Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Doanda Dresta Rahma 5025201049 Matematika Diskrit C Exercise 2.3: 27 a) Prove that a strictly decreasing function from R to itself is one-to-one. b) Give an example of a decreasing function from R to itself that is not one-to-one. a) Proof: ð strictly decreasing mengimplikasikan : jika ðĨ < ðĶ, maka ð(ðĨ) > ð(ðĶ). Definisi one-to-one, untuk tiap pasangan x dan y, jika ð(ðĨ) = ð(ðĶ) maka ðĨ = ðĶ Asumsikan ð(ð) = ð(ð). Jika ð < ð, maka dari definisi strictly decreasing didapatkan ð(ð) > ð(ð). Jadi tidak mungkin ð < ð apabila ð(ð) = ð(ð). Jika ð < ð, maka dari definisi strictly decreasing didapatkan ð(ð) > ð(ð). Jadi tidak mungkin ð < ð apabila ð(ð) = ð(ð). Karena ð < ð tidak benar dan ð < ð tidak benar, maka ð = ð. Dari definisi one-to-one, telah dibuktikan ð one-to-one. b) ð(ðĨ) = ââðĨâ adalah decreasing function, tetapi tidak one-to-one karena memungkinkan beberapa nilai ðĨ yang terpetakan ke ð(ðĨ) yang sama. (âðĨâ = ceiling function) ð(1) = ââ1â = â1 ð(0.5) = ââ0.5â = â1 Exercise 8.5: 7 There are 2504 computer science students at a school. Of these, 1876 have taken a course in Java, 999 have taken a course in Linux, and 345 have taken a course in C. Further, 876 have taken courses in both Java and Linux, 231 have taken courses in both Linux and C, and 290 have taken courses in both Java and C. If 189 of these students have taken courses in Linux, Java, and C, how many of these 2504 students have not taken a course in any of these three programming languages? Misalkan: J : Murid yang mengambil kursus Java. L : Murid yang mengambil kursus Linux. C : Murid yang mengambil kursus C. Kita tahu bahwa |J| = 1876, |L| = 999, |C| = 345, |J âĐ L| = 876, |L âĐ C| = 231, |J âĐ C| = 290, |J âĐ L âĐ C| = 189. Dengan rumus inklusi-eksklusi:. Doanda Dresta Rahma 5025201049 Matematika Diskrit C |J ⊠L ⊠C| = |J| + |L| + |C| â |J âĐ L| â |L âĐ C| â |J âĐ C| + |J âĐ L âĐ C| |J ⊠L ⊠C| = 1876 + 999 + 345 â 876 â 231 â 290 + 189 |J ⊠L ⊠C| = 2012 Murid yang tidak mengambil kursus dari ketiga programming language adalah: 2504 â |J ⊠L ⊠C| = 2504 â 2012 = 492 Exercise 8.5: 7 How many students are enrolled in a course either in calculus, discrete mathematics, data structures, or programming languages at a school if there are 507, 292, 312, and 344 students in these courses, respectively; 14 in both calculus and data structures; 213 in both calculus and programming languages; 211 in both discrete mathematics and data structures; 43 in both discrete mathematics and programming languages; and no student may take calculus and discrete mathematics, or data structures and programming languages, concurrently? Misalkan: A1 : Murid yang mendaftar calculus A2 : Murid yang mendaftar discrete mathematics A3 : Murid yang mendaftar data structures A4 : Murid yang mendaftar programming languages |A1| = 507 |A2| = 292 |A3| = 312 |A4| = 344 | A1âĐA2 | = 0 âĶâĶ (1) | A1âĐA3 | = 14 | A1âĐA4 | = 213 | A2âĐA3 | = 211 | A2âĐA4 | = 43 | A3âĐA4 | = 0 âĶâĶ (2) Doanda Dresta Rahma 5025201049 Matematika Diskrit C Dari (1) dan (2), didapatkan: | A1âĐA2âĐA3 | = 0 | A1âĐA2âĐA4 | = 0 | A1âĐA3âĐA4 | = 0 | A2âĐA3âĐA4 | = 0 | A1âĐA2âĐA3 âĐA4 | = 0 Dengan prinsip inklusi-eksklusi: |A1âŠA2âŠA3 âŠA4| = |A1| + |A2| + |A3| + |A4| â |A1âĐA2| â |A1âĐA3| â |A1âĐA4| â |A2âĐA3| â |A2âĐA4| â |A3âĐA4| + |A1âĐA2âĐA3| + |A1âĐA2âĐA4| + |A1âĐA3âĐA4| + |A2âĐA3âĐA4| â |A1âĐA2âĐA3 âĐA4| = 507 + 292 + 312 + 344 â 0 â 14 â 213 â 211 â 43 â 0 + 0 + 0 +0+0â0 = 974 Jadi, terdapat 974 murid mengambil calculus, discrete mathematics, data structures atau programming languages. Exercise 2.3: 36 Find f âĶ g and g âĶ f , where f (x) = x2 + 1 and g(x) = x + 2, are functions from R to R. (ð â ð)(ðĨ) = ð(ð(ðĨ)) = (ð(ðĨ))² + 1 = (ðĨ + 2)² + 1 = ðĨ² + 4ðĨ + 4 + 1 = ðĨ² + 4ðĨ + 5 (ð â ð)(ðĨ) = ð(ð(ðĨ)) = ð(ðĨ) + 2 = ðĨ 2 + 1 + 2 = ðĨ 2 + 3 Exercise 2.3: 37 Find f + g and fg for the functions f and g given in Exercise 36. (ð + ð)(ðĨ) = ð(ðĨ) + ð(ðĨ) = ðĨ 2 + 1 + ðĨ + 2 = ðĨ 2 + ðĨ + 3 (ðð)(ðĨ) = ð(ðĨ) â ð(ðĨ) = (ðĨ 2 + 1)(ðĨ + 2) = ðĨ 3 + 2ðĨ 2 + ðĨ + 2 Doanda Dresta Rahma 5025201049 Matematika Diskrit C Exercise 2.3: 38 Let f (x) = ax + b and g(x) = cx + d, where a, b, c, and d are constants. Determine necessary and sufficient conditions on the constants a, b, c, and d so that f âĶ g = g âĶ f . (ð â ð)(ðĨ) = ð(ððĨ + ð) + ð = ðððĨ + ðð + ð (ð â ð)(ðĨ) = ð(ððĨ + ð) + ð = ðððĨ + ðð + ð (ð â ð)(ðĨ) = (ð â ð)(ðĨ) ðððĨ + ðð + ð = ðððĨ + ðð + ð ðð + ð = ðð + ð ðð â ð = ðð â ð ð(ð â 1) = ð(ð â 1) ð ð = ðâ1 ðâ1 ð âĶ ð = ð âĶ ð jika dan hanya jika konstanta a, b, c, d memenuhi persamaan ð ð = ðâ1 ðâ1 ð â 1, ð â 0, ð â 1, ð â 0