Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Parallel Combinatio n of Admittanc es (COMPLEX) ADMITTANCE Y p Yk 1 G jB (Siemens) Z G conductanc e Y k YR 0.1S YC B Suceptanc e 1 1 R jX R jX 2 Z R jX R jX R X 2 L C V jLI 1 V I jC Series Combinatio n of Admittanc es 0.1S Element Phasor Eq. Impedance V RI Y p 0.1 j1( S ) 1 1 Ys k Yk R R2 X 2 X B 2 R X2 G R 1 j1( S ) j1 ZR Z jL Z 1 jC Admittance 1 Y G R 1 Y jL Y jC j 0.1S 1 1 1 Ys 0.1 j 0.1 10 j10 (0.1)( j 0.1) 0.1 j 0.1 0 . 1 j 0 .1 0 . 1 j 0 .1 1 10 j10 Ys 10 j10 200 Ys 0.05 j 0.05 S Ys LEARNING EXAMPLE VS 6045(V ) LEARNING EXTENSION FIND Y p , I Y p YR YL 0.5 j 0.25 Y p 0.5 j 0.5 j1 0.25 0.75 j 0.5( S ) Y p 0.901433.69( S ) 2 j4 2 j4 Yp 0.5 j 0.25( S ) 2 j4 j8 I Y pV 0.901433.69 1020 I Y pV (0.5 j 0.25) 6045( A) I 9.01453.79( A) Zp I 0.559 26.565 6045( A) I 33.5418.435( A) LEARNING EXAMPLE SERIES-PARALLEL REDUCTIONS 1 2 j4 2 2 j 4 (2) (4) 2 1 4 j2 Y34 4 j2 20 Y2 Z3 4 j 2 Y4 j 0.25 j 0.5 j 0.25 Z 4 1 / Y4 j 4 1 ( j 2) 1 j2 1 Z1 1 j 0.5 Z1 1 j 0.5 Z1 1 (0.5) 2 Z1 0.8 j 0.4() Z4 j 4 ( j 2) 8 j4 j2 j2 Y2 0.1 j 0.2( S ) Y34 0.2 j 0.1 Z2 2 j 6 j 2 2 j 4 Z34 4 j 2 Z 234 Y234 0.3 j 0.1( S ) Z 234 1 1 0.3 j 0.1 Y234 0.3 j 0.1 0.1 Z 2 Z34 3 j1 Z 2 Z 34 Zeq Z1 Z234 3.8 j 0.6 3.8478.973 LEARNING EXTENSION FIND THE IMPEDANCE ZT Z1 4 j 6 j 4 Z1 4 j 2 Y12 Y1 Y2 ( R P ) Z1 4.47226.565 Y1 0.224 26.565 ( P R)Y1 0.200 j 0.100 Y12 Y1 Y2 0.45 j 0.35 ( R P )Y12 0.570 37.875 Z12 1.75437.875 ( P R) Z12 1.384 j1.077 Z2 2 j 2 ( R P ) Z2 2.82845 Y2 0.354 45 ( P R)Y2 0.250 j 0.250 1 4 j2 ZT 2 (1.384 j1077) 3.383 j1.077 Y1 2 4 j 2 (4) (2) 2 1 2 j2 Y2 2 2 j 2 (2) (2) 2 1 1 0.45 j 0.35 Z12 Y12 0.45 j 0.35 0.325 1 Z12 Y12 BASIC ANALYSIS USING KIRCHHOFF’S LAWS PROBLEM SOLVING STRATEGY For relatively simple circuits use Ohm' s law for AC analysis; i.e., V IZ The rules for combining Z and Y KCL AND KVL Current and voltage divider For more complex circuits use Node analysis Loop analysis Superposit ion Source transformation Thevenin' s and Norton' s theorems MATLAB PSPICE LEARNING EXAMPLE COMPUTE ALL THE VOLTAGES AND CURRENTS Compute I1 Use current divider for I2 , I3 Ohm' s law for V1 , V2 V1 690 I 2 Zeq 4 ( j 6 || 8 j 4) V1 16.2678.42(V ) 24 j 48 32 j8 24 j 48 Z eq 4 8 j2 8 j2 V2 7.2815(V ) 56 j56 79.19645 9.60430.964() 8 j2 8.24614.036 V 2460 I1 S 2.49829.036( A) Zeq 9.60430.964 Z eq j6 690 I1 2.49829.036( A) 8 j2 8.24614.036 8 j4 8.944 26.565 I2 I1 2.49829.036( A) 8 j2 8.24614.036 I3 I1 2.529.06 I 2 2.71 11.58 V2 4 90 I3 I3 1.82105 LEARNING EXTENSION IF VO 845, COMPUTE VS THE PLAN... COMPUTE I3 COMPUTE V1 COMPUTE I2 , I1 COMPUTE VS VO ( A) 445( A) 2 V1 (2 j 2) I3 8 45 445 I3 V1 11.3140(V ) I2 V1 11.3140 5.657 90( A) j2 290 I1 I 2 I3 5.657 90 445 I1 j5.657 (2.828 j 2.828)( A) I1 2.828 j 2.829( A) VS 2 I1 V1 2(2.828 j 2.829) 11.3140 VS 16.97 j5.658(V ) VS 17.888 18.439 ANALYSIS TECHNIQUES PURPOSE: TO REVIEW ALL CIRCUIT ANALYSIS TOOLS DEVELOPED FOR RESISTIVE CIRCUITS; I.E., NODE AND LOOP ANALYSIS, SOURCE SUPERPOSITION, SOURCE TRANSFORMATION, THEVENIN’S AND NORTON’S THEOREMS. COMPUTE I0 V2 60 V 20 V2 2 0 1 j1 1 j1 1 1 6 V2 1 2 1 j1 1 j1 1 j1 V2 1. NODE ANALYSIS V1 V V 20 2 2 0 1 j1 1 1 j1 V1 V2 60 I0 V2 ( A) 1 (1 j1) (1 j1)(1 j1) (1 j1) 2(1 j1) 6 (1 j1)(1 j1) 1 j1 V2 4 8 j2 1 j V2 (4 j )(1 j ) 2 3 5 I 0 j ( A) 2 2 I0 2.92 30.96 NEXT: LOOP ANALYSIS 2. LOOP ANALYSIS ONE COULD ALSO USE THE SUPERMESH TECHNIQUE SOURCE IS NOT SHARED AND Io IS DEFINED BY ONE LOOP CURRENT LOOP 1 : I1 20 I2 I 0 I3 LOOP 2 : (1 j )( I1 I 2 ) 60 (1 j )( I 2 I3 ) 0 LOOP 3 : (1 j )( I 2 I3 ) I3 0 CONSTRAINT : I1 I 2 20 SUPERMESH : (1 j ) I1 60 ( I 2 I 3 ) 0 MUST FIND I3 2 I 2 (1 j ) I3 6 (1 j )(2) (1 j ) I 2 (2 j ) I3 0 (1 j) /* (1 j ) /* (2) 2(2 j ) I3 (1 j )(8 2 j ) 5 3 10 6 j I j ( A) I3 0 2 2 4 2 MESH 3 : ( I 3 I 2 ) (1 j ) I 3 0 I 0 I 2 I3 NEXT: SOURCE SUPERPOSITION Circuit with voltage source set to zero (SHORT CIRCUITED) SOURCE SUPERPOSITION I I L2 1 L = V 1 L + Circuit with current source set to zero(OPEN) Due to the linearity of the models we must have I L I L1 I L2 VL VL1 VL2 Principle of Source Superposition The approach will be useful if solving the two circuits is simpler, or more convenient, than solving a circuit with two sources We can have any combination of sources. And we can partition any way we find convenient VL2 3. SOURCE SUPERPOSITION I 0' 10( A) Z ' (1 j ) || (1 j ) (1 j )(1 j ) 1 (1 j ) (1 j ) COULD USE SOURCE TRANSFORMATION TO COMPUTE I"0 V1" Z" Z" " " 60(V ) I 0 " 60( A) Z 1 j Z 1 j 1 j 1 j I 0" 6 2 j ( 1 j ) 3 j I 0" 6 ( A) 1 j 6 6 " 1 j I j ( A) 0 2 j 4 4 5 3 I 0 I 0' I 0" j ( A) 2 2 Z" Z " 1 || (1 j ) NEXT: SOURCE TRANSFORMATION THEVENIN’S EQUIVALENCE THEOREM LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART A ZTH RTH vTH i a vO b _ i a LINEAR CIRCUIT vO _ LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART B b PART B PART A Phasor Thevenin Equivalent Circuit for PART A vTH Thevenin Equivalent Source RTH Thevenin Equivalent Resistance Impedance 5. THEVENIN ANALYSIS Voltage Divider VOC 10 6 j 1 j (8 2 j ) 2 (1 j ) (1 j ) ZTH (1 j ) || (1 j ) 1 8 2j I0 53j ( A) 2 NEXT: NORTON LEARNING EXAMPLE Find the current i(t) in steady state The sources have different frequencies! For phasor analysis MUST use source superpositio SOURCE 1: FREQUENCY 10 r/s SOURCE 2: FREQUENCY 20r/s Principle of superposition Frequency domain