Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Winter 2013 Chem 254: Introductory Thermodynamics Chapter 2: Internal Energy (U), Work (w), Heat (q), Enthalpy (H) ................................................ 13 Heat Capacities ......................................................................................................................... 16 Calculating ΔU, ΔH, w, q in Ideal Gas ........................................................................................ 18 Isothermal Compression ........................................................................................................... 21 Reversible Process (limiting process) ....................................................................................... 22 Isothermal Expansion ............................................................................................................... 22 Chapter 2: Internal Energy (U), Work (w), Heat (q), Enthalpy (H) Internal Energy (excludes motion and rotation of vessel) Look at isolated part of universe U U system U Environment Total = isolated First law of thermodynamics: - Total U for isolated system is constant - Energy can be exchanged between various components - Energy forms can be interconverted Eg. Chemical En Heat Work Utotal U system U environement 0 Chapter 2: Internal Energy, Work, Heat and Enthalpy 13 Winter 2013 Chem 254: Introductory Thermodynamics Work In classical mechanics, move object a distance d with force F in direction of displacement is work N m = J F mg d h w mgh (kg m s-2 m = N m = J) w mgd cos w mgd cos h d h mgh d General formula w F dL Line integral PV work (constant external pressure) m applies constant force P F A F ( Ah) Pext (V1 V2 ) A Vinitial ) Joules, or L Bar (1 L Bar = 100 J) w mgh Fh w Pext (V final Chapter 2: Internal Energy, Work, Heat and Enthalpy 14 Winter 2013 Chem 254: Introductory Thermodynamics More general formula for PV work, P does not need to be constant Vf w Pext dV Vi Sign Convention : Work done on the system raises internal energy of system ( w 0 ) Work done by the system lowers the internal energy ( w 0 ) Other forms of work: - electrical work w Q Q is charge in coulombs difference in potential (in Volts or J/C) Run a current over Q I t I is current (in Amps or C/s) w It Important: Work is associated with a process, with change. Work is transitory. You cannot say that a system contains that amount of energy or heat Heat: associated with a process going from State 1 State 2 U system q w q is heat; w is the work Heat is exchanged between system and environment q 0 : system loses energy q 0 : system gains energy qsystem qenvironment note: Tsystem Tenvironment for heat to flow Isolated system Chapter 2: Internal Energy, Work, Heat and Enthalpy 15 Winter 2013 Chem 254: Introductory Thermodynamics Touter Tinner (regulate) So there is no flow of heat U system U environment 0 U inner 0 Beaker + Lab +… = environment (isolated) U I 0 ; U II 0 U I U II 0 Chemical Energy Butane + O2 CO2 H 2 Note : U II 0 even if temperature increases! Why? Chemical energy of butane is converted to heat. Heat Capacities The amount of energy (heat) required to raise the temperature of 1 gram of substance by 1 oC. Heat capacity of water is 4.18 J/g K = 1 calorie 1) Heat capacity is dependent on heat Eg. 10 oC 11 oC and 80 oC 81 oC, require slightly different energies 2) At least 2 types of heat capacity a) Keep volume constant CV b) Keep pressure constant CP 3) Heat capacity is proportional to amount of substance Molar heat capacities : CP ,m , CV ,m n moles : CV nCV ,m , CP nCP,m 4) General formula Chapter 2: Internal Energy, Work, Heat and Enthalpy 16 Winter 2013 Chem 254: Introductory Thermodynamics Tf qV CV dT Ti If CV is constant over temperature range: qV CV dT CV T T f CV T f Ti i Ti Tf T qV CV (T ) And qP CP (T ) Which is larger CP or CV ? Relation for CP and CV for ideal gas? V2 V1 ; T2 T1 U qP w qP Pext (V2 V1 ) U qP nR(T2 T1 ) PV nRT qP CP T ; U qV CV T CP T CV T nRT CP CV nR or CP,m CV ,m R Therefore CP is larger than CV . At constant P , the system also does PV work when raising T . (analysis for ideal gas) No work because V is constant U qV w qV U CV T Bomb calorimetry qVsystem qVsurrounding CVCalorimeter Tmeasure U reaction Chapter 2: Internal Energy, Work, Heat and Enthalpy 17 Winter 2013 Chem 254: Introductory Thermodynamics qPsystem qVsurroundings qPsystem CVCalorimeter Tmeasure qPsystem H reaction True definition of Enthalpy H U ( PV ) PV PV 2 2 PV 1 1 ; for PV 1 1 PV 2 2; H U PV At constant Pressure H U PV 2 2 PV 1 1 H U P V H qP w P V qP P(V ) P(V ) H qP CP T Completely general : U , H are function of state specify T ,V , P U U (T2 , P2 ,V2 ) U (T1 , P1 ,V1 ) H H (T2 , P2 ,V2 ) H (T1 , P1 ,V1 ) Change in U , H are the same for both paths Change in q, w are different for different paths Calculating ΔU, ΔH, w, q in Ideal Gas 1) Calculating U , H is easy if T is known U U (T ) U CV dT CV T ]Tif CV T f Ti Tf T Ti U CV T for any process H H (T ) ..... Chapter 2: Internal Energy, Work, Heat and Enthalpy 18 Winter 2013 Chem 254: Introductory Thermodynamics H CP T for any process (if CP is constant) We know CP CV nR Special cases: Isothermal Process T is constant T 0 ; U H 0 2) Work: w Pext dV - Constant V PV work only Vi V f w 0 ; q qV U Vf - Constant Pext w Pext dV Pext (V f Vi ) Vi ; q qP H Isothermal reversible process: (Reversible process: delicate, see later) 1 nRT is constant Pext nRT V V f dV V w nRT nRT ln V V f i Vi V Vf nRT ln V f ln Vi nRT ln Vi Vf w nRT ln Vi 3) Heat Adiabatic process : q 0 by definition U q w ; U w Adiabatic Reversible Process nRT V V f nRT U w dV Vi V nRT nCV ,m dT dV V dT nR nCV ,m dV T V q 0 , U w , Pext Chapter 2: Internal Energy, Work, Heat and Enthalpy 19 Winter 2013 Chem 254: Introductory Thermodynamics dT i T Tf nCv ,m ln Ti nCV ,m f dV V Vf nR ln Vi nR f i Tf Vf ln ln R Ti Vi For adiabatic reversible process: Cv ,m P C Tf Vf Tf ln ln OR P ,m ln ln i P R R Ti Vi Ti f Cv ,m V f CP ,m Pi ln OR ln P V C i V , m f Tf Vf ln ln R Ti Vi Cv ,m 1) R Tf Vf V f CV , m R ln ln ln CV ,m Vi Ti Vi Tf Ti Vf R CV , m Vi Tf Vf ln ln R Ti Vi Cv ,m 2) nRT f Tf P ln ln i P R nRTi Ti f CV ,m Tf ln Ti Pi Pf P Tf ln ln i P Ti f P CV ,m Tf 1 ln ln i P R Ti f Pi CV ,m R T f ln ln R Ti Pf P Tf ln ln i P R Ti f CP , m Chapter 2: Internal Energy, Work, Heat and Enthalpy 20 Winter 2013 Chem 254: Introductory Thermodynamics Adiabatic Isobaric Process Constant external pressure AND q 0 Isothermal Compression Constant external pressure w Pf V f Vi 0 q w 0 (because U 0 because isothermal) What is work in 2-step process? w2 Pint Vint Vi Pf V f Vint w2 w1 ; q2 q1 Chapter 2: Internal Energy, Work, Heat and Enthalpy 21 Winter 2013 Chem 254: Introductory Thermodynamics Conclusion: w and q depend on details of process, not only on initial and final state. Repeat for 3 step, 4…. w5 w4 w3 w2 w1 ; q5 q4 q3 q2 q1 The more steps, the less w and less heat Reversible Process (limiting process) Pext Pgas at each step nRT V Isothermal Reversible Process Pext dV Vi Vi V Vf V nRT ln |Vif nRT ln Vi Vf w Pext dV nRT Vf work, q is minimal Isothermal Expansion Chapter 2: Internal Energy, Work, Heat and Enthalpy 22 Winter 2013 Chem 254: Introductory Thermodynamics w1 Pf V f Vi 0 ; q1 w1 0 w2 w1 ; q2 q1 w3 w2 w1 ; q3 q2 q1 More processes more work ( w ), more heat ( q ) w5 w4 w3 w2 w1 ; q5 q4 q3 q2 q1 Limiting Expansion Work ansion wlcompression wlexp imit imit Vf Vf Vi Vi wlimit Pext dV nRT Vf dV nRT ln V Vi Chapter 2: Internal Energy, Work, Heat and Enthalpy 23 Winter 2013 Chem 254: Introductory Thermodynamics Grains of sand : I can run process either way The thermodynamic work is the same both ways for reversible process Irreversible Process (Big chunks of mass) Follows arrows in reverse: add mass, piston rises? ; removes mass, piston lowers? This is absurd, hence: Why do irreversible processes run in one way and not another? What is special about irreversible? Chapter 2: Internal Energy, Work, Heat and Enthalpy 24