Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
FACULTY OF ENGINEERING
DEPARTMENT OF BIOMEDICAL ENGINEERING
BME 311: BIOMEDICAL INSTRUMENTATION I
Lecturer: Ali Işın
Lecture Note 2: Amplifiers and Signal Processing
for Biomedical Instrumentation
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
1
Applications of Operational Amplifier
In Biological Signals and Systems
• The three major operations done on biological
signals using Op-Amp:
– Amplifications and Attenuations
– DC offsetting:
• add or subtract a DC
– Filtering:
• Shape signal’s frequency content
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
2
Ideal Op-Amp
• Most bioelectric signals are small and require amplifications
Op-amp equivalent circuit:
The two inputs are 1 and  2. A differential voltage between them causes
current flow through the differential resistance Rd. The differential voltage
is multiplied by A, the gain of the op amp, to generate the output-voltage
source. Any current flowing to the output terminal vo must pass through
the output resistance Ro.
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
3
Inside the Op-Amp (IC-chip)
20 transistors
11 resistors
1 capacitor
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
4
Ideal Characteristics
•
•
•
•
•
A =  (gain is infinity)
Vo = 0, when v1 = v2 (no offset voltage)
Rd =  (input impedance is infinity)
Ro = 0 (output impedance is zero)
Bandwidth =  (no frequency response limitations) and no
phase shift
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
5
Two Basic Rules
• Rule 1
– When the op-amp output is in its linear range, the two input terminals
are at the same voltage.
• Rule 2
– No current flows into or out of either input terminal of the op amp.
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
6
i
Rf
Inverting Amplifier
o
10 V
i
i
Ri
-
-10 V
10 V
o
i
+
Slope = -Rf / Ri
(a)
-10 V
vo  -
Rf
Ri
vi
Rf
vo
G vi
Ri
(b)
(a) An inverting amplified. Current flowing through the input resistor Ri also flows
through the feedback resistor Rf .
(b) The input-output plot shows a slope of -Rf / Ri in the central portion, but the
output saturates at about ±13 V.
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
7
Summing Amplifier
Rf
R1
1
-
o
R2
2
+
 v1 v2 
vo  - R f   
 R1 R2 
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
8
Example 2.1
• The output of a biopotential preamplifier that
measures the electro-oculogram is an
undesired dc voltage of ±5 V due to electrode
half-cell potentials, with a desired signal of ±1
V superimposed. Design a circuit that will
balance the dc voltage to zero and provide a
gain of -10 for the desired signal without
saturating the op amp.
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
9
Answer 2.1
• We assume that vb, the balancing voltage at vi=5 V. For vo=0,
the current through Rf is zero. Therefore the sum of the
currents through Ri and Rb, is zero.
vo vb
- Ri vb - 10 4 (-10)

 0  Rb 

 2 10 4 W
Ri Rb
vi
5
+10
Rf
100 kW
Ri
10 kW
i
+15V
Rb
20 kW
5 kW
o
+
Voltage, V
i
i + b /2
0
Time
vb
-15 V
-10
(a)
BME 311 LECTURE NOTE(b)
2 - ALİ IŞIN, 2014
o
10
Follower ( buffer)
• Used as a buffer, to prevent a high source resistance
from being loaded down by a low-resistance load. In
another word it prevents drawing current from the
source.
-
i
vo  vi
o
+
G 1
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
11
Noninverting Amplifier
o
i
Ri
i
Rf
10 V
Slope = (Rf + Ri )/ Ri
-10 V
10 V
i
-
i
o
+
vo 
R f  Ri
Ri
vi
-10 V
G
R f  Ri
Ri
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
 Rf
 1 
Ri




12
Differential Amplifiers
• Differential Gain Gd
v3
vo
R4
Gd 

v4 - v3 R3
v4
• Common Mode Gain Gc
– For ideal op amp if the inputs are equal
then the output = 0, and the Gc = 0.
– No differential amplifier perfectly rejects
the common-mode voltage.
• Common-mode rejection ratio CMMR
– Typical values range from 100 to 10,000
R4
vo 
(v4 - v3 )
R3
Gd
CMRR 
Gc
• Disadvantage of one-op-amp differential amplifier is its low
input resistance
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
13
Instrumentation Amplifiers
Differential Mode Gain
v3 - v4  i( R2  R1  R2 )
v1 - v2  iR1
v3 - v4 2 R2  R1
Gd 

v1 - v2
R1
Advantages: High input impedance, High CMRR, Variable gain
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
14
Comparator
–
No
Hysteresis
+15
v1 > v2, vo = -13 V
v1 < v2, vo = +13 V
v2
-15
o
i
ref
10 V
R1
-
-10 V
o
R1
ref
+
i
R2
-10 V
If (vi+vref) > 0 then vo = -13 V
else
R1 will prevent overdriving the op-amp
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
vo = +13 V
15
Comparator – With Hysteresis
• Reduces multiple transitions due to mV noise levels
by moving the threshold value after each transition.
o
i
ref
R1
With hysteresis
10 V
-
o
R1
-10 V
10 V
- ref
+
R2
R3
i
-10 V
Width of the Hysteresis = 4VR3
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
16
Rectifier
R
xR (1-x)R
D1
D2
o
10 V
-10 V
i
+
i
R
D4
-
10 V
D3
vo 
vi
x
-10 V
(b)
+
(a)
xR
• Full-wave precision rectifier:
– For i > 0, D2 and D3 conduct, whereas D1
and D4 are reverse-biased.
Noninverting amplifier at the top is active
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
(1-x)R
-
i
vo
D2
+
(a)
17
Rectifier
R
xR (1-x)R
D1
D2
o
10 V
-10 V
i
+
i
R
D4
-
10 V
D3
vo 
vi
x
-10 V
(b)
+
(a)
xRi
• Full-wave precision rectifier:
– For i < 0,
D1 and D4 conduct, whereas D2 and D3 are
reverse-biased.
Inverting amplifier at the bottom is active
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
R
i
-
vo
D4
+
(b)
18
One-Op-Amp Full Wave Rectifier
i
Ri = 2 kW
Rf = 1 kW
v
-
o
D
RL = 3 kW
+
(c)
• For i < 0, the circuit behaves like the inverting
amplifier rectifier with a gain of +0.5. For i > 0, the
op amp disconnects and the passive resistor chain
yields a gain of +0.5.
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
19
Logarithmic Amplifiers
• Uses of Log Amplifier
–
–
–
–
Multiply and divide variables
Raise variable to a power
Compress large dynamic range into small ones
Linearize the output of devices
Rf /9
Ic
VBE
Rf
i
Ri
-
o
+
 IC
 0.06 log 
 IS



 vi


vo  0.06 log 
-13 
 Ri 10 
(a)
(a) A logarithmic amplifier makes use of the fact that a transistor's VBE is
related to the logarithm of its collector current.
For range of Ic equal 10-7 to 10-2 and the range of vo is -.36 to -0.66 V.
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
20
Logarithmic Amplifiers
VBE
Ic
Rf /9
vo
10 V
VBE
i
Ri
9VBE
Rf
-10 V
10 V
-
1
i
o
+
(b)
(a)
-10 V
10
(a) With the switch thrown in the alternate position, the circuit
gain is increased by 10. (b) Input-output characteristics show
that the logarithmic relation is obtained for only one polarity;
1 and 10 gains are indicated.
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
21
Integrators
1
vo  Ri C f
t1
 v dt  v
i
ic
0
Zf
Vo ( j )
Vi ( j )
Zi
- Rf
Vo  j 

Vi  j  Ri  jR f Ri C
Vo  j 
-1

Vi  j  Ri  jR C
i
Rf
vo - R f

vi
Ri
for f < fc
1
fc 
2R f C f
A large resistor Rf is used to prevent saturation
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
22
• A three-mode integrator
With S1 open and S2 closed, the dc circuit behaves as an inverting
amplifier. Thus o = ic and o can be set to any desired initial conduction.
With S1 closed and S2 open, the circuit integrates. With both switches
open, the circuit holds o constant, making possible a leisurely readout.
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
23
Differentiators
• A differentiator
– The dashed lines indicate that a small capacitor must
usually be added across the feedback resistor to prevent
oscillation.
dvi
vo  - RC
dt
Zf
Vo ( j )
Vi ( j )
Zi
Vo ( j )
 - jRC
Vi ( j )
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
24
Active Filters- Low-Pass Filter
• A low-pass filter attenuates high frequencies
Vo  j  - R f
1
Gain  G 

Vi  j 
Ri 1  jR f C f
i
Ri
-
Rf
o
+
|G|
(a)
Rf/Ri
0.707 Rf/Ri
fc = 1/2RiCf
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
freq
25
Active Filters (High-Pass Filter)
• A high-pass filter attenuates low frequencies
and blocks dc.
R
C R

Vo  j  - R f jRi Ci
Gain  G 

+
Vi  j 
Ri 1  jRi Ci
i
i
f
i
o
(b)
|G|
Rf/Ri
0.707 Rf/Ri
fc = 1/2RiCf
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
freq
26
Active Filters (Band-Pass Filter)
• A bandpass filter attenuates both low and
high frequencies.
C
- jR f Ci
Vo  j 

Vi  j  1  jR f C f 1  jRi Ci 
f
i
Ci R
i
-
Rf
o
+
|G|
(c)
Rf/Ri
0.707 Rf/Ri
fcL = 1/2RiCi
fcH = 1/2RfCf
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
freq
27
Phase Modulator for Linear variable differential
transformer LVDT
+
+
-
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
28
Phase Modulator for Linear variable differential
transformer LVDT
+
+
-
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
29
Phase-Sensitive Demodulator
Used in many medical instruments
for signal detection, averaging, and
Noise rejection
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
30
The Ring Demodulator
• If vc is positive then D1 and D2 are forward-biased and vA = vB. So vo = vDB
• If vc is negative then D3 and D4 are forward-biased and vA = vc. So vo = vDC
BME 311 LECTURE NOTE 2 - ALİ IŞIN, 2014
31
Related documents