Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Iron Removal from Titanium Ore by Electrochemical Method Isao Obana1 and Toru H. Okabe2 1Graduate School of Engineering, The University of Tokyo 2International Research Center for Sustainable Materials, Institute of Industrial Science, The University of Tokyo 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 1 Introduction Features of titanium Applications Lightweight and high strength Corrosion resistant Biocompatible Some titanium alloys: shape memory effect superelasticity Aircraft Spacecraft Chemical plants Implants Artificial bones, etc. The Kroll process: Currently employed Ti production process Mg & TiCl4 Feed port Reaction Container Sponge Titanium MgCl2 Chlorination Ti ore + C + 2 Cl2 → TiCl4 (+ FeClx) + CO2 Reduction TiCl4 + 2 Mg → Ti + 2 MgCl2 Electrolysis MgCl2 → Mg + Cl2 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 2 Upgrading Ti ore Others FeOx Upgrade FeOx TiOx Upgraded Ilmenite (UGI) (FeTiOX) (CaCl2) Selective chlorination Upgraded Ti ore Ti metal FeClx Ti scrap (+AlCl3) Chlorine recovery Fe Discarded Advantages: Low grade Ti ore MClx Ti smelting Chloride wastes TiOx Ti ore (Ilmenite, FeTiOx) (TiO2) Others TiCl4 1. Material cost can be reduced by using low-grade ore. 2. Chlorine circulation in the Kroll process can be improved. 3. This process can also be applied to the new Ti production processes, e.g., the direct electrochemical reduction of TiO2. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 3 Previous study Vacuum pump Pyrometallurgical de-Fe process FeOx (s, in Ti ore) + MgCl2 (s, l) → FeClx (l, g) + MgO (s) Condenser Deposit (FeClx) Susceptor Mixture of Ti ore and MClx RF coil Quartz Tube N2 or N2+H2O gas CaCl2 (s, l) + H2O (g) → HCl (g) + CaO (s) FeOx (s, in Ti ore) + HCl (g) → FeClx (l, g) + H2O (g) T = 973~1373 K The selective chlorination of Ti ore by MgCl2 or CaCl2 is found to be feasible. Ref. R. Matsuoka and T. H. Okabe: Symposium on Metallurgical Technology for Waste Minimization at the 2005 TMS Annual Meeting, San Francisco, California (2005.2.13–17). 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 4 Study objectives Low-grade Ti ore (FeTiOx) Fe removal by selective chlorination TiO2 + flux Direct reduction of TiO2 obtained after Fe removal Application of electrochemical method using molten salt Ti powder 1. Thermodynamic analysis of selective chlorination 2. Fundamental experiments of selective chlorination by electrochemical methods 3. Reduction experiment for the sample obtained by selective chlorination 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 5 Thermodynamic analysis (Ti ore chlorination) Fe-Cl-O and Ti-Cl-O system, T = 1100 K Oxygen partial pressure, log pO2 (atm) 0 Potential region for selective chlorination of iron from titanium ore Fe2O3 (s) –10 TiO2 → Stable FeOx → FeClx (g) Fe3O4 (s) CO/CO2 eq. C/CO eq. –20 TiO2 (s) H2O (g)/HCl (g) eq. FeO (s) –30 –40 MgO (g)/MgCl2 (l) eq. CaO (s)/CaCl2 (l) eq. aCaO = 0.1 FeCl2 (l) TiO (s) Fe (s) FeCl3 (g) –50 TiCl3 (s) Ti (s) –60 -40 Potential region for chlorination of titanium TiCl4 (g) TiCl2 (s) -30 -20 -10 0 Chlorine partial pressure, log pCl2 (atm) Ti ore : FeTixOy For simplicity, it is assumed to be a mixture of TiOx and FeOx The selective chlorination of Ti ore by controlling chlorine partial pressure may be possible using an electrochemical technique. Fig. Chemical potential diagram for Fe-Cl-O and Ti-Cl-O systems at 1100 K 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 6 Chlorination by increasing Cl2 potential Electrolysis Cathode: Fen+ + n e– → Fe Ca2+ + 2 e– → Ca FeCl3, AlCl3, O2, CO2 gas DC power source e– Anode: 2 Cl– (in CaCl2) → Cl2 + 2 e– FeOx + Cl2 → FeClx↑ + O2– Molten salt (CaCl2, MgCl2, etc.) Upgraded or low-grade Ti ore (e.g., FeTiOx) Chlorine chemical potential in molten CaCl2 at anode can be increased electrochemically. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 7 Theoretical decomposition voltage Table Standard Gibbs energy of decomposition and theoretical voltage of that in several chemical species at 1100 K. Reactions CaCl2 (l) = Ca (l) + Cl2 (g) D G o/kJ mol-1a 629 FeO (s) = Fe (s) + 1/2 O2 (g) D E o/Va 3.26 201 1.04 3 0.02 FeO (s) + CaCl2 (l) + C (s) = FeCl2 (l) + CO (g) + Ca (l) 409 2.23 FeTiO3 (s) + CaCl2 (l) + 1/2 C (s) = TiO2 (s) + FeCl2 (l) + Ca (l) + 1/2 CO2 (g) 438 2.34 FeO (s) + 1/2 C (s) = Fe (s) + 1/2 CO2 (g) a: I. Barin: Thermochemical Data of Pure Substances, 3rd ed. (Weinheim, Federal Republic of Germany, VCH Verlagsgesellschaft mbH, 1997) Under a certain condition, the selective chlorination of Fe in Ti ore may proceed below the theoretical decomposition voltage of CaCl2. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 8 Low-grade Ti ore (FeTiOx) Fe removal by selective chlorination TiO2 + flux Direct reduction of TiO2 obtained after Fe removal Iron removal by selective chlorination using an electrochemical method Ti powder 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 9 Experimental apparatus (a) Reaction chamber (b) Reaction cell V A Potential lead (Nickel wire) Stainless steel tube (Electrode) Ar inlet (a) O.D. 19 mm I.D. 17 mm (b) Rubber plug Support rod (Stainless steel tube) Wheel flange Air hole Thermocouple Screw (Stainless steel) Heater Mild steel crucible (Cathode) Surface of molten salt Graphite crucible (Anode) Sample Holes for molten salt diffusion Molten salt (CaCl2) Graphite crucible Ceramic insulator Sample (Ti ore, CaCl2, etc.) Height 40 mm 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 10 Selective chlorination experiments Experimental conditions: Temperature: Atmosphere: Molten salt: Cathode: Anode: 1100 K Ar CaCl2 (800 g) Mild steel crucible (I.D. 96 mm) Graphite crucible (I.D. 17 mm) Sample Mass of sample i, wi/g Voltage, Time, Ti ore Carbon E/V t”/h CaCl2 Exp. No. Ilmenite UGI powder A 4.00 ー ー ー 1.5 12 B 0.74 ー 2.17 ー 1.5 3 C 0.74 ー 2.17 0.18 1.5 3 D ー 1.59 1.27 ー 1.5 3 E ー 1.59 1.27 ー 2.0 3 Voltage monitor /controller e– Molten CaCl2 Mild steel crucible (Cathode) Graphite crucible containing Ti ore (Anode) Low initial Fe content 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 11 Results of the selective chlorination experiments XRF analysis Table Analytical results of the samples obtained after electrochemical selective chlorination Sample Concentration of element Fe/Ti i, Ci (mass%) ratio, V RFe/Ti (%) Ti Fe Ca Si Ilmenite Exp. A Exp. B Exp. C Exp. X 42.6 45.7 47.2 30.2 45.1 48.7 21.7 3.4 7.5 5.8 0.3 12.3 47.9 42.7 40.6 2.2 1.4 0.0 0.3 0.5 UGI 95.9 1.9 0.1 0.1 0.2 2.00 Exp. D Exp. E 98.0 96.9 0.2 0.3 0.1 0.2 0.18 0.28 0.6 114 2.7 47.4 0.4 7.2 0.1 24.7 0.1 12.9 0.3 0.5 0.5 0.2 Fe/Ti ratio decreased from 114% to 7.2% (ilmenite) and from 2.00% to 0.18% (UGI). 94% of Fe in ilmenite and 92% of Fe in UGI were successfully removed. a: Average values of the samples obtained from the upper and lower parts of the graphite crucible 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 12 Result of a selective chlorination experiment Discussion XRD analysis Intensity, I(a. u.) Ilmenite FeTiO3 FeTiO3 (s) + CaCl2 (l) → CaTiO3 (s) + FeClx (l, g) :CaTiO3 :TiO2 10 20 30 40 50 60 70 80 Angle, 2θ (degree) 90 100 Fig. XRD pattern of the start sample and the sample obtained after Fe removal (Exp. B) A mixture of CaTiO3 and TiO2 was obtained after Fe removal. FeTiO3 (s) + CaCl2 (l) + C (s) → TiO2 (s) + FeClx (l, g) + COx (g) + Ca (s) CaTiO3 can be utilized as a feed material of direct TiO2 reduction processes (e.g., FFC, OS, EMR-MSE processes). 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 13 Low-grade Ti ore (FeTiOx) Fe removal by selective chlorination TiO2 + flux Direct reduction of TiO2 obtained after Fe removal Ti powder Direct reduction of TiO2 after Fe removal by electrochemical method 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 14 Reduction experiment apparatus Direct reduction by electrochemical method was applied. Carbon anode Electrolysis Cathode: TiO2 + 4 e– → Ti + 2 O2– Anode: CaCl2 molten salt Ti crucible C + x O2– → COx + 2x e– TiO2 feed Fig. Schematic illustration of the experimental apparatus in this study. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 15 Reduction experiments Experimental conditions: Temperature: 1100 K Atmosphere: Ar Molten salt: CaCl2 (800 g) Cathode: Ti crucible (I.D. 18 mm) Anode: Graphite rod (O.D. 3 mm) Table Analytical results of the sample obtained after electrochemical selective chlorination Sample UGI Exp. D Exp. E Exp. Fe/Ti Concentration of element i, ratio, Ci (mass%) Fe Ca Si Ti V RFe / Ti (%) 95.9 1.9 0.1 0.1 0.2 2.00 98.0 0.2 0.1 0.3 0.5 0.18 96.9 0.3 0.2 0.5 0.2 0.28 Mass of element i, wi / g Ti ore CaTiO3 CaCl2 Voltage, Time, E/V t”/h R-1 ー 1.50 2.50 1.5 3 R-2 ー 1.50 2.50 3.0 3 R-3 0.79 ー 2.50 3.0 3 R-4 0.76 ー 2.50 3.0 3 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 16 Result of the reduction experiments Ti reduction by EMR XRD analysis 10 : Ti Intensity, I (a.u.) Intensity, I(a. u.) :Ti2O :CaTiO3 10 20 30 40 50 60 70 80 Angle, 2θ (degree) Fig. XRD pattern of the sample obtained after the reduction experiment (Exp. R-2) CaTiO3 was changed into Ti2O during this reduction experiment. A complete reduction was not achieved in this study. 90 100 20 30 40 JCPDS # 44-1294 50 60 70 80 Angle, 2q (degree) 90 100 Fig. XRD pattern (Cu-K) of the obtained powder sample after reduction at 1173 K using the EMR process. Current monitor Carbon anode ee- CaCl2 molten salt 2500 ppm O In a previous study, low oxygen titanium powder was obtained. TiO2 preform (Cathode) Ca-X alloy Ref. T. Abiko, I. Park, and T.H. Okabe, Proceedings of 10th World Conference on Titanium, Ti-2003, (Hamburg, Germany, 13–18 July 2003), 253–260. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 17 Summary Low-grade Ti ore ・The selective chlorination of Ti ore by using an electrochemical method was investigated, and 94% of Fe was successfully removed directly from low-grade Ti ore. ・The feasibility of Ti smelting process for directly producing metallic Ti from low-grade Ti ore was demonstrated. (FeTiOx) Iron removal by selective chlorination TiO2 + flux Reduction by electrochemical method Ti powder Development of an industrial scale process for producing low-cost titanium 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 18 Question and Answer 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 19 History of Titanium 1791 First discovered by William Gregor, a clergyman and amateur geologist in Cornwall, England. 1795 Klaproth, a German chemist, gave the name titanium to an element re-discovered in Rutile ore. 1887 Nilson and Pettersson produced metallic titanium containing large amounts of impurities. 1910 M. A. Hunter produced titanium with 99.9% purity by the sodiothermic reduction of TiCl4 in a steel vessel. (119 years after the discovery of the element) 1946 W. Kroll developed a commercial process for the production of titanium: Magnesiothermic reduction of TiCl4... Titanium was not purified until 1910, and was not produced commercially until the early 1950s. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 20 Titanium Production China 4 kt Kazakhstan 9 kt Russia 26 kt USA 8 kt Total 65.5 kt Japan 18.5 kt (28% share) (b) Transition of production volume of titanium mill products in Japan. Amount of titanium mill products [kt] (a) Production of titanium sponge in the world (2003). 18 16 14 12 10 8 6 4 2 0 1960 17.4 kt (2004) 1970 1980 1990 2000 Year Fig. Current status of titanium production, (a) production of titanium sponge in the world (2003), (b) transition of production volume of titanium mill products in Japan. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 21 Table Comparison between common metals and titanium. Titanium Symbol Melting point (K) Density (g / cc @298 K) Specific strength ((kgf / mm2) / (g / Clarke numbera cc)) Price (Yen / kg) Production volume (106 ton / year・world) Aluminum Iron Ti 1943 4.5 Al 933.3 2.7 Fe 1809 7.9 8 ~ 10 3~6 4~7 0.46 (rank 10) 7.56 (rank 3) 4.7 (rank 4) 3000 600 50 ~ 0.1 20 800 a: Values in parentheses are the existence rank in the earth’s crust. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 22 Flowchart of the titanium production Ti feed (TiO2) Chlorine (Cl2) Reductant (C) Chlorination CO2, FeClx,AlCl3 etc. Crude TiCl4 H2S etc. Distillation Other compounds Pure TiCl4 Reductant, Mg Reduction Sponge Ti + MgCl2 + Mg Vacuum distillation Electrolysis MgCl2 MgCl2 + Mg Sponge Ti Crushing / Melting Ti ingot Fig. Flowchart of the titanium production based on the Kroll process. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 23 Composition of titanium ore (a) Low grade titanium ore (ilmenite) Others 10% FeOx 45% (b) Up-graded titanium ore (UGI) Others 3% FeOx 2% TiOx 45% TiOx 95% Fig. (a) Composition of low grade titanium ore (ilmenite), and (b) that of up-graded titanium ore (up-graded ilmenite, UGI). 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 24 Upgrading Ti ore for minimizing chloride wastes Others UpgradeFeOx FeOx TiOx Ti ore (Ilmenite, FeTiOx) Others Chloride wastes TiOx Upgraded Ilmenite (UGI) Discarded 1. A large amount of chloride wastes (e.g., FeClx) are produced in the Kroll process. 2. Chloride waste treatment is costly, and it causes chlorine loss in the Kroll process. Importance 1. Reduction of disposal cost of chloride wastes 2. Minimizing chlorine loss in the Kroll process 3. Improvement of environmental burden 4. Reduction of material cost using low grade ore 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 25 Refining process using FeClx Advantages: This study Low-grade Ti ore MClX (FeTiOX) (Cl2) Selective chlorination Upgraded Ti ore (TiO2) FeClx (+AlCl3) Carbo-chlorination TiCl4 feed COx FeClx (+AlCl3) FeClx Ti scrap 1. Utilizing chloride wastes from the Kroll process Chlorine recovery 2. Low cost Ti chlorination Fe TiCl4 3. Minimizing chlorine loss in the Kroll process caused by generation of chloride wastes Ti metal or TiO2 production Effective utilization of chloride wastes Development of a new environmentally sound chloride metallurgy 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 26 The Benilite process Ilmenite Reductant (Heavy oil etc.) Fe2+ / TiFe = 80~95% Reduction (in kiln) Reduced ore HCl aq. HCl vapor (18~20% HCl) Leaching (in digestor) 145C° (2.5 kg/cm2) *4 hr *2 step Leached ilmenite Water Spray acid Roasting Filtration TiO2 Fuel Sol. Calcination (Synthetic rutile) TiO2 95% TiO 2 1% TiFe Iron oxide (90% purity) HCl Absorber HCl aq. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 Fig. Flowsheet of the Benilite process. 27 The Beacher process (WLS) Ilmenite Coal (low ash) Air Reduction (in kiln) Reduced ore Gas + particle Screen +1 mm -1 mm Cyclone Particle Gas Mag. separator Waste (Non. mag.) Reduced ilmenite NH4Cl Air Leaching TiO2 H2SO4 aq. Acid Leaching TiO2 Iron oxide + Sol. Thickener Iron oxide Filtering / Drying Sol. TiO2 (Synthetic rutile) TiO2 92~93% TiFe 2.0~3.5% 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 Fig. Flowchart of the Beacher process. 28 Thermocouple Cathode (stainless steel) Ceramic tube Alumina tube TiO2 (CaCl2) + 4 e- → Ti + 2 O2- (CaCl2) Anode lead wire (W) Fused CaCl2 bath or TiO2 (CaCl2) + 2 Ca → Ti + 2 CaO Alumina crucible TiO2 powder Graphite crucible (anode) Electric furnace Fig. Electrochemical reduction of TiO2 in CaCl2. (Ref. Mem. Fac. Eng., Nagoya Univ., 19, (1967) 164-166.) 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 29 Carbon anode Ti cathode e- Cl2 e- COX Ca2+ O (in Ti) + 2 e- → O2- Cl- (in CaCl2) [O] O2C Cl- O2- Ca Ca2+ O2Ca Ca Ti Ca2+ O2Ca2+ [O] in Ti Ti Ca2+ Cl- CaCl2 molten salt Fig. The principle of electrochemical deoxidization of titanium. (Ref. Met. Trans. B, 24B, June, (1993) 449-455.) 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 30 Titanium ore Titanium reduction by FFCprocess TiO2 Chlorination or sulfate method COx C Titanium oxide TiO2 Molten salt Cathode Mixing with Binder Anode TiO2 + 4 e- → Ti + 2 O2 (in CaCl2) Recovery of titanium electrode Cathode formation Crushing and leaching Calcination (TiO2 electrode) Fig. Schematic illustration of the procedure of the FFC process. FFC titanium (Ref. Nature, 407, 21, Sep. (2000) 361.) 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 31 Production process under investigation FFC Process (Fray et al., 2000) OS Process (Ono & Suzuki, 2002) TiO2 powder e- e- Carbon anode Carbon anode Ca TiO2 preform CaCl2 molten salt CaCl2 molten salt TiO2 + 2 Ca → Ti + 2 O2- + Ca2+ (b1) Electrolysis Cathode: Electrolysis Cathode: TiO2 + 4 e- → Ti + 2 O2Anode: C + x O2- → COx + 2x e- (a1) (a2) Ca2+ + 2 e- → Ca Anode: C + x O2- → COx + 2x e- 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 (b2) (b3) 32 Production process under investigation EMR / MSE Process (Electronically Mediated Reaction / Molten Salt Electrolysis) Current monitor / controller Carbon anode e- ee- TiO2 e- CaCl2 -CaO molten salt (a) TiO2 reduction Ca-X alloy (X = Ag, Ni, Cu,・・・) (b) Reductant production Cathode: TiO2 + 4 e- → Ti + 2 O2Anode: Ca → Ca2+ + 2 e- (c1) (c2) Electrolysis Cathode: Ca2+ + 2 e- → Ca (c3) Anode: C + x O2- → COx + 2x e- (c4) Over all reaction TiO2 + C → Ti + CO2 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 (d) 33 (a) FFC Process (Fray et al., 2000) (b) OS Process (Ono & Suzuki, 2002) (C) EMR / MSE Process (Okabe et al., 2002) TiO2 powder Carbon anode e- e- Carbon anode Current monitor / controller e- e- e- Carbon anode Ca CaCl2 molten salt CaCl2 molten salt TiO2 preform TiO2 + 2 Ca → Ti + 2 O2- + Ca2+ (b1) Electrolysis Electrolysis Cathode: Cathode: TiO2 + 4 e- → Ti + 2 O2- (a1) Anode: Ca2+ + 2 e- → Ca (b2) (a2) C + x O2- → COx + 2x e- Ca-X alloy Cathode: TiO2 + 4 e- → Ti + 2 O2- (c1) Anode: Ca → Ca2+ + 2 e- (c2) Ca2+ + 2 e- → Ca (c3) Electrolysis Anode: C + x O2- → COx + 2x e- TiO2 EMR CaCl2 MSE feed molten salt (b3) Fig. Schematic illustration of experimental apparatus for titanium smelting in the future. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 Cathode: Anode: C + x O2- → COx + 2x e- (c4) Over all reaction TiO2 + C → Ti + CO2 (d) 34 Features of several titanium production process Kroll Process ◎ ◎ ○ ○ ○ FFC Process ◎ ○ Advantages High purity titanium available Easy metal / salt separation Established chlorine circulation Utilizes efficient Mg electrolysis Reduction and electrolysis operation can be carried out independently Simple process Semi-continuous process ◎ Simple process ○ Semi-continuous process PRP (Preform ◎ Effective control of purity and morphology Reduction ◎ Flexible scalability Process) ◎ Resistant to contamination ○ Small amount of fluxes necessary ◎ Resistant to iron and carbon EMR / MSE contamination Process ○ Semi-continuous process ○ Reduction and electrolysis operation can be carried out independently OS Process Disadvantages × Complicated process × Slow production speed × Batch type process × Difficult metal / salt separation × Reduction and electrolysis have to be carried out simultaneously △ Sensitive to carbon and iron contamination △ Low current efficiency × Difficult metal / salt separation △ Sensitive to carbon and iron contamination △ Low current efficiency × Difficult recovery of reductant × Environmental burden by leaching × Difficult metal / salt separation when oxide system × Complicated cell structure △ Complicated process 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 35 Product Ti pellets Ti (+ CaO + CaCl2) Carbon anode Feed preform (TiO2 + CaCl2) Current monitor / controller A A Vn e- CaCl2-CaO e- Ca V e- COx gas e- CaCl2-CaO molten salt O2- , Ca2+ Ca-X reductant alloy Ca (Ca-X alloy) TiO2 + 4 e- = Ti + 2 O2- C + x O2- = COx + 2x e- Ca (Ca-X alloy) = Ca2+ + 2 e- Ca2+ + 2 e- = Ca (Ca-X alloy) Daytime reduction Nighttime electrolysis Fig. Conceptual image of the new titanium reduction process currently under investigation (EMR / MSE process, Oxide system). 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 36 Preform Reduction Process (PRP) TIG weld Stainless steel cover Stainless steel reaction vessel MOx + R → M + RO Feed preform (MOx + flux) Stainless steel plate R reductant M = Nb, Ta, Ti R = Mg, Ca… Ti sponge getter Fig. Schematic illustration of the experimental apparatus for producing titanium powder by means of the preform reduction process (PRP). 1. Amount of flux (molten salt) is small. 2. Easy to prevent contamination from reaction vessel and reductant. 3. Highly scalable. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 37 (a) Conventional Metallothermic Reduction (b) Preform Reduction Process (PRP) Feed powder Feed preform Reductant vapor Reductant vapor Reductant (R = Ca, Mg) Reductant (R = Ca, Mg) Fig. Metal powder production process: (a) conventional metallothermic reduction, (b) preform reduction process (PRP). 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 38 Selective chlorination using MgCl2 Vacuum pump Glass flange Glass beads Chlorides Condenser Stainless steel net Deposit FeOx (s) + MgCl2 (l) = FeClx (l) + MgO (s) (FeClx...) Stainless steel susceptor Carbon crucible Chlorination Reactor Mixture of Ti ore and MgCl2 RF coil Quartz flange Ceramic tube N2 or N2+H2O gas (Fe-free Ti ore) Experimental condition T = 1100 K, t’ = 1 h, Atmosphere : N2, Ti ore (UGI) : 4 g, MgCl2 : 2 g Fig. Experimental apparatus for selective-chlorination of titanium ore using MgCl2 as a chlorine source. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 39 Results of previous study FeOx (s) + MgCl2 (l) = FeClx (l, g) + MgO (s) XRD analysis XRF analysis Intensity, I (a. u.) Deposit obtained after selective -chlorination. → FeCl2 was generated. : FeCl2 Residue after selective-chlorination. → Fe was selective chlorinated. Table Analytical results of titanium ore, the residue after selective chlorination, and the sample after reduction. These values are determined by XRF analysis. Concentration of element i, Ci (mass %) Ti Fe Si Al V 10 20 30 40 50 60 70 80 90 100 Ti ore (UGI from Ind.) 95.10 2.29 0.41 0.12 0.75 96.45 0.43 0.44 0.37 1.50 After reduction sample 98.30 0.05 0.38 0.12 0.52 Angle, 2θ (deg.) Fig. XRD pattern of the deposit at chlorides condenser. The sample powder was sealed in Kapton film before analysis. After heating sample 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 40 Chlorination of Ti using FeCl2 Quartz tube Sample mixture: (e.g., FeCl2+Ti powder) Ti (s) + 2 FeCl2 (s) = TiCl4 (g) + 2 Fe (s) Sample deposits Heater Carbon crucible (on Si rubber, NaOH gas trap and quartz tube) Fig. Experimental apparatus for chlorination of titanium using FeCl2 as a chlorine source. XRF analysis Table Analytical results of the samples before and after heating and the sample deposited on quartz tube and Si rubber. These values are determined by XRF analysis. Concentration of element i, Ci (mass %) Residue before heating Residue after heating Dep. on quartz tube after heating Dep. on Si rubber after heating 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 Ti 18.4 Fe 45.3 Cl 36.2 9.8 3.5 80.1 50.4 9.0 46.1 64.9 0.9 34.1 41 This study Low-grade Ti ore MClx (FeTiOx) (CaCl2) Selective chlorination by electrochemical method Upgraded Ti ore FeClx (TiO2) FeClx Ti scrap Chlorine recovery Fe TiCl4 (+ AlCl3) Ti smelting by electrochemical method Ti metal Fig. Flowchart of new titanium smelting process from titanium ore discussed in this study. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 42 Iron removal process by electrochemical method Selective chlorination・Iron removal process Cathode: Fen+ + n e- → Fe Ca2+ + 2 e- → Ca Anode : e- 2. TiO2 reduction process (e.g. EMR-MSE process) Cathode: TiO2 + 4 e- → Ti + O2- 2 Cl- → Cl2 + 2 eFeOx + Cl2 → FeClx(l, g) + O Anode : Ca(or Ca-X) → Ca2+ + 2 e- A V Ti ore(TiO2 + FeOx) A e- e- Reference electrode e- Mild steel crucible(Cathode) TiFeOX O2- Carbon electrode TiO2 Ti Ti crucible(Cathode) Molten CaCl2 Molten CaCl2-CaO Carbon crucible(Anode) Ca-X alloy Ti reduction Production of reductant Establishment of a new up-grading process of Ti ore by electrochemical method. Direct reduction process from Ti ore to Ti metal can be achieved. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 43 (a) Iron removal process (b) FFC process (Fray et al., 2000) e- Carbon crucible containing Ti ore + CaCl2 mixture (Anode) e- Carbon anode CaCl2 molten salt Molten CaCl2 Sample Mild steel crucible (Cathode) Electrolysis Cathode: Ca2+ + 2 eAnode: 2 Cl- TiO2 preform Electrolysis → Ca (a1) Cathode: TiO2 + 4 e- → Ti + 2 O2- → Cl2 + 2 e- (a2) Anode: FeOx + Cl2 + C → FeClx + COx C + x O2- → COx + 2x e- (b1) (b2) (a3) Fig. Schematic illustrations of the processes investigated in this study. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 44 Potential of several reaction @1100 K 2CaCl2 + O2 → 2CaO + 2Cl2 log pCl22 / pO2 = -8.29 2MgCl2 + O2 → 2MgO + 2Cl2 log pCl22 / pO2 = 0.48 4HCl + O2 → 2H2O + 2Cl2 log pCl22 / pO2 = 1.49 2CO + O2 → 2CO2 log pO2 = -17.74 2C + O2 → 2CO log pO2 = -19.85 e.g. FeO + MgCl2 → FeCl2 + MgO ΔG = -0.28 kJ < 0 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 45 Table Gibbs energy change of formation in the Fe-Ti-O system. Reactions Fe (s ) + Cl2 (g ) = FeCl2 (s ) Fe (s ) + Cl2 (g ) = FeCl2 (l ) Fe (s ) + 1.5 Cl2 (g ) = FeCl2 (g ) Fe (s ) + 1.5 Cl2 (g ) = FeCl3 (g ) Fe (s ) + 0.5 O2 (g ) = FeO (s ) 2 Fe (s ) + 1.5 O2 (g ) = Fe2O3 (s ) 3 Fe (s ) + 2 O2 (g ) = Fe3O4 (s ) Ti (s ) + Cl2 (g ) = TiCl2 (s ) Ti (s ) + Cl2 (g ) = TiCl2 (g ) Ti (s ) + 1.5 Cl2 (g ) = TiCl3 (s ) Ti (s ) + 1.5 Cl2 (g ) = TiCl3 (g ) Ti (s ) + 2 Cl2 (g ) = TiCl4 (g ) Ti (s ) + 0.5 O2 (g ) = TiO (s ) Ti (s ) + 0.5 O2 (g ) = TiO (g ) Ti (s ) + O2 (g ) = TiO2 (s ) 2 Ti (s ) + 1.5 O2 (g ) = Ti2O3 (s ) 3 Ti (s ) + 2.5 O2 (g ) = Ti3O5 (s ) 4 Ti (s ) + 3.5 O2 (g ) = Ti4O7 (s ) Gibbs energy change, ΔG 900 K 1100 K -228.93 -212.65 -183.14 -190.89 -236.41 -231.45 -213.15 -200.71 -585.32 -535.98 -821.79 -762.36 -370.38 -340.24 -258.15 262.11 -526.31 -485.79 -495.25 -485.30 -654.50 -630.68 -455.54 -437.16 -32.67 -50.63 -780.23 -744.91 -1267.35 -1215.50 -2052.96 -1969.32 -2838.53 -2718.92 f (kJ/mol) Ref.a 1300 K [1] [1] -194.39 [1] -225.62 [1] -188.00 [1] -486.33 [1] -702.25 [1] -310.26 [1] -265.30 [1] [1] -474.73 [1] -606.36 [1] -418.80 [1] -67.66 [1] -709.30 [1] -1163.77 [1] -1885.27 [1] -2599.03 [1] a: References [1] I. Barin, Thermochemical Data of Pure Substances, 3rd ed., (Weinheim, Federal Republic of Germany, VCH Verlagsgesellschaft mbH, 1997). 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 46 Temperature, T / K 2000 0 1000 500 400 Vapor pressure, log pi (atm) -2 Region suitable for vaporization of chlorides -4 -6 -8 -10 Fig. Vapor pressure of iron, calcium, magnesium and titanium chlorides -12 as a function of reciprocal temperature. 0.5 1.0 1.5 2.0 2.5 Reciprocal temperature, 1000 T-1 / K-1 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 47 Thermodynamic analysis (FeOx chlorination) Fe-Cl-O system, T = 1100 K Oxygen partial pressure, log pO2 (atm) 0 CaO (s) / CaCl2 (l) aCaO = 0.1 Fe2O3 (s) -10 -20 Fe3O4 (s) H2O (g) / HCl (g) Ti ore : mixture of TiOx and FeOx. CO / CO2 eq. C / CO eq. FeO (s) MgO (g) / MgCl2 (l) eq. -30 FeCl2 (l) FeOX (s) + MgCl2 (l) -40 Fe (s) FeCl3 (g) e.g. -50 -60 -40 -30 -20 -10 → FeClX (l, g)↑ + MgO (s, l) 0 FeOx can be chlorinated by controlling oxygen and chlorine partial pressure. Chlorine partial pressure, log pCl2 (atm) Fig. Chemical potential diagram for Fe-Cl-O system at 1100 K. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 48 Thermodynamic analysis (TiOx chlorination) Ti-Cl-O system, T = 1100 K Fe / FeCl2 eq. CaO (s) / CaCl2 (l) aCaO = 0.1 Oxygen partial pressure, log pO2 (atm) 0 -10 TiO2 (s) H2O (g) / HCl (g) Ti ore : mixture of TiOx and FeOx. CO / CO2 eq. C / CO eq. -20 Ti3O5 (s) Ti4O7 (s) Ti2O3 (s) -30 MgO (g) / MgCl2 (l) eq. TiO (s) -40 TiCl3 (s) -50 -60 -40 Ti (s) TiCl2 (s) TiCl4 (g) -30 -20 -10 0 Since TiCl4 is highly volatile species, chlorine partial pressure must be kept in the oxide stable region. Chlorine partial pressure, log pCl2 (atm) Fig. Chemical potential diagram for Ti-Cl-O system at 1100 K. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 49 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 50 This chapter Low-grade Ti ore MClx (FeTiOx) (CaCl2) Selective chlorination by electrochemical method Upgraded Ti ore FeClx (TiO2) FeClx Ti scrap Chlorine recovery Fe TiCl4 (+ AlCl3) Ti smelting by electrochemical method Ti metal Fig. Flowchart of the new titanium smelting process discussed in this study. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 51 Ti ore Flux Binder Mixing Flux : CaCl2, MgCl2 Binder: Collodion Slurry Preform fabrication Feed preform Calcination / Iron removal FeClx Sintered feed preform Fig. Flowchart of the procedure of preform fablication supplied for Fe removal experiment. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 52 Table Composition of titanium ore (ilmenite) and up-graded ilmenite (UGI) used this study. Sample name Composition (mass%) TiO2 ilmenaiteb d UGI UGIe Total Fe Fe2O3 FeO 52.55 20.91 15.27 1.22 95.20 96.46 1.60 - MnO Al2O3 SiO2 1.91c 0.99 0.77 0.63 0.03 0.28 0.52 a MgO Nb2O5 P2O5 Moisture 0.21 0.11 0.61 0.61 0.27 < 0.01 0.10 0.03 0.15 a: Nominal value. b: Natural ilmenite ore produced in Australia. c: This is value as Mn. d: Up-graded ilmenite by the Beacher process (see Fig. 1-7). The ore was produced in Australia. e: Up-graded ilmenite by the Benilite process (see Fig. 1-6). The ore was produced in India. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 53 Table Starting materials used in this study. Materials Form Purity or conc. (%) Supplier Collodiona Liquid 5.0 Wako Pure Chemical., Inc. CaCl2 Powder 95.0up Kanto Chemicals, Inc. Ca Chip 98.0up Ti Sponge 98.0up Osaka Tokusyu Goukin Co., Ltd. Toho Titanium Co., Ltd. CH3COOH Liquid 99.7 Kanto Chemicals, Inc. HCl Liquid 35 Kanto Chemicals, Inc. 2-Propanol Liquid 99.5up Kanto Chemicals, Inc. Aceton Liquid 99.0up Kanto Chemicals, Inc. Graphite Crucible 99.98 Kanto Chemicals, Inc. a: 5 mass% nitro cellulose, 23.75 mass% ethanol, 71.25 mass% diethylether. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 54 Experimental apparatus Electrochemical interface Sample Voltage monitor / controller e- Furnace Molten CaCl2 10 A power source Holes on crucible Mild steel crucible Graphite crucible (Cathode) containing Ti ore (Anode) Electrochemical control unit 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 55 V1 V2 A1 A2 Potential lead (Nickel wire) Stainless steel tube Ar inlet Rubber plug Wheel flange Reaction chamber Thermocouple Heater Mild steel crucible Graphite crucible Ti ore, sample Preform containing Ti ore Molten salt (CaCl2) Ceramic insulator Fig. Schematic illustration of the experimental apparatus in a voltage measurement. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 56 (a) O.D. 19 mm I.D. 17 mm (b) Support rod (Stainless steel tube) Air hole Screw (Stainless steel) Surface of molten salt 40 mm Inlet of molten salt Graphite crucible Sample (Ti ore, CaCl2 etc.) Fig. Schematic illustration of the graphite crucible used in this experiment, (a) appearance, (b) inner content. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 57 e- A i CaCl2 molten salt Immersion current,i / mA 8 6 TiO2 preform (Cathode) Carbon crucible containing Ti ore (Anode) 4 2 0 -2 -4 0 500 1000 1500 Immersion time, t / s 2000 2500 Fig. Variation of the external current from the dipped preform to the graphite crucible. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 58 V CaCl2 molten salt 120 TiO2 preform (Cathode) Immersion voltage, V / mV 100 Carbon crucible containing Ti ore (Anode) 80 60 40 20 0 -20 -40 0 500 1000 1500 2000 2500 Immersion time, t / s Fig. Electromotive force between the dipped preform and the graphite crucible. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 59 Table Analytical results of various samplesa. Concentration of element i, Ci (mass%)b Sample # Ti Fe Ca Cl Si Al Cr Fe / Ti ratioc, RFe / Ti (%) A 50.6 33.7 7.1 0.0 5.3 2.7 0.6 66.6 B 41.9 41.4 9.6 0.0 4.3 2.5 0.3 98.8 C 50.1 42.2 0.1 0.0 4.0 3.3 0.3 84.3 D 50.4 42.4 0.2 0.0 3.7 2.4 0.9 84.1 E 40.7 36.1 10.8 8.7 2.0 1.3 0.3 88.7 a: Ilmenite (FeTiOx) produced in China. b: Determined by X-ray fluorescence analysis. This value excludes carbon and gaseous elements. c: Indicator of iron removal from titanium ore. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 60 800 Temperature, T / ℃ 782℃ Liquid 700 674℃ 592℃ 600 0 CaCl2 20 40 60 FeCl2 content, xFeCl2 (mol%) 80 100 FeCl2 Fig. Phase diagram for the CaCl2-FeCl2 system [2]. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 61 V2 V1 Potential lead (Nickel wire) A Stainless steel tube Ar inlet Rubber plug Wheel flange Reaction chamber Thermocouple Heater Mild steel crucible (working) Nickel quasi-reference electrode Graphite crucible (counter) Ti ore Molten salt (CaCl2) Ceramic insulator Fig. Schematic illustration of the experimental apparatus for cyclic voltammetry in molten CaCl2. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 62 2 (a) 1 Current, i / A 0 -1 2 (b) Ca2+ + 2 e- = Ca (on Fe) 1 0 3.2 V -1 2 Cl- = Cl2 + 2 e- (on C) -2 -1 0 1 Potential (vs Ni quasi-ref.), E / V 2 Fig. Cyclic voltammograms for molten CaCl2 at 1100 K (a) before pre-electrolysis, (b) after pre-electrolysis, cathode sweep; working: Fe rod; counter: C rod, anode sweep; working: C rod; counter: Fe rod, scan rate: 100 mV / s, immersion length: 4 cm. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 63 Table Standard Gibbs energy of formation and theoretical voltage for reactions in this study. Reactions Fe (s ) + Cl2 (g ) = FeCl2 (l ) Fe (s ) + 1.5 Cl2 (g ) = FeCl2 (g ) Fe (s ) + 1.5 Cl2 (g ) = FeCl3 (g ) Fe (s ) + 0.5 O2 (g ) = FeO (s ) 2 Fe (s ) + 1.5 O2 (g ) = Fe2O3 (s ) 3 Fe (s ) + 2 O2 (g ) = Fe3O4 (s ) Ti (s ) + 0.5 O2 (g ) = TiO (s ) Ti (s ) + 0.5 O2 (g ) = TiO (g ) Ti (s ) + O2 (g ) = TiO2 (s ) 2 Ti (s ) + 1.5 O2 (g ) = Ti2O3 (s ) 3 Ti (s ) + 2.5 O2 (g ) = Ti3O5 (s ) 4 Ti (s ) + 3.5 O2 (g ) = Ti4O7 (s ) Ca (s ) + Cl2 (g ) = CaCl2 (l ) Ca (s ) + 0.5 O2 (g ) = CaO (s ) CaO (s ) + C (s ) = Ca (s ) + CO (g ) CaO (s ) + 0.5 C (s ) = Ca (s ) + 0.5 CO2 C (s ) + 0.5 O2 (g ) = CO (g ) C (s ) + O2 (g ) = CO2 (g ) Fe (s ) + Ti (s ) + 1.5 O2 (g ) = FeTiO3 2 Fe (s ) + Ti (s ) + 2 O2 (g ) = Fe2TiO4 Gibbs energy change, ΔG f / kJ -212.65 -190.89 -231.45 -200.71 -535.98 -762.36 -437.16 -50.63 -744.91 -1215.50 -1969.32 -2718.92 -629.11 -520.78 -312.00 -323.00 -209.06 -395.92 -956.61 -1164.70 Theoretical voltage Temperature, Ref.a for reactions, T / K ΔE of / V 1.10 0.99 1.20 1.04 0.93 0.99 2.27 0.26 1.93 2.10 2.04 2.01 3.26 2.70 1.62 1.67 1.08 1.03 1.65 1.51 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] a: References b: DE o = -DG o / nF, where n is electron transfer number, and F is Faraday constant. [1] I. Barin, Thermochemical Data of Pure Substances, 3rd ed., (Weinheim, Federal Republic of Germany, VCH Verlagsgesellschaft mbH, 1997). 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 64 (a) 2 Ca2+ + 2 e- = Ca (on Fe) 1 0 3.0 V -1 2 Cl- = Cl2 + 2 e- (on C) (b) Current, i / A 2 Ca2+ + 2 e- = Ca (on Fe) 1 0 1.7 V -1 C + x O2- = COx + 2x e- (on C) (c) 2 Ca2+ + 2 e- = Ca (on Fe) 1 0 1.7 V -1 C + x O2- = COx + 2x e- (on C) -2 -1 0 1 2 Potential (vs Ca / Ca2+ ref.), E / V 3 Fig. Cyclic voltammograms for molten CaCl2 at 1100 K after Ca deposition using various carbon electrode, (a) C rod, scan rate: 100 mV / s, (b) C crucible, scan rate: 100 mV / s, (c) Ti ore holding C crucible, scan rate: 20 mV / s, cathode sweep; working: Fe rod; counter: Carbon, anode sweep; working: Carbon; counter: Fe rod, immersion length: 2 cm. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 65 120 0 Temperature, T’ / ˚C 1100 Liq. Two liquids 1000 900 825˚ 800 828˚ 767˚ 700 0 CaCl2 20 40 60 80 Ca content, xCa (mol%) 100 Ca Fig. Phase diagram for the CaCl2–Ca system [3]. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 66 e- Mild steel crucible (Cathode) Carbon crucible containing Ti ore + CaCl2 mixture (Anode) Sample Molten CaCl2 Fig. Schematic illustration of experimental apparatus for iron removal by electrochemical method. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 67 V Potential lead (Nickel wire) A Stainless steel tube Ar inlet Rubber plug Wheel flange Stainless steel reaction chamber Thermocouple Heating element Mild steel crucible (Cathode) Graphite crucible (Anode) Ti ore Molten salt (CaCl2) Ceramic insulator Fig. Schematic illustration of the experimental apparatus for iron removal by electrochemical method. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 68 Ti ore ( + Fe2O3 etc) CaCl2 Electrochemical iron removal TiO2 + CaCl2 Distilled water CH3COOH aq., HCl aq., Distilled water, Isopropanol, Acetone CaCl2 Separation TiO2 Leaching S L Waste solution Vacuum drying TiO2 powder Fig. Flowchart of the procedure for iron removal experiment by electrochemical method. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 69 Experiment 1 Experimental condition: Temperature: 1100 K Atmosphere: Ar Molten salt: CaCl2 (800 g) Cathode: Mild steel crucible (I.D 96 mm) Anode: Graphite crucible (I.D 17 mm) Mass of Ti ore Exp. No. (Ilmenite), w / g A B C 4.00 4.00 4.00 Sample Voltage monitor / controller e- Voltage, E/V Time, t’ / h 2.5 2.0 1.5 6 3 12 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 Molten CaCl2 Mild steel crucible (Cathode) Graphite crucible containing Ti ore (Anode) 70 Result 1 Disscussion XRF analysis Table Analytical results of the sample obtained after the electrochemical selective chlorination. Sample Concentration of element i, Ci (mass %) Ti Ti ore Exp. A Exp. B Exp. C 42.6 64.2 55.4 45.7 Fe Ca 48.7 2.2 29.6 0.5 25.3 13.8 21.7 12.3 Si 2.2 1.8 1.1 1.4 Ti ore (Ilmenite, FeTiOx) Fe / Ti ratio, e- V RFe / Ti (%) 0.6 0.9 1.2 2.7 114 49.5 45.6 47.4 a: Average of the samples obtained from the upper part and lower part of the graphite crucible. Molten CaCl2 Unreacted part After the electrochemical treatment, Fe in the Ti ore was selectively chlorinated and removed. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 Graphite crucible (Anode) Unreacted part was remained at the bottom of the graphite crucible. 71 Table Experimental condition for iron removal from Ti ore by electrochemical methodc. Exp. Mass of feed materials i, wi / g UGIa Voltage, V / volts Reaction time, t / hr Exp. Ilmeniteb Mass of feed materials i, wi / g UGIa Voltage, V / volts Reaction time, t / hr Ilmeniteb A 2.76 2.0 1.0 I 4.00 2.5 3.0 B 2.82 1.2 1.0 J 4.03 1.5 3.0 C 2.92 1.0 1.0 K 4.01 1.5 6.0 D 2.91 0.5 1.0 L 3.99 1.0 6.0 E 2.88 2.0 3.0 M 4.00 0.5 6.0 F 2.81 1.0 6.0 N 3.93 ー 6.0 G 2.75 0.5 0.5 O 4.01 1.5 9.0 H 1.42 1.2 1.0 P 4.00 2.0 13.0 a: Upgrade ilmenite by the Benilite process (see Fig.1-6 ). The ore was produced in India (see Table 3-1). b: Ilmenite (FeTiOx) produced in China. c: Temperature: 1100 K, Ar atmosphere. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 72 10 A Power Source 20 cm Fig. Schematic illustration of electrochemical interface in this experiment. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 73 2.0 Current, I / A 1.5 Exp. K 1.0 Exp. L 0.5 Exp. M 0 Exp. N -0.5 0 10000 20000 Time, t / second Fig. Current generated by imposed each voltage. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 74 Table Analytical results of the samples obtained after iron removal by electrochemical method. a Exp. Composition i , C i / mass % # Al Si S Cl Ca Sc Ti V UGIc 0.0 0.1 nd 0.0 0.1 nd 96.3 0.2 c 0.4 1.1 0.5 nd 0.1 0.4 92.8 1.2 UGI A 0.2 0.4 0.0 nd 38.8 0.2 55.4 1.1 B nd nd nd nd nd nd nd nd C 0.3 1.1 0.1 nd 15.3 0.1 80.2 1.4 D 0.2 0.9 0.0 nd 5.3 0.3 90.1 1.0 E 0.2 0.4 0.0 0.0 45.7 0.2 49.8 1.5 F 0.2 0.8 0.0 nd 30.4 0.1 66.4 1.1 G nd 0.1 0.1 nd 11.3 0.1 86.5 1.5 H 0.1 0.2 0.0 nd 21.4 0.1 76.4 1.1 d 1.8 1.8 0.0 nd 0.2 0.2 44.8 0.7 Ilmenite d 2.6 2.6 0.0 nd 0.5 0.2 40.4 0.6 Ilmenite d 0.8 2.0 0.0 nd 0.2 0.3 45.7 0.5 Ilmenite d 1.0 1.4 nd nd 0.2 0.4 45.0 0.5 Ilmenite I 1.1 0.5 0.0 0.1 9.0 0.3 53.8 0.9 J 0.9 1.5 0.1 nd 6.4 0.2 56.0 0.7 K 1.0 6.2 0.1 nd 8.1 0.1 58.1 1.1 L 1.3 4.5 0.1 nd 21.5 0.1 56.7 1.2 M 1.2 2.8 0.1 0.4 20.2 nd 46.7 0.8 N 1.2 1.9 0.0 1.7 35.4 0.1 37.7 0.7 O 0.1 0.2 0.0 0.2 35.3 0.3 49.1 1.0 P 0.1 0.5 0.0 0.1 28.5 0.2 41.4 0.8 Q 0.6 0.6 0.0 0.2 33.4 0.2 52.2 1.2 a: Determined by XRF analysis. b: Experimental date. c: Upgraded ilmenite produced in Australia. d: Ilmenite (FeTiOx) produced in China. nd: not detected. Below detection limit of XRF (< 0.01%) Mn 1.0 1.3 0.4 nd 0.3 0.9 0.6 0.4 0.2 0.2 3.3 2.9 3.2 3.0 0.9 0.7 0.9 0.8 1.6 0.6 1.0 1.5 0.7 Fe 1.9 2.3 2.6 nd 1.3 1.3 1.6 0.6 0.2 0.4 47.2 50.2 47.2 48.5 33.3 33.5 24.0 12.8 26.1 20.5 12.8 26.7 10.8 Ni 0.0 0.0 0.8 nd 0.0 0.0 0.1 nd nd 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.5 0.9 0.1 0.0 nd nd nd Fe / Ti /% 2.00 2.45 4.65 nd 1.63 1.40 3.27 0.98 0.24 0.56 105.3 124.4 103.2 107.9 61.9 59.9 41.3 22.6 55.8 54.6 26.0 64.6 20.7 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 Note b 051227-UGIAUS 050125_UGI 050125_UGI_P04_1 050119_UGI_P02 050125_UGI_P05_2 050125_UGI_P06_1 050125_UGI_P07_2 050127_UGI_P10_1 050119_UGI_P01_1 050119_UGI_P03_1b 050420_ilmenite 050420_ilmenite 050615_ilmenite 050607_ilmenite 050425_ilmenite_P33_2 050428_ilmenite_P38_1 050217_ilmenite_P15_1 050217_ilmenite_P14_1 050216_ilmenite_P13_3 050216_ilmenite_P12_2 050517_ilmenite_P46_2 050516_ilmenite_P45_1 050502_ilmenite_B_1 75 100 mm V1 V2 A1 A2 Potential lead (Ni wire) Stainless steel tube (Electrode) Ar inlet Rubber plug Wheel flange Thermocouple Heater Mild steel crucible (Cathode) Graphite crucible (Anode) Ti ore + CaCl2 mixture Molten salt (CaCl2) Ceramic insulator Fig. Schematic illustration of experimental apparatus in this experiment. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 76 3 Current Current / A 10 Voltage 8 2.5 2 6 1.5 4 1 2 0.5 0 0 3000 6000 Time / s 9000 Voltage / V 12 0 12000 Fig. Current value passed by imposed certain voltage, and voltage in this experiment, Exp. F. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 77 Intensity, I (a. u.) : CaTiO3 (JCPDS #42-0423) : TiO2 (JCPDS #21-1276) 10 20 30 40 50 60 70 80 90 100 Angle, 2θ (degree) Fig. XRD pattern of the obtained sample after selective chlorination experiment. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 78 Table Experimental condition and analytical results of the chlorination experiment using ilmenite. Obtained Mass of feed material i , w i / g CaCl2 / FeOx Imposed Reaction Average Fe / Ti ratio, voltage, time, current, sample, ratioa, Exp. Ilmemite Carbon CaCl2 Noteb M Ca / Ti / V / volts. t / hr I / A R Fe / Ti / % w /g c Ilmenite 105.5 050420_ilmenite A 1.25 1.80 2.0 1.5 3 2.52 54.8 0.85 050610_P48 1 B 1.87 1.33 1.0 1.8 6 1.72 74.8 1.26 050613_P49 C 1.47 1.60 1.5 1.8 8 2.83 19.3 0.52 050614_P50 2 D 0.75 2.19 4.0 2.0 3 1.59 96.2 0.63 050624_P53 E 0.79 2.00 3.7 2.0 6 5.09 050725_P55 F 0.87 2.35 3.7 5.91 7.2 0.97 050803_P56 c c G 3.99 2.0 3 3.60 54.9 2.60 050811_P57 3 H 0.77 2.18 4.0 1.5 3 5.87 57.4 0.48 050811_P58 (Old) I 0.77 0.18 2.14 4.0 1.5 3 3.09 24.7 0.03 050814_P59 J 0.74 2.12 4.0 1.5 3 4.49 48.8 0.76 050816_P60 K 0.74 2.17 4.0 1.5 3 5.00 3500 0.02 050816_P61 L 0.72 2.19 4.0 6 34.2 0.55 051014_P62 M 0.73 2.20 4.0 0.0 6 -0.004 48.7 0.55 051014_P63 N 0.62 2.26 5.0 1.5 3 0.68 46.2 0.37 051017_P64 O 0.61 2.25 5.0 1.5 6 0.42 37.7 0.41 051018_P66 P 0.74 1.5 3 0.47 72.7 0.56 051019_P67 Q 0.73 0.16 2.00 3.7 2.5 6 1.95 051020_P69 4 R 0.74 2.17 4.0 2.5 6 1.81 12.4 0.42 051021_P70 S 0.60 2.26 5.0 1.5 3 1.27 107.0 0.31 051025_P72 T 0.60 2.21 5.0 2.0 6 0.79 126.8 0.59 051025_P73 U 0.60 2.21 5.0 d d 4.10 354.4 0.02 051026_P74 V 0.67 2.37 5.0 e e 12.9 0.38 051114_P75 a: Indicator of iron removal from titanium ore. b: Experiment number c: Ilmenite (FeTiOx) produced in China. d: 2.0 volts 20 minutes, and 1.5 volts 3hours e: 1.8 volts 6 hours, and 3.0 volts 3 hours f: 2.0 volts, 1.5 volts, 1.8 volts, and 2.0 volts, 1 hour respectively Use bath # 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 79 Table Experimental conditions and analytical results of the chlorination experiment using UGI. Use Mass of feed material i , w i / g CaCl2 / FeOx Imposed Reaction Fe / Ti Obtained Mass decrease of b sample, carbon crucible, bath ratio, voltage, time, ratio , a c CaCl2 Exp. UGI Note w2 / g # M Ca / Ti / V / volts t / hour R Fe / Ti / % w 1 / g 051227_UGIAUS 2.00d A 1.55 1.27 20 2.0 3 051219_P77 A 1.59 1.26 20 2.0 3 0.28 0.09 0.13 051222_P89 B 2.08 0.84 10 2.0 3 051219_P79 B 2.07 0.83 10 2.0 3 4.70 0.15 0.20 051221_P87 C 2.46 0.49 5 2.0 3 051220_P82 C 2.46 0.49 5 2.0 3 7.41 0.42 0.25 051221_P86 5 D 1.59 1.27 20 1.5 3 0.18 0.49 0.35 051220_P81 E 2.11 0.85 10 1.5 3 0.59 0.55 0.14 051219_P78 F 2.45 0.48 5 1.5 3 051220_P84 F 2.45 0.48 5 1.5 3 0.83 1.11 0.29 051221_P85 G 2.12 0.58 7 1.5 9.5 0.33 0.76 0.16 051220_P80 e H 0.83 10 1.5 10 051222_P88 2.08 4 I 1.57 1.28 20 f f 2.20 0.02 0.42 051115_P76 J 1.59 1.24 20 0.0 3 2.63 1.95 0.05 051220_P83 5 g K 1.27 20 2.0 6 0.43 0.31 0.15 051222_P90 1.59 a: Up-graded ilmenite by the Beacher process (see Fig. 1-6). The ore was produced in Australia. b: Indicator of iron removal from titanium ore. c: Experiment date and number d: Reference e: Mixture 2.08 g of Ti ore and 0.08 g of carbon powder f: 2 volts 2 hours, and 2 volts 2hours g: Up-graded ilmenite by the Benilite process (see Fig. 1-5). The ore was produced in India. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 80 Low-grade Ti ore MClx (FeTiOx) (CaCl2) Selective chlorination by electrochemical method Upgraded Ti ore FeClx (TiO2) FeClx Ti scrap Chlorine recovery Fe TiCl4 (+ AlCl3) Ti smelting by electrochemical method Ti metal This chapter Fig. Flowchart of new titanium smelting process from titanium ore discussed in this chapter. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 81 V A Potential lead (Nickel wire) Stainless steel tube Ar inlet Rubber plug Wheel flange Reaction chamber Thermocouple Heater Mild steel crucible Ti crucible (Cathode) Graphite rod (Anode) Mixture of Ti ore after Fe removal and CaCl2 Molten salt (CaCl2) Ceramic insulator Fig. Schematic illustration of the experimental apparatus for electrochemical reduction of Ti ore after Fe removal. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 82 Ti ore (+Fe2O3 etc) CaCl2 Mixing Mixture CaCl2 CH3COOH aq., HCl aq., Distilled water, Isopropanol, Acetone Electrochemical reduction Ti + CaCl2 Leaching S L Waste solution Vacuum drying Ti powder Fig. Flowchart of the experimental procedure for electrochemical reduction of Ti ore after Fe removal. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 83 Table Experimental conditions for electrochemical reduction of Ti ore after Fe removal. Exp. No. Mass of feed material i, Ci / g Voltage, Time, E/V t” / h Ti ore CaTiO3 CaCl2 R1 ー 1.50 2.50 1.5 3 R2 ー 1.50 2.50 3.0 3 R3 0.79a ー 2.50 3.0 3 R4 0.76b ー 2.50 3.0 3 a: The sample obtained by selective chlorination exp. A. b: The sample obtained by selective chlorination exp. D. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 84 1000 Temperature, T’ / ˚C 950 900 1150 K 85 0 800 75 0 700 0 CaCl2 10 20 30 CaO content, xCaO (mol%) CaO Fig. Phase diagram for the CaCl2–CaO system. 2006 Annual Meeting, San Antonio, TX, U.S.A, March 12–16, 2006 85