Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CPP FI I TJEE Name: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Enr ol mentNo. : _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1. I ff Bat ch: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Facul t yI D: MAS I f Dat e: _ _ _ _ _ _ _ _ _ _ _ _ _ Dept .ofMat hemat i cs t hen ( A)onl ywhenm =n ( C)onl ywhenm =–n 2. Funct i on ( B)onl ywhen ( D)f oral l m andn t hent hepossi bl esetofv al uesofxandyar e ( A) ( B) ( C) and ( D) and 3. LetSbet hesetofal l t r i angl esand bet hesetofposi t i v er eal number s.Thent he f unct i on, , wher e i s: ( A)i nj ect i v ebutnotsur j ect i v e ( B)sur j ect i v ebutnoti nj ect i v e ( C)i nj ect i v easwel l assur j ect i v e ( D)nei t heri nj ect i v enorsur j ect i v e 4. I f and , t hendomai nof i s: 5. 6. 7. ( A) ( B) ( C) ( D) I f and i st hei nv er seof t heng’ ( x)i sequal t o ( A) ( B) ( C) ( D)noneoft hese I f v al ueoff ( 1)i sequal t o ( A)1 ( C)0 Let andi ff( x)i snotaconst antf unct i on, t hent he ( B)2 ( D)–1 , wher ef ( x)andg( x)ar er eal v al uedf unct i ons.Foral l possi bl ev al uesof ( A) ( B) ( C) 8. Let ( D) domai nof i s[ –5, 7] , domai nof i s[ –6, 1]andr angeofh( x )i s t hesameasdomai noff ( x) , t henv al ueofki s 9. ( A) ( B) ( C)1 ( D)noneoft hese Let ( wher e[ . ]denot est hegr eat esti nt egerf unct i on) , t hen ( A)Rangeoffi s{ –1, 1} ( B)fi sanev enf unct i on ( C)fi sanoddf unct i on ( D) exi st s, f orev er yi nt egern 10. Let beaone–onemappi ngsucht hatonl yoneoft hef ol l owi ngt hr ee st at ement si st r ueandr emai ni ngt woar ef al se: ( A) ( B) ( C) ( D) t hen 11. Thei mageoft hei nt er v al [ –1, 3]undert hemappi ngspeci f i edbyt hef unct i on i s: ( A) ( B) ( C) ( D) 12. I f t henv al ueof ( A)0 ( C)–1 13. Let i s: ( B)1 ( D) , wher e‘ a’ i saposi t i v er eal numbernotequal t o1andF( x )i san oddf unct i on.Whi choft hef ol l owi ngst at ement si st r ue? ( A)G( x)i sanoddf unct i on ( B)G( x)i sanev enf unct i on ( C)G( x)i snei t herev ennoroddf unct i on ( D)Whet herG( x)i sanoddorev enf unct i ondependsont hev al ueof‘ a’ . 14. S1:I ff ( x)i si ncr easi ngf unct i ont hen i sal soi ncr easi ngf unct i on S2:I ff ( x)i sconst antf unct i on, t hen i sal soaconst antf unct i on –1 S3:I fgr aphoff ( x)andf ( x)ar ei nt er sect i ngt hent heyal way si nt er sectont hel i ne S4: Thei nv er seof ( A)TTTF ( C)FFFT i s ( B)TFFT ( D)TFTT 15. S1: I fgofi sone–onet henbot hfandgmustbeone–one S2: Gr aphoft hecur v e l i esi nf our t hquadr ant S3: I fgofi sont of unct i ont henfmaynotbeont o S4: I fgofi sbi j ect i v et henbot hfandgmustbebi j ect i v e ( A)TTTF ( B)FFFF ( C)TTTT ( D)FTTF 16. S1: def i nedas i sanoddandont of unct i on. S2: Foral l r eal v al uesofxandyt her el at i on S3: I f and S4: I f ( A)TTFF ( C)TFTF r epr esent syasaf unct i onofx. t henf=g , t hen ( B)TFFT ( D)FTTF 17. S1: Af unct i oni si nv er t i bl ei f fi ti sone–one S2: Letfandgbet wof unct i ons sucht hatgofi sone–onet henfmustbeone–one S3: Fundament al per i odofsi n{ x}i s1.Wher e r epr esentf r act i onal par tf unct i ons. S4: I f ( A)TTFF ( C)FTTF i sanoddf unct i onst hen ( B)TTFT ( D)FTTT 18. Consi dert hef ol l owi ngst at ement s: S1: Numberofsol ut i onsof i st wo S2: i ssur j ect i v ef unct i on S3: Al l basi ci nv er set r i gonomet r i cf unct i onar eper i odi c S4: Domai nof i s St at e, i nor der , whet her ( A)TTFF ( C)FTTF ar et r ueorf al se ( B)TTFT ( D)FTTT 19. Let andg: c Dbef unct i onsf orwhi chcomposi t ef unct i ongofi sdef i ned: S1: I feachoffandgi sone–one, t hengofi sone–one S2: I feachoffandgi sont o, t hengofi sont o S3: I fB=Candgofi sone–one, t hengmaynotbeone–one S4: I fB=Candgofi sont o, t henfmaynotbeont o ( A)FTFF ( B)TTFF ( C)TFTT ( D)TTTT Sect i onI I:Mul t i pl eCor r ectAnswerTy pe 20. Whi choft hef ol l owi ngf unct i onsar eper i odi c? ( A) ( B) ( C) ( D) 21. Thegr aphoft hef unct i on gr aphcor r ect ? ( wher e[ . ]denot esgr eat esti nt egerf unct i on) i sasshowni nt hef i gur e.Thenwhi choneoft hef ol l owi ng ( A) ( B) ( C) ( D) 22. , wher e[ . ]denot et hegr eat esti nt egerf unct i on, hasf undament al per i od f or ( A) ( B) ( C) ( D) 23. Letf ( x)bear eal v al uedf unct i ondef i nedon: sucht hat wher e [ x]=t hegr eat esti nt eger .Then ( A)fi smany–oneandi nt of unct i on ( C)f( x)=0f oronl yt wor eal v al ues ( B)f( x)=0f ori nf i ni t enumberofv al uesofx ( D)noneoft hese 24. I f i sgi v enf unct i on, t henwhi choft hef ol l owi ngar ecor r ect : ( A)f( x)i samany–oneandi nt of unct i on ( B)fi smanyoneont of unct i on ( C)r angeoffi s ( D)r angeoffi s 25. Whi choft hef ol l owi ngpai r ( s)off unct i onsar ei dent i cal ? ( A) ( B) ( C) ( D) wher esgn( . ) , { . }denot essi gnum, gr eat esti nt egerand f r act i onal par tf unct i onr espect i v el y ) 26. I f f or i si nv er t i bl e, wher e{ . }and[ . ]r epr esent f r act i onpar tandgr eat esti nt egerf unct i onsr espect i v el y , t hen ( A) ( B) ( C) ( D) 27. Rangeof i s i s ( A) ( B) ( C) ( D)noneoft hese Sect i on–I I I:Asser t i onandReasonTy pe Foreach2838quest i onsopt i onsar easf ol l owi ng( A)St at ement1i st r ue, St at ement2i st r ue, St at ement2i scor r ectexpl anat i onofSt at ement1 ( B)St at ement1i st r ue,St at ement2i st r ue,St at ement2i snotcor r ectexpl anat i onof St at ement1 ( C)St at ement1i st r ue, St at ement2i sf al se ( D)St at ement1i sf al se, St at ement2i st r ue 28. St at ement–1: cannotbeexpr essedast hesum ofev enandoddf unct i on St at ement–2: i snei t herev ennoroddf unct i on 29. St at ement–1: I f t hen St at ement–2: Theder i v at i v eofanoddf unct i oni sev enandv i ce–v er sa 30. St at ement–1Thei nv er seofast r i ct l yi ncr easi ngexponent i al f unct i oni sal ogar i t hmi c f unct i ont hati sst r i ct l ydecr easi ng. St at ement–2 i si nv er seofex 31. St at ement–1Fundament al per i odof i s St at ement–2I ft heper i odoff ( x)i sT1andt heper i odofg( x)i sT2, t hent hef undament al per i odof i st heLC. M.ofT1andT2 32. St at ement–1: I faf unct i on i ssy mmet r i cabout St at ement–2: I f , t hen t hen 33. St at ement–1: i sper i odi cand i sal soper i odi c St at ement–2: I ft heder i v at i v eofaf unct i oni sper i odi c, t hent hef unct i onwi l l al sobe per i odi c 34. St at ement–1: f unct i on St at ement–2: i sper i odi c i sper i odi ci f i sper i odi c 35. St at ement–1: Thef unct i on, cannotat t ai nt hev al ue St at ement–2: Thedomai nof 36. St at ement-1: Rangeof i s doesnotcont ai n ( wher e{ . }r epr esent sf r act i onal par tf unct i on) St at ement–2: 37. St at ement–1: Let beaf unct i ondef i nedby .Then fi smany–onef unct i on. St at ement–2: I fei t her or domai noff , t hen f unct i on. 38. Consi dert hef ol l owi ngst at ement s: St at ement–1: i saone–onef unct i on. St at ement–2: Theper i odof i s and i sani r r at i onal number . I f Sect i on–I V:Compr ehensi onTy pe Compr ehensi onI i sabi j ect i v ef unct i ondef i nedby wher ea, b, car enon zer or eal number s, t hen 39. f( 2)i sequal t o ( A)2 ( C)0 ( B) wher e ( D)cannotbedet er mi ned 40. Whi choft hef ol l owi ngi soneoft her oot s ( A) ( B) ( C) ( D) i s 41. Whi choft hef ol l owi ngi snotav al ueofa? ( A) ( B) ( C) ( D)1 Compr ehensi onI I i sone–one Let and 42. i snotdef i nedi f ( A) ( B) ( C) ( D) 43. I fdomai nof i s[ –1, 2] ; t hen ( A) ( C) ( B) ( D) 44. I fa=2andb=3t henr angeof i s ( A) ( B) ( C)[ 4, 8] ( D)[ –1, 8] Compr ehensi onI I I Let i saf unct i onsat i sf y i ng and f unct i onfanswert hef ol l owi ng 45. I f t henmi ni mum possi bl enumberofv al uesofxsat i sf y i ng i s ( A)21 ( C)11 46. Gr aphofy=f( x)i s ( A)sy mmet r i cal aboutx=18 ( C)sy mmet r i cal aboutx=8 47. I f t hen ( A)f undament al per i odoff( x)i s1 ( C)per i odoff ( x)can’ tbe1 ( B)sy mmet r i cal aboutx=5 ( D)sy mmet r i cal aboutx=20 ( B)f undament al per i odoff ( x)maybe1 ( D)f undament al per i odoff ( x)i s8 sat i sf y t hen 48. Val ueofai s ( A)4 ( C) ( B)2 ( D)1 49. ( A) ( C) 50. Numberofsol ut i onsof ( A)1 ( C)3 f or ( B)12 ( D)22 Compr ehensi onI V I f .Fort hi s ( B) ( D)0 i s ( B)2 ( D)4 , Sect i onV 51. Mat cht hef ol l owi ng Col umnI ( A) Thenumberofpossi bl ev al uesofki ff undament al ( P) per i odof 1 i s , i s ( B) Number s of el ement s i n t he domai n of ( Q) i s ( C) ( R) Per i odoft hef unct i on i s 2 ( D) I ft her angeoft hef unct i on 4 and t hen S) i s{ a, b, c} ( 52. Mat cht hef ol l owi ng ( B) ( C) ( D) ( T) Col umnI Funct i on def i nedby Funct i on i s def i nedby Funct i on i s def i nedby i s Funct i on 3 i sequalt o( wher e[ . ] denot esgr eat esti nt eger ) ( A) def i nedby i s 0 Col umnI I ( P) onet oonef unct i on ( Q) many – f unct i on ( R) i nt of unct i on Col umnI ( A) I fsmal l estposi t i v ei nt egr alv al ueofxf orwhi ch ( P) i s , t hen i sequal t o ( B) Numberofsol Q) ut i on( s)of i s( wher e[ . ]( ( D) { . }ar egr eat esti nt egerandl easti nt egerf unct i ons r espect i v el y ) I f andmaxi mum v al ueof i s t hen i sequal t o f oral l t henper i odof one ( S) ont of unct i on 53. Mat cht hef ol l owi ng ( C) Col umnI I 4 Col umnI I 1 ( R) 2 ( S) 0 ( T) 3 i s 54. Mat cht hef ol l owi ng Col umnI ( A) I ff unct i onf ( x)i sdef i nedi n[ –2,2] ,t hendomai nof ( P) i s ( B) ( Q) Rangeoft hef unct i on i s ( C) Rangeoft hef unct i on i s ( R) Col umnI I [ –1, 1] ( D) Rangeof ( S) i s ( T) 55. Mat cht hef ol l owi ng ( A) ( B) Col umnI Domai nof i s Rangeof Col umnI I ( P) ( Q) i s ( C) Setofal lv al ues ofp f orwhi ch t he f unct i on ( R) i sbi j ect i v ei s ( D) I S) f i sdef i nedby t hen ( setAf orwhi chf ( x)becomesi nv er t i bl e, i s ( T) 56. Mat cht her angeoff unct i onsgi v eni nCol umn–Iwi t hcol umn–I I Col umnI ( A) ( P) ( B) ( Q) ( C) ( R) ( D) ( S) Col umnI I Sect i on–VI I nt egerAnswerTy pe 57. Fi ndt henumberofsol ut i onsoft heequat i on ( wher e[ x]and{ x}denot esi nt egr al andf r act i onal par tofx) 58. I f f unct i onwi t h f oral l r eal v al uesofxandyandf( x)i sapol y nomi al , t henf i ndt hev al ueof 59. Thef unct i onal r el at i on wher e . i ssat i sf y i ngbyt hef unct i on t henf i ndv al ueof 60. Fi ndnumberofi nt egr al sol ut i onsoft heequat i on .Her e[ . ]denot esgr eat est i nt egerf unct i on. 61. I fdomai nof i s , t henf i ndt hev al ueof . ANSWERS( FUNCTI ON) 1. 5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 45. 49. 51. 52. 53. 54. 55. 56. 57. 61. D C A B D ABC ABCD A C C D A C AQ APR AP AQ AR AR 2 5 2. C 6. B 10. C 14. B 18. A 22. AB 26. ABC 30. D 34. B 38. A 42. A 46. A 50. C BQ BPS BT B T BS BQ 58. 9 3. 7. 11. 15. 19. 23. 27. 31. 35. 39. 43. 47. B A D D C AB D C A C A C CQ CQSDQS CT CR CQ CS 59. 1 4. 8. 12. 16. 20. 24. 28. 32. 36. 40. 44. 48. A D B B ABCD AD D A A A C A DR D T DS D P D R 60. 2