Download 24 Electrostatic Potential Energy

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
24 Electrostatic Potential
Energy
1
2
kqi q j
1

2 i  j rij
1  kqAqB kqB q A kqA qC kqC q A kqAqD kqD q A 

 





2  rAB
rBA
rAC
rCA
rAD
rDA 
1  kqB qC kqC qB kqB qD kqD qB kqC qD kqD qC
 





2  rBC
rCB
rBD
rDB
rCD
rDC



3
Example as shown:
rij  a, 2a
kqi q j
1

2 i  j rij
kq2
kq2
4
2
a
2a

kq 
2  kq

4 2
4 

a 
a
2
2
2

4
Capacitance: Charge Storage per Volt Applied
SI Unit: farad [F] = C/V
5
Real Parallel-Plate
Capacitor
Note:
• Uniform Field
• Fringing
6
Parallel Plate Capacitor
E is nearly uniform

E
o
d
V  Ed 
o
o A
Q A
C


V d /  o
d
7
Cylindrical Capacitor
r
8
EA  E2rL  4kQin  4kL
1
E  2k
r
r
Qin  L
9
1
E  2k
r
Q  L
V 
R2
R1
1
Edr   2k dr  2k ln r R2
R1
R1
r
 R2 
V  2k ln  
 R1 
R2
Q L
L
L


C

2k ln R2 R1 
2k ln R2 R1 
V
V
2o L
C
ln R2 R1 
10
Work done in Charging a Capacitor
= (Q)(Vavg)
11
Q = VC
Vavg = ½ Q/C
Work = (Q) x (½ Q/C)= ½ Q2/C
= area under curve
1 Q2 1
1
2
U
 QV  CV
2 C 2
2
12
Energy Density Inside a Capacitor
energy 12 CV 2 12 CE 2 d 2
A o
ue 



volume
Ad
Ad
d
ue   o E
1
2
2
1
2
E 2d 2
Ad
SI Unit: [J/m3]
Ex: Lab Capacitor, C = 1F, V = 6V, vol.=2x10-5 m3.
ue 
1
2
1.0 F 6.0V 
2
5
3
 900,000 J / m  10 J / m
3
6
3
2 x10 m
8
1.4 x10 J
10
3
u gasoline 

3
.
5
x
10
J
/
m
3 3
4 x10 m
about 35,000 higher than capacitor
13
Capacitors in “Parallel” Arrangement
VA  VB  12V "V "
QA  QB  Qeq
Q  CV
QA  QB  C AV  C BV  CeqV
C A  C B    Ceq
Ex.
Ceq  6F  12F  18F
14
Capacitors in “Series” Arrangement
QA  QB  Qeq
Q
V
C

Q=0 


VA  VB 
Q
CA

Q
CB

Q
Ceq
1
1
1

 
C A CB
Ceq
1
1 1
 
Ex.
Ceq 6 12
Ceq  4 F
15
equivalent value?
16
Dielectric
Constant K
•
•
•
•
reduces E and V (E = Eo/K)
C = KCo
C = Capacitance with Dielectric
Co = “Empty” Capacitor
17
Ex. K’s
•
•
•
•
•
•
vacuum: 1 exactly
air: 1.00059
paper: 3.7
water: 80
barium titanate: 1200
potassium tantalate niobate (0 °C): 34,000
18
Supercapacitors
•
•
•
•
porous structure
surface areas much greater
charge separation distance < 1 nm
very high capacitance
19
Batteries
slow/special
charging
Capacitors
simple/fast
charging
limited # cycles with
decreasing utility
 over 500,000
cycles at 100%
short life
 10 to 12 year life
 high energy
density
low energy density
poor low temp.
performance
 good low temp.
perf.
20
Summary
•
•
•
•
•
Electrostatic potential energy
Capacitance: field, energy, voltage, charge
Capacitors in circuits
Dielectrics
/
21
22
23
24
25
26
27
28
Example with:
kqi q j
1

2 i  j rij
qi  q j  q
rij  a, 2a
1  kq2 kq2 kq2 kq2 kq2 kq2 

 





2 a
a
a
a 
2a
2a
1  kq2 kq2 kq2 kq2 kq2 kq2 

 





2 a
a
a
a 
2a
2a
29
Rolled Parallel-Plate Capacitor (Can Shape)
30
Related documents