " (! " ( (! 23/6/2! Npujpo!pg!b!Gsffmz!Gbmmjoh!Cpez! ( ! F ! "# ! ! ɏ ɏ ɏ ɏ ɏ ɏ ?F ! # ! " ( ( #! ½ ½ ½ ½ ½@ ½ ½ " * 47 * 47 * 47 * 47 * 47 * 47 * 47 # #") ( " % 7 7 " # 6 6¥ (7 6¥ (7 6¥ (7 6 ¥ @ ( 7@ 6¥ (7 6¥ (7 ( % "! ! #" #! < " " % G G G G G G * * * * * * * @ ! #" " " 47 6 ¥ 47 ¥ 47 ¥ 47 ¥ 47 ¥ 47 ¥ 47 ( "! % ! & ! " (( 6¥ 6¥ 6¥ 6¥@ 6¥ 6¥ (7 (7 ( 7@ ( 78 (7 (7 8 " # " ) ( ŸŷŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ' " % " (( " " "! ( % %"!( #! "! I & ! E % # ) ( 4 I , 3 - / . " ( &6 " ( (" ( ( " !" (" ( # " ( , ) ( #" ( ! " ) ! ( F ( " !" ( " ( ! " % Myth Fact! Jo!b!gsff!gbmm-!uif! jojujbm!wfmpdjuz!pg! b!cpez!jt!bmxbzt! {fsp/ > " #! #" #") ( ! = ! &! #" " ! " " !" ) ( : " " ) " # s1 = 5 m t = 0s O t = 1s A 0 m/s 10 m/s S1st = 5 m S2nd = 15 m s2 = 20 m t = 2s B 20 m/s s3 = 45 m S3rd = 25 m t = 3s C 30 m/s s4 = 80 m S4th = 35 m t = 4s D 40 m/s s5 = 125 m S5th = 45 m t = 5s E 50 m/s s6 = 180 m S6th = 55 m t = 6s F 60 m/s + # Myth �! 9ORTHY!OF!0OTE J & E " ! ) " ) " ( % ( " " " !" ( .H" 8 23/6/3! Xifofwfs!b!cpez! jt!espqqfe!)tbz-! gspn!b!sjtjoh! cbmmppo*-!jut!jojujbm! wfmpdjuz!jt!bmxbzt! {fsp/ Fact! K < #! " ) !") ( ) ( # " !" "!" ! " ) ( Sbujp!pg!Ejtubodft!Dpwfsfe!jo!Fbdi!Tfdpoe L ( !" (6 ! " % ( " ! () " # ! " !" ( ) ( : " ! " 4" ɏ & ! #! ' #" ) ( % " 7 7 ! ! ( 7 7 7 @ 7 ! !( !@ 7 8 7@ @ 7 @ 78 ! 7 8 7 ! @ !" ! 23/6/4! 9 % ( ! !( !@ ! M 23/6/5! & " @ ! $ , ( ! " %"!( ( ( # E & M , , ,+,), - Myth B!Cpez!Uispxo!Wfsujdbmmz!Vqxbset " " ) ( # " ! ( ! " ) = ! " > "! ( % %"!( " ( ! " % > ( % ! $ % " ( # ' " ( #") ( ! $ % " (( " " " " > %"!( # ) ( "! ) %"!( G > ) " (( " F % ! !" %"!( ! ( % %"!( " ( % %"!( G ! " ! J % ŸŷŹ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ ( %"!( %"!( % Fact! Uif!ejtubodft!usbwfmmfe! jo!frvbm!joufswbmt! pg!ujnf!cz!b!cpez! npwjoh!xjui!b!dpotubou! bddfmfsbujpo!bsf!bmxbzt! jo!uif!sbujp!pg! , , , - " (( " !" ( % %"!( "! ( % %"!( G ! " = " % ! !" " %" " ' ! �! 9ORTHY!OF!0OTE < %"!( " " ) ( ! % " ) = ! !" ( % %"!( Hsbqijdbm!Sfqsftfoubujpo!pg!Npujpo!voefs!Hsbwjuz ½ " ( E # 4" !" # 6 & ! #") ( ! % % " " %"!( #! ! (" ! ( # & & E , ) ( ( " ! " " #" ! " ( ) : % ! ) ( ! " I "# ! ( ' ( " "! ( ! " ) ( ! ( "# ! " ! ( ' !" # ! # ) ( % & 8 > " * , ) ( ½ ( ! " " " " !" # ! ( " (L " ! ( = ! ! " I "# ! ( ' ) ( "! $ ! #! ! ' " ( # ! " " " !" ! " ! (% "# ! " ! ( ' ½ !" # ! # ) ( % & 8 ' ! %"!( " ( ( % %"!( # ) ( " !" ! " % " " ( ' !" # ! # ) ( % & 8 Ÿŷźɏ Displacement (m) %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 200 180 150 100 50 0 1 3 2 5 4 6 7 8 10 11 12 Time (s) 9 10 11 12 Time (s) 9 10 11 12 Time (s) 9 (a) Displacement-time graph Velocity (m/s) 60 0 1 3 2 5 4 6 7 8 –60 Acceleration (m/s2) (b) Velocity-time graph 0 1 3 2 4 5 6 7 8 –10 (c) Acceleration-time graph ) 'XAMPLE!cdrj ! 8 8 8 '' (©) & & ® 9 ,+ % $ 8 (¨) 5OLUTION # * ac (2n - 1) fi ! 2 $ %& %' + %' * - 10 (2 - 1) 2 fi " * ut - 12 gt 2 = 0 - 0.5 ¥ 10 ¥ 62 = | - 180| Bmufsobujwf!Tpmvujpo, , * , - + / 4 " 3 ɏ ŸŷŻ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ ! $'5 : 'XAMPLE!cdrk / % $ $+ . (¨) % (©) 8 5OLUTION 7 * , ;4+ ® 9 ,+ (ª) 9 : ; 4 $ 4 4 < * P + h1 > % : 4 ? @ * ɏ u = 20 m/s ; & * ; + ½ ɏ fi 202 20 * fi + C ¥ ! D; ht ¥ 4 < @ & + 4 %& ; / / & % fi ½ ½ 3 O A Q < # 4 *4 ' ɏ <@ B & * + + * ¥ ! ; 4 ; fi + + *4 ' 4 @ < ; ¥ 4 ) D; ± 400 ½ F + + + ½ . + 4 * + ; C ¥ ! ! ! % * & * 4 G # D; * fi ! 1 2 3 ! D; # /(!01, H 2 3!0, # ;4+ + ; D; / % * + * 4 * $ * Bmufsobujwf!Tpmvujpo , 4 4 < J # + 3 ! 3 D; % + D; J< + + & * J < I & ; + + ; 4 ; ! + ; &% + ; , * ? ; 4 * G & J ,; * 4 K * 4 J & J ! + *4 + ;4+ * < ; 4 J * * # K ½ 4 . + K Ÿŷżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 'XAMPLE!cdrcl ; < 0+5 = ! 8 $+ % ! ® 9 ,+ % $ 6 / L 5OLUTION 4 D; A , : ; : + * M 1 2 fi ! L ! # N 1 2 fi OD + ¥ ¥ Bmufsobujwf!Tpmvujpo 3 N + ;4+ N % % 4 J , 3 M 44 + B 4 < Q + * + + * 23/7! ;4+ 1 2 C fi ! L ! fi ! ! ! - P ? & # ; + ¥ & * # 4 4 * % * % 3 L + N �! NPUJPO!VOEFS!WBSJBCMF!BDDFMFSBUJPO ! * + 1 2 ¥ ! ! 4 fi L + .1!cdrh ; * # OD $ + 4 L $ - + D; &$ 44 % & & / OD 4 % ** + & Q ; ; Q + ; R % ; & & ; OD & # + + % 'XAMPLE!cdrcc ½ 9 + '>($» ? 2» $) % »92 @ »9+ º9+ 5OLUTION OD : 3 + + $ \ * ? % & * ½ ½ 3 Q 4 *; ds + dt ds dt %& 4; $ fi R 4 4 R Ú ds Ú 0.5(2t + 3t 2 ) dt % + * fi $ R R » $ % 4 * ɏ ŸŷŽ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ H R + % dv dt H RR R d Ê ds ˆ d d 2 2 ÁË ˜¯ = {0.5(2t + 3t )} = {t + 1.5t } dt dt dt dt R R¥R R 'XAMPLE!cdrcd R ¨ 9 »2 A 2» $ ? ' / $ % ¨ / » »9, »9$ 4 2+ R 5OLUTION !R dv dt 3 ½ > Ú fi ½ " 1 $' % "9 $$% " : SR Ú ¥ $ ½ $ !" # 4 1 4 !" \ ¥ $ fi $ ½ $ % $ 4 ɏ ½ & 2 4 ¥ '*" Ï 4 Ú ½ dt Ú ÌÓ 4 +"+ ," \ +"+ +"+ - +" +" +" 5 20 4 - 4 2 +5¥ $ 2 $ ," + fi $ " $ $ +"+ ¥ .1!cdri ¸ + 5 + 2˝ ˛ " $ " $ 3 +" ¥ " ¥ ¥ 23/8! �! BCTPMVUF!BOE!SFMBUJWF!WFMPDJUJFT! - / /6 : " < > $ ?+ : # bctpmvuf!wfmpdjujft 78 $ / ; +: # $% - " " $$ $ " + " ŸŸŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº > $ $ %" % / $ 4 /" + $$ > < sfmbujwf!wfmpdjuz < / $ ?+ : # / > /% > <" 4 @ 4 / ", 4/ $ " - " " + $ $ $ / % " " / $ "/ ?+ $ + +: # > $ / : " " - " " + +: # > > < " "/ "/ + ?+ Va = 70 km/h Vba = Vb – Va + - " " " / $ "/ " $ "/ % "/ " (c) Determining Vba (b) Determining Vab (a) Vb –Va –Vb Vab = Va – Vb Train B : - " " $ Va Vb = 50 km/h $ $% , " " ?+ $ + < % $ Va = 70 km/h < > +: # > + > < ?+ +: # Va - " B $ Vb –Vb " –Va Train A Vba = Vb – Va Vab = Va – Vb Vb = 50 km/h Train B (c) Determining Vba (b) Determining Vab (a) + , Usbjot!Svoojoh!po!Tusbjhiu!Usbdlt!Jodmjofe!bu!bo!Bohmf ; - " $ <" $ Train A A 8 $$ $ $ / > < ! A @ % < " < " "> > : $$ $ / $ q $ $ $ / $ / $ ɏ "C - ŸŸŵ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ " $$% " " $ $ % /% D " Va –Vb Va = 70 km/h Train A Vb q Va Vba = Vb – Va Vb = 50 km/h q Vb q Vab = Va – Vb –Va Train B (a) (b) (c) ) @ Bmufsobujwfmz "! $$ $ 8 $ / $ " , '8 $ ! $++5 'XAMPLE!cdrce '0 8 $ " E" #$ % ,'+5 B % 6 + 5OLUTION F $ I $ G" % ++ "/ : # 72 000 + # H "/ " ? : # 3600 / /% % %/ ++ + + $ % " / " "/ + # : $ $% : 350 d ?+ 5 Vab ? : # ! 'XAMPLE!cdrcf +$ % . ,'+ %/ + " 54 000 : # 3600 $ $% : # $'+ ! C $ . $$ % & ,+ + 5OLUTION! F C $$ $% G" + /$ % DC $ # /% +" %/ + $$ $ $ >" + " # % + $ $ ++ $% %/ + $ % "/ + " 8 > < < ŸŸŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº < $ $ %" $ " $ /+ +" # + * ++ > $ $ " ¥ + +" ¥ +" ¥ + fi " $ % < " + "/ fi "/ " + " /+ > " /+ ! /+ E /+ E # > + " #&&+6+10#.!51.8'&!':#/2.'5 'XAMPLE!cdrcg ! *( ) #' % ; 2# * . 8 ® 9 E 4, D " Ɋ $ % 5OLUTION ! + . )- % )/ * " #$ %& % ' () )* %,) , %& )- % . " % % ) % ( * *% ( . (' 8 9 ' ( :'% - ' *% ( Elevator v=0 B / ) 1 7.5 m/s - h1 A Shaft ; v fi fi < ¥ < $ ; ) + ( v- ( :'% $¥ < ) - =' , - vv- < 'XAMPLE!cdrch $ h2 ' ( % , - / < ¥ < $ ; ! ! ! 5OLUTION! $¥ + )+ # C ! < $ $5 3 3 05% ,' 8 ,+4 6 # $ $ F F h0 = 37m %) ')% ( ,1 ' fi v; ¥ < $¥ < + )+ $5 3 3 05% )( * *% ( ( :'% . v; fi v- < % *% Bmufsobujwfmz !* % ' v; fi fi $ . & 108000 3600 % B ,+ % $ ɏ ŸŸŷ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ @ , %& ,1 ) ; ( % B % % )) ( ,1 ) ; $; % ) fi ; fi % %) ')% C < %& ( ' B % ; $ $ = % 1 2 1 2 $; ¥ ¥ ; -A % % %( % % )) ( ,1 - 9 - - $ ; * 'XAMPLE!cdrci ! ; ¼ & ¨ ,' * $' - ¼ ¨ ɏ ! 5OLUTION C D: ! $ * % ! % ( E', % D: ; ! ; < " D: ¥ c 2 $ * $< 10 c 2 9 c 2 19 c ; 2 ¥ < $ c 2 ; < $ $ $ fi $ * ; 9¥2 2 'XAMPLE!cdrcj fi ! $+ 0+ . 2 G 5OLUTION @ " F H G ( :'% , %) ( :'% ; 12 ) ( # % - * ; E ) %, ( ( 1% ( fi ) % ¥ % fi I 1 2 * :'% %) ( % , % * % ¥ ; - ¥ % ¥ ¥ ; %) - ) F G fi ( * ( - fi # ( ( ; % ¥ * $ %) ( % ; # -I I ( % ' " $ ( %) ( % ', :' ( ŸŸŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ' < C ( :'% ¥ J - ; ¥ < ( % * fi ; v 'XAMPLE!cdrck #$ ¥ (, ¥ < $ ; K<I <I % fi #$ + ) )+ + ! 5 $+ % 2+ % . ½ 5OLUTION @ , ' & % ) % C ɏ ½ + % ɏ ½ & & ( :'% % @ - , 8 * fi ; % ¥ ; (&) ½ @ % ( , (&) ' G :'% ɏ ½ % ( ½ ) fi ; * ½ (' % %& % ( % , * * ½ ; ½ ; # fi ,1 1 - ¥ ¥ ¥ ; G fi ½ + fi fi , * G # I ,+ ,'+ & 0+ ½ 5OLUTION # 1 I % G ) F * % % % ) % ( % ' * ' )1 ( ) % % # + ɏ % / / ; " ; ½ ½ ; ; -" % )) $ # % ( (" F ( % 8 fi 1 2 ; fi fi . . " = ' 1 % "F ( % % H ¥ % ; 1++ ¥ Speed, v (m/s) 8 * % ( )1 ! 'XAMPLE!cdrdl . % &) ,1 % % )) ( % (% ( (&) ; % % & 1 ¥ ; ) < $¥# fi $ fi D s2 0 A ¥ s1 E t1 fi ¥ ; ; < C V I F t2 s3 t3 B Time, t (s) ɏ ŸŸŹ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ %) ( % % )) ( ; ; %) ( % I :'%) %) ; 'XAMPLE!cdrdc ; ; ! # ' 8 & », »$ ¯ 8 ¯ 9 21 >®», » $ ! 5OLUTION! . ' ' *% ( ( ; E', % 1 2 < $ < $; ) fi ;# % % - !B"D " 410 410 I " 30 ; I ; I fi " # \ % 1 - = \ ; 'XAMPLE!cdrdd , % ( 1 2 < $ ; < + ) % 1 2 * 1 2 < $ 1 2 % < $ 1 h $u 2 $ ( % ; $ ; 1 2 ) 6u % % 1 hu 2 < $ u ! », & »$ / »1»2 5OLUTION! . ' * % ( , < < L') :'% )1 - G %) ; ; $ F! %& < % * 1 2 * % ) 1 , < $ % ( < ,1 % ( 1 2 - 'XAMPLE!cdrde fi fi ,1 * * % ( %(( @ * * , - % * 1 2 u1 u 2 & º $ (¨) » * (©) (ª) 5OLUTION % % 1 2 ! º 9 ,1» ? 0» $ J 2» 2 K % ( ' *% ( ( 1 ; 2 < $ ( :'% ; $ - -%)) ¥ ; 12 < $ H % K v 0 ! "## $% ŸŸźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº & ' ( ½ v $ % , ds d $ dt dt d½ d $ dt dt ) ! " # #% ) * " + !% ) ¥! "#¥#! *"+¥! )* "+! *" * $ % ! -. $ % $ % / 5 , 6 *7 / , ) *" * $ % ! 6 # "# ¥ *7 ) * " * ¥ *7 " -. $ % -. $ % $ % # ¥ $ *7% " # ¥ $ *7% ! fi *" * , -. $ % ! / 5 v 'XAMPLE!cdrdf $ % ¥ ! ) ¥ !! " # ¥ !# ) !"## ! )* "+ ) * ¥ ! " + ¥ !! 9 *" * *" *¥! " -. $ % *7 )* "+! fi v $ % , $ % ) "# )* "+! # ¥ )*¥ ) ! $ % ¥$ % "# ¥ $ %# ! "+¥$ % ++ + ¿ 9 1» 0 A $» 2 A ,$» $ ? 2 / K 5OLUTION * \ 9 v -. $ % : -. * v 9 -. $ % * "!#" !!)# dx d $ " ! # " ! ! ) #% ! # " ! " ! dt dt d½ d $! # " ! " ! % 8! ! " ! " ! dt dt 6 ! 8! " ! " ! fi 8 " 7 8 , $% $ % ¥ 8 "!¥ 8# " ! ¥ 8! ) # " + # ! ! ¥ 8 " ¥ 8 "! ¥ 8 " )# * * "* " 8* " $)#% + $% $ % $ % 8 ɏ ŸŸŻ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ 'XAMPLE!cdrdg ! 1+ ,' +' / % & = > v1 - v2 60 - 15 = Rate 1 = > < !7 ! / + / \ # = > > > ! > + ½! ! 8¥+ ½! ½ v1 - v2 60 - 15 = + Rate 0.5 ! < 7= > 60 000 8 > 3600 15 000 8 > 7= > 3600 ½1 + ½2 16.67 + 4.17 ½ = 2 2 ½ !¥ 7 *+ / / - = > ½! ! % 7 B ½ / E # = = #87# 7= > > ! > ½# !¥+ +#8 * ) !) # * + ) #87# ) +#8 * ) !) # 7)+ )+ #7 E = > $ 7 7+ 8 8 >% = 7 7+ 8 v1 \ / 'XAMPLE!cdrdh $+ = 5159.7 16.17 " ! » (©) # + #7 " # + 8 ¨ ¨ 9 $ A 2» ,+ % / 4' % % ' = ɏ , + $' 1+ ; < & % % 5OLUTION # % B & (¨) * * * K ŸŸżɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 5OLUTION G < v7 ! > d½ dt fi : \ 5 ds dt v !"# fi ½ t Úu d ½ = Ú0 adt fi v Ê 3 2ˆ ) Á2 ˜ Ë 2 ¯0 v : *7 fi t Ú0 (2 - 3t ) dt v" Ê 3 2ˆ ) Á2 ˜ Ë 2 ¯ t tÏ Ê 3t 2 ˆ ¸ Ú0 ÌÓu + ÁË 2t - 2 ˜¯ ˝˛ dt Ú fi v $% fi " Ï t3 ¸ Ìut + t 2 - ˝ 2 ˛0 Ó 3 \ / ) ) ! " $ % 2 $ % , : v7 ! -. $ % Ê 3 ) Á2 ˜ Ë 2 ¯ 2ˆ v : !"#¥ 7 !"# > Ê 3 ¥ 52 ˆ ) Á2 ¥ 5 ˜ Ë 2 ¯ ! *7 fi + -. $ % 3 ) ) ! " ) 87¥ *7 2 $ % ! ) 6 103 fi 2 -. $ % " 2 ) 2 - v 3 2 87)! " 7 ! fi ## "7 : ## -. $ % 3 ) 'XAMPLE!cdrdi ) ! " ## ) $ ##%! " ) 87¥ 2 º 9 $» 2 A E»$ ? ,$» A ,+ / (6.33)3 2 º . » - K ) (¨) (©) K 5OLUTION! / 5 v , $ % 9 !#"+!) ! " ds d $! # " + ! ) ! " dt dt dv d $ ! " * ) !% dt dt -. $ % $% ! % ! " * 6 ! " * ) ! fi ! " * ) ! $ % $ % ɏ ŸŸŽ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ 9 9 $ % 9 ! !¥!" * !¥ " * ! " * ! " * ! " -. $ % 6 ! " * 9 fi 7 7 !#"+!) ! " !¥ 7# " + ¥ ! #"+ !) ! " !¥ "+¥ 7! ) ! ¥ 7" " J E " 'XAMPLE!cdrdj ) !¥ " " 7 "7 7 " $" % ! E+ % 5 ! 21 5 5 3 <" 5OLUTION G % " + = > $ 4 $ 4 " 4% 9 6 # = > $ % q % L + 7K 4 ! 7 North –Vt West Vt a Vct f East 45° Vc S-E South " : 4 4 4 "4 f " 4 ) $"4 % * K"q L4 * K " 7K 902 + 362 + 2 ¥ 90 ¥ 36 ¥ (cos 135∞) = a " Ê "c sin f ˆ ÁË " + " cos f ˜¯ t c L4 #7K "t2 + "c2 + 2"t"c cosf a ' 4 L4 $ " Ê 36 ¥ sin 135∞ ˆ ÁË 90 + 36 ¥ cos 135∞ ˜¯ % : ) ŸŹŴɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ' Bmufsobujwfmz ( ( 4 4 \ a ( + – K 4 "4 4 # –" 7K # –" 7K " + – K ) " * K " 7* 7K : 'XAMPLE!cdrdk = ( ! ) –9 : 3 #$ ,4 % % ( % ) + 5OLUTION G <" " " *= > 72 000 ! 3600 9 8! = > 8! = > + K q >M " *= > ! L4 $NB% 18 000 3600 4 $N,% 7 4 $ON% 4 L4 ' 4 > DONB B Vst a –Vt C Vs 90° Vt O A 1 $ " OC2 + BO 2 a " Bmufsobujwfmz \ ! OB% "t2 + "s2 = 202 + 52 Ê BO ˆ ÁË ˜ OC ¯ ' ( " Ê 5ˆ ÁË ˜¯ 20 : ( ( 4 4 ! – K 4 "4 4 7–+ K 7–+ K " ! – K a * K" K = ( –9 : : 57//#4; .1!cdrc Defines dynamics, and distinguish between kinematics and kinetics. Ljofnbujdt ljofujdt = 1 (0 ( 5!0 ; QS 233 ' !' P: 5 4 , 3 * 3567 ɏ ŸŹŵ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ .1!cdrd Define position, displacement, velocity and acceleration for a body in motion. usbkfdupsz 9 tdbmbst $ .1!cdrf . T bwfsbhf!tqffe % T bmhfcsbjd! Represent graphically the motion of a body, by drawing s-t, v-t, and a-t graphs. $v % .1!cdrg List the equations of motion of a body under gravity. 9 $ % . .1!cdri <#<7<8<+< Differentiate between absolute and relative velocities of a body. , O O , ! +/2146#06!(14/7.#' � � # = > � � � 8 lim v Dt Æ0 Ds Dt > lim D Æ0 v v ds dt D½ D dv dt 9 v = u + act (1) 1 2 act 2 (3) v 2 = u 2 + 2ac ( s - s0 ) a (4) Snth = u + c (2n - 1) 2 s = s0 + ut + (2) i Valid only for constant acceleration � Displacement, s Integrate Differentiate Velocity, v Differentiate Integrate Acceleration, a � 4 4 4 + ŸŹŶɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ! 5*146 #059'4!37'56+105 < 5!0 3 A & & A ' 5 ' ! 5 > '! ! @ B 3 0! 05 @ D C! = 0 5 =0 5 5 ==!0! !? 51 ! >>0 ? !5 ! = > 0 ' !@ '! 0 C! !5@ > ! = 0! 05 ! E " A t.u 0 > F 3 # H( ! 0! $ A ! 51 0! !> 3 ' ! C! ' 1 = ! 51 G!0 @ # !5 =0 5 ! 0! ( 5!0 C! C 0 % ! ''! !0 ! b.u '(0C! 5 ½.u '(0C! 5(0 !0C = !@ @ % -';!6'4/5 .1!cdrc .1!cdrd .1!cdrg & .1!cdri ' " ! ' ! 4'8+'9!37'56+105 * , & , * , * - *. *, * + & + / 6 / 6 / 6 ɏ ŸŹŷ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ 78 9 / 6 / 6 ' / 6v ) & ! 1$,'%6+8'!37'56+105 #!/ULTIPLE %HOICE!3UESTIONS $ " ' : ;< 9 > / 6 @ ' / E< > @6 / 6 D; ' ? " / 6 @< ' / 6 D ' : > @6 / 6 E< > / 6 H D @ E + ' D " / 6 h @g $ ' : ?< 9 > / 6 A : $ : 9 ' / 6 ; " / 6 D @; / 6 F< ! / 6 G@ / 6 EA; @< > / 6 H< " " / 6 ; / 6 E@< / 6 A<< % 9 / 6 H I @< / 6 E< " / 6 E; E? - > / 6 @< h Hg > / 6 @; ! - " / 6 G; ; @; E / 6 Hhg / 6 @G F A E / 6 " @hg " / 6 v( ) ' / 6 @ E< > % / 6 G ; A E . / 6 / > / 6 v( 0 < (A / 6 A > / 6 v( 0 @ / 6 v( 0 v 1 2 @ E@ EG " / 6 D > / 6 ? > ŸŹŸɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº 2 Velocity, v (m/s) Acceleration, a (m/s2) 1 +3 4 0 1 2 Time (s) 3 –3 2 6 4 8 10 Time (s) –1 –2 + " E@ EH " E< / 6 D / 6 ? / 6 H / 6 E< $!(ILL $LANKS!3UESTIONS # , " JJJJJJJJJJ ' JJJJJJJJ vojgpsn!npujpo ' JJJJJJJJJ " % JJJJJJJ ' JJJJJJJ A< - E E< JJJJJJJ %!/ATCH %OLUMNS!3UESTIONS 9 & ( E /6 / 6 9 / 6 ! & ( /K6 /L6 / 6 / 6 9 /.6 & ( /6 / 6 / 6 / 6 E & ( /K6 /L6 / 6 /.6 EE ! EE 9 @ ɏ ŸŹŹ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ &!5TATEMENT %ONFIRMATION!3UESTIONS $ /6 M / 6 M /6 / 6 / 6 / 6 ' /6 / 6 /6 / 6 @< 9 > ?< ? ?< > / 6 / 6 #NSWERS!TO!1BJECTIVE!3UESTIONS $2% I( > ! & '! /(! + $J% J ) /(! @; $&% I ' & ( /(! / 6 /L6 / 6 /.6 / 6 /K6 / 6 / 6 $K% " ! ! .& L0 / 6 / 6 / 6 / 6 /.6 / 6 /K6 / 6 /L6 /(! /6 ! 24#%6+%'!241$.'/5 ' E; A > ' 8 > N2 ' 9 A;< ' & D > N2 A? 9 > G< G; P G@ 9 > 9 * > @P @ @<< , ; N2 < G; > ' @ EA AA EA AG; P E< - ' N2 A< ;< A ;P ŸŹźɏ %µ®°µ¬¬¹°µ®ɏ-¬ª¯¨µ°ªº ' : ' ?< 9 > G< 9 > @< 9 > @ @;9 ' N2 * * +A " % '* A< P A@ ; 9 * # + : : N2 Q P ' E@ EF $ / 6 < G; 8 E ! N2 / 6 / 6 E?< 9 > @R / 6 E< 9 P Speed (km/h) 60 40 20 0 0.25 0.50 0.75 1.0 2.0 Time (h) ) " " D< D > @ N2 ) ' EF ? ? / FH - > ' @< @<< E< P > > @6 N2 ' ; ;H H P A 9 N2 ' @< D P I : / E< > @6 N2 E; > P A< ' */ ! A< > ' E< > @6 N2 ' E< @ D; - E 9 S N2 ' E< > / FH < GE P */ N2 ' ' @< T 9 F HE P > @ > @6 D<< ' "9 @; > E< F< > / ; E< > @6 6P 9 8 N2 DD ED; P ɏ ŸŹŻ -¶»°¶µɏ°µɏ¨ɏ3»¹¨°®¯»ɏ,°µ¬ɏ * 8 ' 8 /*6 @ ; U?@ * /6 * N2 + " 9 ' : $ E<< 9