Download Chapter 2: Internal Energy

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Winter 2013 Chem 254: Introductory Thermodynamics
Chapter 2: Internal Energy (U), Work (w), Heat (q), Enthalpy (H) ................................................ 13
Heat Capacities ......................................................................................................................... 16
Calculating ΔU, ΔH, w, q in Ideal Gas ........................................................................................ 18
Isothermal Compression ........................................................................................................... 21
Reversible Process (limiting process) ....................................................................................... 22
Isothermal Expansion ............................................................................................................... 22
Chapter 2: Internal Energy (U), Work (w), Heat (q), Enthalpy (H)
Internal Energy (excludes motion and rotation of vessel)
 Look at isolated part of universe
U  U system  U Environment
Total = isolated
First law of thermodynamics:
- Total U for isolated system is constant
- Energy can be exchanged between various components
- Energy forms can be interconverted
Eg. Chemical En  Heat  Work
Utotal  U system  U environement  0
Chapter 2: Internal Energy, Work, Heat and Enthalpy
13
Winter 2013 Chem 254: Introductory Thermodynamics
Work
In classical mechanics, move object a distance d with force F in direction of
displacement is work  N m = J
F  mg
d h
w  mgh (kg m s-2 m = N m = J)
w  mgd cos
w  mgd
cos  
h
d
h
 mgh
d
General formula
w   F  dL Line integral
PV work (constant external pressure)
m applies constant force P 
F
A
F
( Ah)  Pext (V1  V2 )
A
 Vinitial ) Joules, or L Bar (1 L Bar = 100 J)
w  mgh  Fh 
w   Pext (V final
Chapter 2: Internal Energy, Work, Heat and Enthalpy
14
Winter 2013 Chem 254: Introductory Thermodynamics
More general formula for PV work, P does not need to be constant
Vf
w   Pext dV
Vi
Sign Convention : Work done on the system raises internal energy of system ( w  0 )
Work done by the system lowers the internal energy ( w  0 )
Other forms of work:
- electrical work
w  Q
Q is charge in coulombs
 difference in potential (in Volts or J/C)
Run a current over 
Q  I t
I is current (in Amps or C/s)
w  It
Important:
Work is associated with a process, with change. Work is transitory. You
cannot say that a system contains that amount of energy or heat
Heat:
associated with a process going from State 1  State 2
U system  q  w
q is heat; w is the work
Heat is exchanged between system and environment
q  0 : system loses energy
q  0 : system gains energy
qsystem  qenvironment
note: Tsystem  Tenvironment for heat to flow
Isolated system
Chapter 2: Internal Energy, Work, Heat and Enthalpy
15
Winter 2013 Chem 254: Introductory Thermodynamics
Touter  Tinner (regulate)
So there is no flow of heat
U system  U environment  0
U inner  0
Beaker + Lab +… = environment (isolated)
U I  0 ; U II  0
U I  U II  0
Chemical Energy
Butane + O2  CO2  H 2
Note : U II  0 even if temperature increases!
Why? Chemical energy of butane is converted to heat.
Heat Capacities
The amount of energy (heat) required to raise the temperature of 1 gram of substance
by 1 oC. Heat capacity of water is 4.18 J/g K = 1 calorie
1) Heat capacity is dependent on heat
Eg. 10 oC  11 oC and 80 oC  81 oC, require slightly different energies
2) At least 2 types of heat capacity
a) Keep volume constant CV
b) Keep pressure constant CP
3) Heat capacity is proportional to amount of substance
Molar heat capacities : CP ,m , CV ,m
n moles : CV  nCV ,m , CP  nCP,m
4) General formula
Chapter 2: Internal Energy, Work, Heat and Enthalpy
16
Winter 2013 Chem 254: Introductory Thermodynamics
Tf
qV   CV dT
Ti
If CV is constant over temperature range:
qV  CV  dT  CV T T f  CV T f  Ti 
i
Ti
Tf
T
qV  CV (T )
And
qP  CP (T )
Which is larger CP or CV ?
Relation for CP and CV for ideal gas?
V2  V1 ; T2  T1
U  qP  w  qP  Pext (V2  V1 )
U  qP  nR(T2  T1 )
PV  nRT
qP  CP T ; U  qV  CV T
CP T  CV T  nRT
CP  CV  nR
or
CP,m  CV ,m  R
Therefore CP is larger than CV . At constant P , the system also does PV work when
raising T . (analysis for ideal gas)
No work because V is constant
U  qV  w  qV
U  CV T
Bomb calorimetry
qVsystem  qVsurrounding  CVCalorimeter Tmeasure
 U reaction
Chapter 2: Internal Energy, Work, Heat and Enthalpy
17
Winter 2013 Chem 254: Introductory Thermodynamics
qPsystem  qVsurroundings
qPsystem  CVCalorimeter Tmeasure
qPsystem  H reaction
True definition of Enthalpy
H  U  ( PV )
  PV   PV
2 2  PV
1 1 ; for PV
1 1  PV
2 2;
H  U  PV
At constant Pressure
H  U   PV
2 2  PV
1 1
H  U  P  V 
H  qP  w  P  V   qP  P(V )  P(V )
H  qP  CP T
Completely general : U , H are function of state
 specify T ,V , P
U  U (T2 , P2 ,V2 )  U (T1 , P1 ,V1 )
H  H (T2 , P2 ,V2 )  H (T1 , P1 ,V1 )
Change in U , H are the same for both paths
Change in q, w are different for different
paths
Calculating ΔU, ΔH, w, q in Ideal Gas
1) Calculating U , H is easy if T is known
U  U (T )  U  CV dT  CV T ]Tif  CV T f  Ti 
Tf
T
Ti
U  CV T
for any process
H  H (T )  .....
Chapter 2: Internal Energy, Work, Heat and Enthalpy
18
Winter 2013 Chem 254: Introductory Thermodynamics
H  CP T
for any process (if CP is constant)
We know CP  CV  nR
Special cases:
Isothermal Process T is constant T  0 ; U  H  0
2) Work: w    Pext dV
- Constant V
PV work only
Vi  V f  w  0 ;
q  qV  U
Vf
- Constant Pext w   Pext  dV   Pext (V f  Vi )
Vi
; q  qP  H
Isothermal reversible process: (Reversible process: delicate, see later)
1
nRT is constant
Pext  nRT
V
V f dV
V
w  nRT 
 nRT  ln V V f
i
Vi V
 Vf 
 nRT  ln V f  ln Vi   nRT ln  
 Vi 
 Vf 
w  nRT ln  
 Vi 
3) Heat
Adiabatic process :
q  0 by definition
U  q  w ; U  w
Adiabatic Reversible Process
nRT
V
V f nRT
U  w   
dV
Vi
V
nRT
nCV ,m dT 
dV
V
dT nR
nCV ,m

dV
T
V
q  0 , U  w ,
Pext 
Chapter 2: Internal Energy, Work, Heat and Enthalpy
19
Winter 2013 Chem 254: Introductory Thermodynamics
dT
i T
 Tf
nCv ,m ln 
 Ti
nCV ,m 
f
dV
V

 Vf 
  nR ln  

 Vi 
 nR 
f
i
 Tf 
 Vf 
ln     ln  
R
 Ti 
 Vi 
For adiabatic reversible process:
Cv ,m
P
C
 Tf 
 Vf 
 Tf 
ln     ln   OR P ,m ln     ln  i
P
R
R
 Ti 
 Vi 
 Ti 
 f
Cv ,m

 V f  CP ,m  Pi 
ln  
 OR ln   
P 
V
C
i
V
,
m



 f 
 Tf 
 Vf 
ln     ln  
R
 Ti 
 Vi 
Cv ,m
1)
R
 Tf 
 Vf 
 V f  CV , m
R
ln    
ln    ln  
CV ,m  Vi 
 Ti 
 Vi 
Tf
Ti

Vf
R
CV , m
Vi
 Tf 
 Vf 
ln     ln  
R
 Ti 
 Vi 
Cv ,m
2)
 nRT f
 Tf 
P 
ln     ln 
 i 
 P
R
nRTi 
 Ti 
 f
CV ,m
 Tf
  ln 
 Ti
  Pi
 
  Pf



P
 Tf 
  ln    ln  i
P
 Ti 
 f
P
 CV ,m
  Tf 
 1 ln     ln  i

P
 R
  Ti 
 f



 Pi
 CV ,m  R   T f 
ln


ln





R

  Ti 
 Pf



P
 Tf 
ln     ln  i
P
R
 Ti 
 f



CP , m



Chapter 2: Internal Energy, Work, Heat and Enthalpy
20
Winter 2013 Chem 254: Introductory Thermodynamics
Adiabatic Isobaric Process
Constant external pressure AND q  0
Isothermal Compression
Constant external pressure
w   Pf V f  Vi   0
q  w  0 (because U  0 because isothermal)
What is work in 2-step process?
w2  Pint Vint  Vi   Pf V f  Vint 
w2  w1 ; q2  q1
Chapter 2: Internal Energy, Work, Heat and Enthalpy
21
Winter 2013 Chem 254: Introductory Thermodynamics
Conclusion: w and q depend on details of process, not only on initial and final state.
Repeat for 3 step, 4…. 
w5  w4  w3  w2  w1 ; q5  q4  q3  q2  q1
The more steps, the less w and less heat
Reversible Process (limiting process)
Pext  Pgas at each step
nRT
V
Isothermal Reversible Process
Pext 
dV
Vi
Vi V
 Vf 
V
 nRT ln |Vif  nRT ln  
 Vi 
Vf
w    Pext dV  nRT 
Vf
work, q is minimal
Isothermal Expansion
Chapter 2: Internal Energy, Work, Heat and Enthalpy
22
Winter 2013 Chem 254: Introductory Thermodynamics
w1   Pf V f  Vi   0 ;
q1  w1  0
w2  w1 ; q2  q1
w3  w2  w1 ; q3  q2  q1
More processes more work ( w ), more heat ( q )
w5  w4  w3  w2  w1 ; q5  q4  q3  q2  q1
Limiting Expansion Work
ansion
wlcompression
 wlexp
imit
imit
Vf
Vf
Vi
Vi
wlimit    Pext dV   nRT
Vf
dV
 nRT ln
V
Vi
Chapter 2: Internal Energy, Work, Heat and Enthalpy
23
Winter 2013 Chem 254: Introductory Thermodynamics
Grains of sand : I can run process either way
The thermodynamic work is the same both ways for reversible process
Irreversible Process (Big chunks of mass)
Follows arrows in reverse: add mass, piston rises? ; removes mass, piston lowers?
This is absurd, hence:
Why do irreversible processes run in one way and not another?
What is special about irreversible?
Chapter 2: Internal Energy, Work, Heat and Enthalpy
24
Related documents