Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name
LESSON
Date
Class
Practice A
11-5 Measures of Central Tendency and Variation
Find the mean, median, and mode of each data set.
1. { 3, 10, 2, 8, 7, 5, 2, 5 }
a. The mean is the sum of the values in a set divided
by the number of values. Find the mean of the set.
5.25
b. The median is the middle value when the set is
ordered numerically. Find the median of the set.
5
c. The mode is the value or values that occur most
often. Find the mode of the set.
2, 5
2. { 11, 15, 4, 10, 7, 5, 11, 9 }
a. Mean
b. Median
9
c. Mode
9.5
11
Find the expected values.
3. The probability distribution for the number of free throws
that Larry makes in a game is given below. Find the
expected number of free throws that Larry makes in
a game.
Number of Free Throws Made, n
Probability
6.07
5
6
7
8
0.21
0.58
0.14
0.07
4. The probability distribution for the number of pieces of junk
mail May receives is given below. Find the expected
number of junk mail letters May receives in a day.
Number of Junk Mail Letters, n
Probability
2.05
1
2
3
4
0.15
0.70
0.10
0.05
Make a box-and-whisker plot of the data. Find the interquartile range.
5. { 3, 7, 5, 3, 5, 9, 2, 7 }
Interquartile range is 4.
6. { 1, 9, 9, 2, 2, 5, 5, 10 }
Interquartile range is 7.
Find the variance and standard deviation.
7. { 1, 2, 8, 11, 7, 10, 7, 2 }
8. { 10, 14, 8, 12, 9, 13 }
13; 3.6
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c11-5_pr.indd 35
4.7; 2.2
35
Holt Algebra 2
12/26/05 7:22:04 AM
Process Black
*À>VÌViÊ
--"
££x -EASURESOF#ENTRAL4ENDENCYAND6ARIATION
*À>VÌViÊ
--"
££x -EASURESOF#ENTRAL4ENDENCYAND6ARIATION
&INDTHEMEANMEDIANANDMODEOFEACHDATASET
&INDTHEMEANMEDIANANDMODEOFEACHDATASET
OÊP
OÊP
A -EAN
B -EDIAN
C -ODE
A 4HEMEANISTHESUMOFTHEVALUESINASETDIVIDED
BYTHENUMBEROFVALUES&INDTHEMEANOFTHESET
x°Óx
B 4HEMEDIANISTHEMIDDLEVALUEWHENTHESETIS
ORDEREDNUMERICALLY&INDTHEMEDIANOFTHESET
x
C 4HEMODEISTHEVALUEORVALUESTHATOCCURMOST
OFTEN&INDTHEMODEOFTHESET
Ó]Êx
B-EDIAN
°x
C-ODE
0ROBABILITY
.UMBEROF*UNK-AIL,ETTERSN
0ROBABILITY
C -ODE
ȰäÇ
ÌiÀµÕ>ÀÌiÊÀ>}iÊÃÊΰ
ȰnÆÊÓ°È
Ó°äx
°ÎÆÊΰä
)NCHESOF2AINN
ÌiÀµÕ>ÀÌiÊÀ>}iÊÃÊǰ
OÊP
{°ÇÆÊÓ°Ó
ÌÊ}iLÀ>ÊÓ
{x°£
£Î°£
nn
A &INDTHEMEANOFTHEDATA
B &INDTHESTANDARDDEVIATION
C )DENTIFYANYOUTLIERS
D $ESCRIBEHOWANYOUTLIERAFFECTSTHEMEANANDTHESTANDARDDEVIATION
/
iÊi>ÊVÀi>ÃiÃÊvÀÊz{£°ÓÊÌÊz{x°£]Ê>`ÊÌ
iÊÃÌ>`>À`ÊÊ
`iÛ>ÌÊVÀi>ÃiÃÊvÀÊzÓ°£ÊÌÊz£Î°£°
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
ǰä£
!BIOLOGISTISGROWINGBACTERIAINTHELAB&ORACERTAINSPECIESOFBACTERIA
SHERECORDSTHESEDOUBLINGTIMESMINMINMINMINMIN
MINMINMINMINMINMINANDMIN
OÊP
n°{ÆÊÓ°
4HEPROBABILITYDISTRIBUTIONFORTHEAMOUNTOFRAIN
THATFALLSON"OSTONIN-AYEACHYEARISGIVENBELOW
&INDTHEEXPECTEDAMOUNTOFRAINFOR"OSTONIN-AY
0ROBABILITY
£ÎÆÊΰÈ
OÊP
3OLVE
ÌiÀµÕ>ÀÌiÊÀ>}iÊÃÊ{°
OÊP
ÓÇnÆÊ£È°Ç
OÊP
&INDTHEVARIANCEANDSTANDARDDEVIATION
OÊP
OÊP
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
ÌÊ}iLÀ>ÊÓ
*À>VÌViÊ
--"
££x -EASURESOF#ENTRAL4ENDENCYAND6ARIATION
,iÌi>V
--"
££x -EASURESOF#ENTRAL4ENDENCYAND6ARIATION
7RITEADATASETTOSATISFYTHEGIVENCONDITIONS
%XPECTEDVALUECANBETHOUGHTOFASTHELONGTERMAVERAGEOFAN
EXPERIMENTAFTERMANYTRIALS
-EDIANMODE
-EANMEDIAN
*ÃÃLiÊ>ÃÜiÀ\ÊÊOÊ{]Ê{]Ên]Ê]Ê£äÊPÊ 4HETABLESHOWSAPROBABILITYDISTRIBUTIONFORTHEVARIABLEX!PROBABILITY
DISTRIBUTIONTABLEPAIRSEACHOUTCOMEWITHITSPROBABILITY
*ÃÃLiÊ>ÃÜiÀ\ÊÊOÊÎ]ÊÈ]Ê£Ó]Ê£{]Ê£xÊPÊ
-AKEABOXANDWHISKERPLOTOFTHEDATA&INDTHEINTERQUARTILERANGE
/UTCOME
ÌiÀµÕ>ÀÌiÊÀ>}iÊÃÊ£Ó°
0ROBABILITY
X
P
X
P
X
P
XN
N
P
x
x
4OFINDTHEEXPECTEDVALUEFIND
THESUMOFTHEPRODUCTSOFEACH
OUTCOMEANDITSASSOCIATED
PROBABILITY
%XPECTEDVALUEXPXPXPxX NPN
4HISTABLESHOWSTHEPROBABILITYDISTRIBUTIONFORTHENUMBEROFREDMARBLES
SELECTEDWHENMARBLESARERANDOMLYSELECTEDWITHOUTREPLACEMENTFROM
ABAGWITHREDANDBLUEMARBLES&INDTHEEXPECTEDNUMBEROFRED
MARBLESSELECTED
ÌiÀµÕ>ÀÌiÊÀ>}iÊÃÊȰ
/UTCOME
0ROBABILITY
&INDTHEVARIANCEANDSTANDARDDEVIATION
OÊP
Îx°£ÆÊx°
£n°ÈÆÊ{°Î
£ÇÈ°ÓÆÊ£Î°Î
OÊP
3OLVE
4HEPROBABILITYDISTRIBUTIONFORTHENUMBEROFCHILDRENPER
FAMILYINAPARTICULARSUBURBOF#HICAGOISSHOWNBELOW
&INDTHEEXPECTEDNUMBEROFCHILDRENPERFAMILYINTHISREGION
.UMBEROF#HILDRENN
0ROBABILITY
Ó°Ón
/UTCOME
0ROBABILITY
B &INDTHESTANDARDDEVIATION
C )DENTIFYANYOUTLIERS
D $ESCRIBEHOWANYOUTLIERAFFECTSTHEMEANANDTHESTANDARDDEVIATION
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
???
???
???
???
???
x
Ý«iVÌi`ÊÛ>ÕiÊÊÊX£ÊP£ÊÊÊXÓÊPÓÊÊXÊÎÊPÎÊÊÊXÊ{ÊPÊ{ÊÊÊXxÊPxÊ
&INDTHEEXPECTEDVALUEOFTHETEMPERATUREDURINGTHEEXPERIMENT
/
iÊi>ÊVÀi>ÃiÃÊvÀÊz£Î°{ÊÌÊz£Ç°Ç]Ê>`ÊÌ
iÊÃÌ>`>À`ÊÊ
`iÛ>ÌÊVÀi>ÃiÃÊvÀÊz£°ÓÊÌÊz£{°Î°
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
"ECAUSETHEEXPECTED
VALUEISATYPEOFAVERAGE
ITMAYNOTCORRESPOND
EXACTLYTOANYOFTHE
ACTUALOUTCOMES
7RITETHEEXPECTEDVALUEFORMULATOUSE
£Ç°Ç
£{°Î
Èx
4OUSETHEFORMULAFOREXPECTEDVALUEN
!CHEMISTWEIGHSSAMPLESOBTAINEDFROMAPRODUCTIONRUN4HEWEIGHTSOF
THESAMPLESAREGGGGGGGGGG
GANDG
A &INDTHEMEANOFTHEDATA
4HEPROBABILITYDISTRIBUTIONOFTEMPERATURESINDEGREES#ELSIUSFROM
ACHEMISTRYEXPERIMENTISSHOWNBELOW&INDTHEEXPECTEDVALUEOF
THETEMPERATUREDURINGTHEEXPERIMENT
4HEEXPECTEDNUMBEROFREDMARBLESIS
ÎÇ°ÈÆÊȰ£
)NTHEFORMULAFORTHEEXPECTEDVALUEN
%XPECTEDVALUEXPXPXPXP
SDSDSDSD
OÊP
OÊP
AK4up.indd 59
ÌiÀµÕ>ÀÌiÊÀ>}iÊÃÊ{°
OÊP
-AKEABOXANDWHISKERPLOTOFTHEDATA&INDTHEINTERQUARTILERANGE
&INDTHEVARIANCEANDSTANDARDDEVIATION
4HEPROBABILITYDISTRIBUTIONFORTHENUMBEROFPIECESOFJUNK
MAIL-AYRECEIVESISGIVENBELOW&INDTHEEXPECTED
NUMBEROFJUNKMAILLETTERS-AYRECEIVESINADAY
i
.UMBEROF&REE4HROWS-ADEN
B -EDIAN
OÊP
4HEPROBABILITYDISTRIBUTIONFORTHENUMBEROFFREETHROWS
THAT,ARRYMAKESINAGAMEISGIVENBELOW&INDTHE
EXPECTEDNUMBEROFFREETHROWSTHAT,ARRYMAKESIN
AGAME
££
&INDTHEEXPECTEDVALUES
A -EAN
££°x
OÊP
A -EAN
n°È
-AKEABOXANDWHISKERPLOTOFTHEDATA&INDTHEINTERQUARTILERANGE
OÊP
OÊP
£ä°x
ÌÊ}iLÀ>ÊÓ
Ȱ
#OPY©BY(OLT2INEHARTAND7INSTON
!LLSRESERVED
59
ÌÊ}iLÀ>ÊÓ
Holt Algebra 2
12/26/05 6:50:35 AM