Download STUDY GUIDE FOR ALGEBRA II MIDTERM Identify a property

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
STUDY GUIDE FOR ALGEBRA II MIDTERM
A) Identify a property demonstrated by an equation. (1-2 Example 2, pg. 15)
Example: (3+6)-(-6)=3+⌈6 + (−6)⌉
Associative Property of Addition
B) Adding and Subtracting Square Roots (1-3 Example 4, pg. 23)
Example: 5√3 − √12 = 3√𝟑
C) Simplifying Expressions (1-4 Example 3, pg. 28)
Example: b(5a2 – 2a) – 11a2b + 2ab = -6a2b
D) Using Properties of Exponents to Simplify Expressions (1-5 Example 3, Pg. 36)
𝑎𝑏 4
𝒂𝟐
Example: ( 𝑏7 )2 = 𝒃𝟔
E) Determining Whether a Relation is a Function (1-6 Example 2, Pg. 45)
Example: {(7,1), (7,2), (7,3), (7,4), (7,6)}
Not a Function
F) Evaluating Functions (1-7 Example 1, pg. 51)
Example: Evaluate f(0). f(x)=7-2x; f(0)=7-2(0)=7-0=7
G) Translating Points (1-8 Example 1, pg. 59)
Example: Translate the point (2,-1) 2 units right and 3 units up
(4,2)
H) Identifying Parent Functions to Model Data Sets (1-9 Example 2, pg. 68)
I) Solving Inequalities (2-1, Example 5, Pg. 93)
Example: Solve 9x+4 < 12x – 11
x>5
J) Solving Proportions (2-2, Example 1, pg. 97)
Example:
22
9
𝑥
= 13.5
x=33
K) Find the intercepts of a line (2-3 Example 3, pg. 106)
Example: Find the intercepts of 2x-3y = 12
x-intercept= 6, y-intercept=-4
L) Writing Equations of Parallel and Perpendicular Lines (2-4, Example 5, pg. 119)
Example: Write the equation of the line parallel to y=1.5x + 6 and through (4,5)
M) Graphing Linear Inequalities (2-5 Example 1, pg. 124)
y=1.5x-1
1
Example: Graph the inequality y<2 𝑥 + 1 See pg. 124 for graph
N) Transforming Linear Functions (2-6 Examples 1,2,and3, pg. 135-136)
Example: Let g(x) be a horizontal compression of f(x)=2x-1 by a factor of 1/3. Write the rule for g(x).
g(x)=6x-1
O) Find the equation that best fits a data set (2-7 Example 1, pg. 142)
P) Solving Absolute Value Inequalities and Equations (2-8 Examples 1, 2, 3, 4, pg. 151-153)
Example: Solve the inequality
|3𝑥−9|
2
≤ 12
x≤11 and x≥ −5 so the solution set is {𝒙|−𝟓 ≤ 𝒙 ≤ 𝟏𝟏}
Q) Translating Absolute Value Functions (2-9 Examples 1 and 3, pg. 158,159)
Example: Write the rule for the transformation of f(x)= -|𝑥 − 4| + 3 across the y-axis.
g(x)= -|−𝒙 − 𝟒| + 𝟑
R) Solving Linear Systems (3-2 Examples 1, 2, and 3, pg. 190-192)
Example: Solve the system y=x+2; x+y=8
(3,5)
S) Solving a system of linear inequalities (3-3 Examples 1 and 3, pg. 199-201)
Example: Graph the system of inequalities and classify the figure created by the solution region.
y≤5, y≥2, y≤3x+1, y≥3x-4
The solution region is a parallelogram.
T) Solving a Linear System in 3 Variables (3-6 Example 1, pg. 221)
Solve the system: x+2y-3x=-2, 2x-2y + z = 7, x+y+2z = -4
(1,-3,-1)
U) Translating Quadratic Functions (5-1, Example 2, pg. 316)
Using the graph of f(x)=x2 as a guide, describe the transformation. g(x)=(x+3)2+1
g is f translated 3 units left and 1 unit up
V) Graphing Quadratic Functions in Standard Form (Find the axis of symmetry, vertex, y-intercept) (5-2
Example 2, pg. 324-325)
W) Find the zeros of a quadratic equation (5-3 Examples 1 and 2, pg. 333-334)
Example: Find the zeros of f(x)=x2 +2x – 3
-3 and 1
X) Solving a Quadratic Equation by Completing the Square (5-4 Example 3, pg. 343)
Example: Solve x2=27-6x
x=3 or x=-9
Y) Write a quadratic function in Vertex Form (5-4 Example 4, pg. 344)
Example: f(x)=x2 + 10x – 13
f(x)=(x+5)2-38
Z) Solving a Quadratic Equation with Imaginary Solutions (5-5 Example 2, pg. 351)
Examples: Solve 3x2 + 75 = 0
x=±5i
AA) Solve quadratic equations using the quadratic formula (5-6 Examples 1 and 2, pg 357)
Example: Find the zeros of f(x)=x2+10x+2
x=-5±√𝟐𝟑
BB) Solve quadratic inequalities (5-7 Example 3, pg. 368)
Example: Solve x2-4x+1>6
x<-1 or x>5, or (-∞, -1) U (5,∞)
CC) Multiplying Complex Numbers (5-9 Example 4, pg. 385)
Example:Multiply (5-6i)(4-3i) = 2-39i
DD)
Adding and Subtracting Polynomials (6-1, Example 3, pg. 407)
Example: (3x2 + 7 + x) + (14x3 + 2 + x2 – x) = 14x3 + 4x2 + 9
EE) Expanding the Power of a Binomial (6-2 Example 4, pg. 416)
Example: (x+y)3 = x3 + 3x2 + 3xy2 + y3
FF) Divide Polynomials (6-3 Examples 1 and 2, pg. 422 and 423)
𝟓𝟎
Example: Divide (4x2 +3x3+10) ÷ (x+2) = 3x2+10x+20+𝐱+𝟐
GG)
Factoring Polynomials (6-4, Examples 2 and 3, pg. 431)
Example: Factor 5x4 + 40x = 5x(x+2)(x2-2x+4)
HH)
Determining Maxima and Minima with a Graphing Calculator (6-7 Example 4, pg. 456)
Example: Graph g(x)=2x3 – 12 x + 6 and estimate the local maxima and minima. Local max: 17.3137
Local min: -5.3137
II) Tranforming a Polynomial Function (6-8 Example 1,2,3,4, pg. 460-462)
Example: Let f(x)=x3-7x2+6x-5. Write a function g that reflects f(x) across the x-axis.
g(x)=-x3+7x2-6x+5
Related documents