Download #06 IRF9510PBF VISHAY Datasheet

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
IRF9510, SiHF9510
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
•
•
•
•
•
•
•
•
- 100
RDS(on) (Ω)
VGS = - 10 V
Qg (Max.) (nC)
1.2
8.7
Qgs (nC)
2.2
Qgd (nC)
4.1
Configuration
Single
S
Dynamic dV/dt Rating
Repetitive Avalanche Rated
P-Channel
175 °C Operating Temperature
Fast Switching
Ease of Paralleling
Simple Drive Requirements
Compliant to RoHS Directive 2002/95/EC
Available
RoHS*
COMPLIANT
DESCRIPTION
TO-220AB
Third generation Power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
ruggedized device design, low on-resistance and
cost-effectiveness.
The TO-220AB package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 W. The low thermal resistance
and low package cost of the TO-220AB contribute to its
wide acceptance throughout the industry.
G
G
D
S
D
P-Channel MOSFET
ORDERING INFORMATION
Package
TO-220AB
IRF9510PbF
SiHF9510-E3
IRF9510
SiHF9510
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
LIMIT
VDS
VGS
- 100
± 20
- 4.0
- 2.8
- 16
0.29
200
- 4.0
4.3
43
- 5.5
- 55 to + 175
300d
10
1.1
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current
VGS at - 10 V
TC = 25 °C
TC = 100 °C
Currenta
Pulsed Drain
Linear Derating Factor
Single Pulse Avalanche Energyb
Repetitive Avalanche Currenta
Repetitive Avalanche Energya
Maximum Power Dissipation
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
ID
IDM
TC = 25 °C
for 10 s
6-32 or M3 screw
EAS
IAR
EAR
PD
dV/dt
TJ, Tstg
UNIT
V
A
W/°C
mJ
A
mJ
W
V/ns
°C
lbf · in
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. VDD = - 25 V, starting TJ = 25 °C, L = 18 mH, Rg = 25 Ω, IAS = - 4.0 A (see fig. 12).
c. ISD ≤ - 4.0 A, dI/dt ≤ 75 A/μs, VDD ≤ VDS, TJ ≤ 175 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91072
S11-0506-Rev. B, 21-Mar-11
www.vishay.com
1
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF9510, SiHF9510
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
3.5
UNIT
°C/W
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
VDS
VGS = 0 V, ID = - 250 μA
- 100
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = - 1 mA
-
- 0.091
-
V/°C
VGS(th)
VDS = VGS, ID = - 250 μA
- 2.0
-
- 4.0
V
Gate-Source Leakage
IGSS
VGS = ± 20 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = - 100 V, VGS = 0 V
-
-
- 100
VDS = - 80 V, VGS = 0 V, TJ = 150 °C
-
-
- 500
Gate-Source Threshold Voltage
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
gfs
ID = - 2.4 Ab
VGS = - 10 V
VDS = - 50 V, ID = - 2.4 Ab
μA
-
-
1.2
Ω
1.0
-
-
S
-
200
-
-
94
-
-
18
-
-
-
8.7
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Total Gate Charge
Qg
Gate-Source Charge
Qgs
-
-
2.2
Gate-Drain Charge
Qgd
-
-
4.1
Turn-On Delay Time
td(on)
-
10
-
tr
-
27
-
-
15
-
-
17
-
-
4.5
-
Rise Time
Turn-Off Delay Time
td(off)
Fall Time
tf
Internal Drain Inductance
LD
Internal Source Inductance
LS
VGS = 0 V,
VDS = - 25 V,
f = 1.0 MHz, see fig. 5
VGS = - 10 V
ID = - 4.0 A, VDS = - 80 V,
see fig. 6 and 13b
VDD = - 50 V, ID = - 4.0 A,
Rg = 24 Ω, RD = 11 Ω, see fig. 10b
Between lead,
6 mm (0.25") from
package and center of
die contact
D
pF
nC
ns
nH
G
-
7.5
-
-
-
- 4.0
-
-
- 16
-
-
- 5.5
V
-
82
160
ns
-
0.15
0.30
μC
S
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = - 4.0 A, VGS = 0 Vb
TJ = 25 °C, IF = - 4.0 A, dI/dt = 100 A/μsb
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 μs; duty cycle ≤ 2 %.
www.vishay.com
2
Document Number: 91072
S11-0506-Rev. B, 21-Mar-11
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF9510, SiHF9510
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
101
VGS
- 15 V
- 10 V
- 8.0 V
- 7.0 V
- 6.0 V
- 5.5 V
- 5.0 V
Bottom - 4.5 V
- ID, Drain Current (A)
101
100
- 4.5 V
- ID, Drain Current (A)
Top
25 °C
175 °C
100
20 µs Pulse Width
VDS = - 50 V
20 µs Pulse Width
TC = 25 °C
100
101
4
- VDS, Drain-to-Source Voltage (V)
91072_01
- ID, Drain Current (A)
100
- 4.5 V
20 µs Pulse Width
TC = 175 °C
100
91072_02
101
- VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics, TC = 175 °C
Document Number: 91072
S11-0506-Rev. B, 21-Mar-11
7
8
9
10
Fig. 3 - Typical Transfer Characteristics
RDS(on), Drain-to-Source On Resistance
(Normalized)
VGS
- 15 V
- 10 V
- 8.0 V
- 7.0 V
- 6.0 V
- 5.5 V
- 5.0 V
Bottom - 4.5 V
6
- VGS, Gate-to-Source Voltage (V)
91072_03
Fig. 1 - Typical Output Characteristics, TC = 25 °C
101 Top
5
91072_04
3.0
2.5
ID = - 4.0 A
VGS = - 10 V
2.0
1.5
1.0
0.5
0.0
- 60- 40 - 20 0
20 40 60 80 100 120 140 160 180
TJ, Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF9510, SiHF9510
350
VGS = 0 V, f = 1 MHz
Ciss = Cgs + Cgd, Cds Shorted
Crss = Cgd
Coss = Cds + Cgd
Capacitance (pF)
280
Ciss
210
140
Coss
70
Crss
- ISD, Reverse Drain Current (A)
Vishay Siliconix
101
175 °C
0
100
VDS = - 80 V
Operation in this area limited
by RDS(on)
5
VDS = - 50 V
16
2
VDS = - 20 V
12
8
4
10
100 µs
5
1 ms
2
1
10 ms
5
2
0.1
5
For test circuit
see figure 13
0
0
91072_06
2
4
6
8
QG, Total Gate Charge (nC)
TC = 25 °C
TJ = 175 °C
Single Pulse
2
10-2
0.1
10
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
5.0
4.0
- VSD, Source-to-Drain Voltage (V)
102
ID = - 4.0 A
3.0
Fig. 7 - Typical Source-Drain Diode Forward Voltage
- ID, Drain Current (A)
- VGS, Gate-to-Source Voltage (V)
2.0
91072_07
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
20
VGS = 0 V
10-1
1.0
101
- VDS, Drain-to-Source Voltage (V)
91072_05
25 °C
100
91072_08
2
5
1
2
5
10
2
5
102
2
5
103
- VDS, Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91072
S11-0506-Rev. B, 21-Mar-11
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF9510, SiHF9510
Vishay Siliconix
RD
VDS
VGS
D.U.T.
RG
4.0
+VDD
- 10 V
- ID, Drain Current (A)
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
3.0
Fig. 10a - Switching Time Test Circuit
2.0
td(on)
td(off) tf
tr
VGS
1.0
10 %
0.0
25
50
75
100
125
150
175
90 %
VDS
TC, Case Temperature (°C)
91072_09
Fig. 9 - Maximum Drain Current vs. Case Temperature
Fig. 10b - Switching Time Waveforms
Thermal Response (ZthJC)
10
D = 0.5
1
0.2
0.1
0.1
PDM
0.05
0.02
0.01
Single Pulse
(Thermal Response)
t1
t2
Notes:
1. Duty Factor, D = t1/t2
2. Peak Tj = PDM x ZthJC + TC
10-2
10-5
91072_11
10-4
10-3
10-2
0.1
1
10
t1, Rectangular Pulse Duration (s)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Document Number: 91072
S11-0506-Rev. B, 21-Mar-11
www.vishay.com
5
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF9510, SiHF9510
Vishay Siliconix
L
Vary tp to obtain
required IAS
IAS
VDS
VDS
D.U.T
RG
+ V DD
VDD
IAS
tp
- 10 V
0.01 Ω
tp
VDS
Fig. 12a - Unclamped Inductive Test Circuit
Fig. 12b - Unclamped Inductive Waveforms
EAS, Single Pulse Energy (mJ)
700
ID
- 1.6 A
- 2.8 A
Bottom - 4.0 A
Top
600
500
400
300
200
100
VDD = - 25 V
0
25
91072_12c
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
- 10 V
12 V
0.2 µF
0.3 µF
QGS
-
QGD
D.U.T.
VG
+ VDS
VGS
- 3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91072
S11-0506-Rev. B, 21-Mar-11
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF9510, SiHF9510
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
D.U.T.
+
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
Rg
+
• dV/dt controlled by Rg
• ISD controlled by duty factor “D”
• D.U.T. - device under test
+
-
VDD
Note
• Compliment N-Channel of D.U.T. for driver
Driver gate drive
P.W.
Period
D=
P.W.
Period
VGS = - 10 Va
D.U.T. lSD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Inductor current
VDD
Body diode forward drop
Ripple ≤ 5 %
ISD
Note
a. VGS = - 5 V for logic level and - 3 V drive devices
Fig. 14 - For P-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?91072.
Document Number: 91072
S11-0506-Rev. B, 21-Mar-11
www.vishay.com
7
This datasheet is subject to change without notice.
THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000