Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
International Conference on Physics in Memoriam Acad. Prof. Matey Mateev Peter Velinov, Simeon Asenovski, Lachezar Mateev Institute for Space and Solar-Terrestrial Research, BAS Alexander Mishev Institute for Nuclear Research and Nuclear Energy, BAS Sodankyla Geophysical Observatory (Oulu unit) The influences of galactic and solar cosmic rays (CR) in the middle atmosphere and lower ionosphere are mainly related to ionization and excitation. In this way, CR modify the electric conductivity in the middle atmosphere and the electric processes in it. One fundamental problem in the understanding of interaction between CR and the neutral components in the atmosphere is precisely determination of the electron production rate profiles. The effects of galactic and solar cosmic rays in the middle atmosphere can be computed with our model CRIMA. We take into account the CR modulation by solar wind and the anomalous CR component also. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and the middle atmosphere is developed. For this purpose, the ionization losses (dE/dh) for the energetic charged particles according to the Bohr-Bethe-Bloch formula are approximated in different energy intervals (two ionization losses intervals, one charge Z decrease interval and intermediate coupling intervals). Electron production rate profiles q(h) are determined by the numerical evaluation of a 3D integral with account of cut-off rigidities. For calculations are used computer algebra systems Wolfram Mathematica 7 and Maple 14, and Pascal procedures. An introduction in Cosmic Ray Ionization Model for the Atmosphere (CRIMA) Reviews of the main results and computer simulations made by CRIMA Some results by CORSIKA simulations in middle and lower atmosphere Future development and conclusions CR are main ionization agent in middle atmosphere and lower ionosphere The influence of CR penetration in the Earth’s atmosphere is important for understanding of the solar-terrestrial relationships and space weather The presented model is developed on the base of Bohr-Bethe-Bloch theory for ionization losses due to charged particles penetration through substance This new generalized model contributes to the better accuracy of the problem solution towards the experimental data An intermediate transition region between neighbouring energy intervals is introduced and the charge decrease interval is taken into account 104 m-2 s-1 ~ 109 eV 10-2 km-2 yr-1 ~1021 eV “knee” “ankle” Energy intervals approximation in six steps of the ionization losses function according to Bohr-Bethe-Bloch theory and with account of experimental data : 2.57 103 E 0.5 0.23 1540 E 2 0.77 1 dE 231 Z E dh 68 Z 2 E 0.53 1.91 Z 2 2 0.123 0.66 Z E if kT E 0.15 MeV/n , interval 1 if 0.15 E Ea 0.15Z 2 MeV/n , interval 2 if Ea E 200 MeV/n , interval 3 if 200 E 850 MeV/n , interval 4 if 850 E 5 103 MeV/n , interval 5 if 5 103 E 5 10 6 MeV/n , interval 6 E – kinetic energy of particles kT – thermal energy Interval 2 – charge decrease interval Z – charge of the penetrating particle (1) The energy cut-offs (atmospheric and geomagnetic) determined the starting point of CR differential spectrum at the top of the atmosphere The atmospheric cut-offs are derived for those values of the traveling substance path, which correspond to the actual energy interval of the ionization losses function ~ h E Emin where: h dE (h)dh h H (h) 1 dE h 1 dh ~ - traveling substance path h ρ(h) - neutral density in the atmosphere at altitude h H(h) – scale height ( 2) Interval 1 1285 ~ 0.5 E A1 h h kT A 2 (3) Interval 2 (charge decrease interval) 1185.8 ~ 0.5 E A2 h 0.150.77 0.9228 0.150.5 kT h A 1 / 0.77 (4) Interval 3 EA3 h Ea1.77 0.3182 Z 2 0.150.5 kT 0.345 Z E 2 0.77 a 0.15 0.77 0.5 ~ 1/1.77 408.87 Z / A h 2 (5) Interval 4 Z2 ~ 0.5 1.53 E A4 h 200 104.04 h 0.081 Z 2 0.150.5 kT A 0.088 Z 2 Ea0.77 0.150.77 0.254 2001.77 Ea1.77 1/ 1.53 (6) Interval 5 1.91 Z 2 ~ 0.5 E A5 h h 850 1.49 103 Z 2 0.150.5 kT A 1.6 10 3 Z 2 Ea0.77 0.150.77 4.67 10 3 2001.77 Ea1.77 0.018 8501.53 2001.53 (7) Interval 6 Z2 ~ 0.877 E A6 h 5000 0.579 h 4.5 104 Z 2 0.150.5 kT 0.5 4.88 104 Z 2 E 0.77 0.150.77 a A 1.4110 3 2001.77 Ea1.77 5.56 10 3 8501.53 2001.53 1257,45]1/ 0,877 (8) The boundary crossing defines the energy transfer over the interval limits Boundary crossing between intervals 1 and 2 1285 ~ E21 h 0.150.5 1.08 Ek0.77 0.150.77 h A 2 (9) Boundary crossing between intervals 2 and 3 2.9 1185.8 ~ E32 h Ea0.77 2 Ek1.77 Ea1.77 h Z A 1 / 0.77 (10) Boundary crossing between intervals 3 and 4 408.87 Z 2 1.77 1.53 1.53 E43 h 200 3.93 Ek 200 A ~ h 1 / 1.77 (11) Boundary crossing between intervals 4 and 5 ~ 1 / 1.53 E54 h 8501.53 54.47Ek 850 104.04 Z 2 / A h Boundary crossing between intervals 5 and 6 ~ E65 h 5000 1.91 Z 2 / A h 3.3 Ek0.877 50000.877 (13) (12) They define the starting energy values of the interval limits before entering of charged particles in the atmosphere Initial energy of boundary between intervals 1 and 2 1185.8 ~ E0.15; 2 h 0.150.77 h A 1 / 0.77 (14) Initial energy of boundary between intervals 2 and 3 ~ 1 / 1.77 EEa ,3 h Ea1.77 408.87 Z 2 / A h (15) Initial energy of boundary between intervals 3 and 4 ~ 1 / 1.53 E200, 4 h 2001.53 104.04 Z 2 / A h Initial energy of boundary between intervals 4 and 5 ~ E850,5 h 850 1.91 Z 2 / A h (16) (17) Initial energy of boundary between intervals 5 and 6 ~ 1/ 0.877 E5000,6 h 50000.877 0.579 Z 2 / A h (18) They define the energy decrease in the energy intervals without boundary crossings Energy decrease law in interval 1 1285 ~ E1 h Ek0.5 h A 2 (19) Energy decrease law in interval 2 1185.8 ~ E2 h Ek0.77 h A 1 / 0.77 (20) Energy decrease law in interval 3 ~ 1 / 1.77 E3 h Ek1.77 408.87 Z 2 / A h Energy decrease law in interval 4 ~ E4 h Ek1.53 104.04 Z 2 / A h 1 / 1.53 (22) Energy decrease law in interval 5 ~ E5 h Ek 1.91 Z 2 / A h (21) (23) Energy decrease law in interval 6 ~ 1 / 0.877 E6 h Ek0.877 0.579 Z 2 / A h (24) The improved CR ionization model includes the electron production rate terms in 6 energy intervals of the ionization losses function and 5 intermediate transition region terms between the basic intervals Lower boundary of integration Emin. The following case of lower integration boundary is assumed: kT EA1(h) Emin 0.15 < Ea MeV/n (25) The lower bound of integration Emin is chosen as the maximum of the atmospheric cut-off and the geomagnetic cut-off rigidity The case of vertical penetration of cosmic rays is considered This model can be extended to the 3-dimensional case in the Earth environment with introduction of the Chapman function E0.15; 2 h 0.15 0.5 0.5 qh 2570 DE E1 h dE DE E21 h dE Q Emin 0.15 h EEa , 3 h Ea 0.23 0.23 1540 DE E2 h dE DE E32 h dE E0.15; 2 h Ea E200, 4 h 200 0.77 0.77 231 Z DE E3 h dE DE E43 h dE EEa , 3 h 200 2 E850, 5 h 850 0 . 53 0.53 68 Z 2 DE E4 h dE DE E54 h dE E200, 4 h 850 5000 E5000, 6 h dE E5 h dE D E dh E8 5 0, 5 h 5000 dE DE E65 h dE 0.66 Z 2 dh E D E E h 5000, 6 0.123 6 h dE • The electron production rate values are proportional to the square of the charge (Z2), flux intensity in the different energies and the neutral density in middle atmosphere • Above 90 km ACR ionization dominates over GCR ionization • The geomagnetic cut offs reflect the influence of the geomagnetic field on the CR penetration in the middle atmosphere of the Earth. • For the higher Rc are obtained the profiles with smaller values. CORSIKA (COsmic Ray SImulations for KAscade) is a program for detailed simulation of extensive air showers initiated by high energy cosmic ray particles Hadronic interactions at lower energies are described either by the GHEISHA interaction routines, by a link to FLUKA Version CORSIKA 6.970 from July 19, 2010 (D. Heck et al.) 1 1 Y ( x, E ) E ( x, E ) x Eion Ion rate q(h, m ) D( E , m )Y (h, E ) (h)dE E0 Total ionization EM ionization Muon ionization Hadron ionization 1 GeV Protons 5 10 Total Ionization EM ionization Muon ionization Hadron ionization 10 GeV Protons 6 10 4 10 5 Y [sr cm g ] 3 2 -1 2 -1 Y [sr cm g ] 10 10 2 10 4 10 3 1 10 10 0 10 2 10 0 200 400 600 0 800 200 -2 600 800 1000 1200 -2 Atmospheric Depth [g cm ] 100 GeV Protons 400 Atmospheric Depth [g cm ] Total ionization EM ionization Muon ionization Hadron ionization 1 TeV Protons Total ionization EM ionization Muon ionization Hadron ionization 7 10 6 2 -1 Y [sr cm g ] 2 -1 Y [sr cm g ] 10 5 10 6 10 5 10 4 10 4 10 0 0 200 400 600 800 -2 Atmospheric Depth [g cm ] 1000 200 400 600 800 -2 Atmospheric Depth [g cm ] 1000 Y ~ spectrum Total ionization EM ionization Muon ionization Hadron ionization 1.5 GeV Protons 5 GeV protons steep spectrum 70 deg inclined Total ionization EM ionization Muon ionization Hadron ionization 6 10 5 2 -1 Y [sr cm g ] 2 -1 Y [sr cm g ] 10 4 10 5 10 4 10 3 10 2 3 10 10 0 200 400 600 800 1000 -2 Atmospheric Depth [g cm ] 0 200 400 600 800 1000 -2 Atmospheric Depth [g.cm ] Total ionization EM ionization Muon ionization Hadron ionization spectrum of 9 GeV protons 70 degrees inclined 6 70 degrees inclined 6 10 2 -1 Y [sr cm g ] 2 -1 Y [sr cm g ] 10 Total ionization EM ionization Muon ionization Hadron ionization spectrum of 15 GeV protons 5 10 5 10 4 10 4 10 3 10 0 3 10 200 400 600 800 -2 0 200 400 600 800 -2 Atmospheric Depth [g.cm ] 1000 1200 Atmospheric Depth [g.cm ] 1000 qsolar minimum qsolar maximum 100 90 Experimental data 80 -3 q [ion pairs s cm ] 70 -1 60 50 40 30 20 10 0 0 200 400 600 800-2 Atmospheric Depth [g cm ] 1000 1200 Fluka 15 GeV protons steep spectrum 70 deg inclined Total ionization EM ionization Muon ionization Hadron ionization Gheisha Total ionization EM ionization Muon ionization Hadron ionization 2 -1 Yield function Y [Ion pairs sr cm g ] 6 10 5 10 4 10 3 10 2 10 0 200 400 600 800 -2 Atmospheric Depth [g cm ] 1000 summer profile winter profile US standard Protons 1 GeV 2 -1 Yield function Y [sr cm g ] 5 1,2x10 4 8,0x10 4 4,0x10 0 200 -2 Atmospheric Depth [g cm ] summer profile winter profile US standard 1 TeV protons 7 2 -1 Yield function Y [sr cm g ] 4,0x10 7 2,0x10 0,0 200 400 600 -2 Atmospheric Depth [g cm ] Rate Rate Rate Rate 100000 Depth [ m, a.s.l.] 10000 1000 100 0,01 0,1 1 10 100 -1 -3 Q [ion pairs s cm ] 1000 10000 h 08 00 h 23 00 h 08 00 h 23 00 40 40 60 60 N N N N h Rate 08 00 60N h Rate 23 00 60N h Rate 08 00 80N h Rate 23 00 80N 100000 Depth [ m, a.s.l.] 10000 1000 100 -1 10 0 10 1 10 2 10 3 10 -1 4 10 -3 Q [ion pairs s cm ] 5 10 6 10 Solar Influence on Climate The general aim is to investigate the effects of solar variability on the climate of the lower and middle atmosphere. Variations in the solar spectral irradiance, as well as solar energetic particles and galactic cosmic rays may impacts on the thermodynamic, chemical, and microphysical structure of the atmosphere. Space Weather "Space Weather" is a term related the science and applications arising from short-term variations of the Sun, propagation of energetic particles and electromagnetic emissions through interplanetary space, and effects on technology and humans orbiting in geospace and on the Earth's surface. It includes rapid phenomena such as solar flares and coronal mass egections, effects of shock waves at the magnetosphere, global magnetic storms Future plans Improvement of CRIMA Operational CRIMA model for computer simulations and visualization Determination of basic parameters in heliophysics and space physics Application of CRIMA model Ionization rate Atmospheric chemistry Comparison with experimental data