Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
ay′′ + by′ + cy = 0 2nd Order Homogeneous Linear Equation with Constant Coefficients set equal to zero y′′ is the highest derivative y and all a, b, and c derivatives are constant are raised to the first power ( no ( y′) ) 2 Assume y = erx , r constant cy = ce rx by′ = bre rx never zero ay′′ = ar 2 e rx 0 = ar 2 e rx + bre rx + ce rx ⇒ e rx ( Auxiliary (or Indicial) Equation The solution is based on the ar 2 + br + c = 0 roots of this equation ) 1 ay′′ + by′ + cy = 0 2 ⇓ roots r1 and r2 ar + br + c based on b 2 − 4ac i real distinct roots r1 and r2 ( b 2 − 4ac > 0 ) y = c1e r1x + c2 er2 x i repeated real roots r = r ( b y = c1e r1x + c2 xer1x 1 2 2 − 4ac = 0 ) i complex roots r1 = α + β i, r2 = α − β i ( b 2 − 4ac < 0 ) y = eα x ( c1 cos ( β x ) + c2 sin ( β x ) ) ax 2 y′′ + bxy′ + cy = 0 Cauchy-Euler Equation 2nd Order Homogeneous Linear Equation with Constant Coefficients Variable with the degree on x = order of the derivative Assume y = x r , r constant cy = cx r ⇒ bxy′ = brx r ⇒ ax 2 y′′ = ar ( r − 1) x r bxy′ = bx ( rx r −1 ) ax 2 y′′ = ax 2 r ( r − 1) x r − 2 ⇒ x r ( ar 2 + ( b − a ) r + c ) = 0 In order for a solution to exist, we need ax 2 ≠ 0 ( see Thm. 3.1) ⇒ x ≠ 0 and our solution xr ≠ 0 will be valid on the interval ( 0, ∞ ) on ( 0, ∞ ) Auxiliary Equation The solution is based on the roots of this equation 2 ax 2 y′′ + bxy′ + cy = 0 ⇓ roots r1 and r2 ar 2 + ( b − a ) r + c 2 based on ( b − a ) − 4ac i real distinct roots r1 and r2 r1 r2 1 2 y =c x +c x i repeated real roots r1 = r2 y = c1 x r1 + c2 x r1 ln x i complex roots r1 = α + β i, r2 = α − β i y = xα ( c1 cos ( β ln x ) + c2 sin ( β ln x ) ) Why? The substitution x = et reduces our variable coefficient equation ax 2 y′′ + bxy′ + cy = 0 into a constant coefficient equation in t. To see this, lets use dy d2y and in place of y ′ and y′′. dx dx 2 d2y dy ax + bx + cy = 0 2 dx dx 2 x = et dy dy dx dy dy t dy dy = ⇒ = e ⇒ = e−t dt dx dt dt dx dx dt chain rule 3 d 2 y d dy = dt 2 dt dt = d dy dx ⋅ dt dx dt Use the product rule d dy dx dx dy d 2 x = ⋅ + 2 dx dx dt dt dx dt ( derivative of first w.r.t t ) ( second ) ( first ) d 2 y d 2 y t t dy t = ⋅ e (e ) + (e ) dt 2 dx 2 dx derivative of the second w.r.t. t d 2 y d 2 y t t − t dy t = ⋅ e (e ) + e (e ) dt 2 dx 2 dt d 2 y dy d 2 y 2t − = ⋅e dt 2 dt dx 2 2 d2y dy −2 t d y = e − 2 dx 2 dt dt 2 ax 2 d y dy + bx + cy = 0 2 dx dx ⇓ dy dy = e−t dx dt 2 2 d y dy −2 t d y = e 2 − 2 dx dt dt d 2 y dy dy ae 2t e −2t 2 − + bet e −t + cy = 0 dt dt dt ⇓ 2 a d y dy + ( b − a ) + cy = 0 2 dt dt constant coefficients 4 x = et ⇒ t = ln x i complex roots r1 = α + β i, r2 = α − β i i real distinct roots r1 and r2 y = eαt (c1 cos(β t ) + c2 sin (β t )) y = c1e r1t + c2e r2t y = c1e r1 ln x + c2 e r2 ln x r1 y = c1e ln x + c2 e ln x y = eα ln x (c1 cos(β ln x ) + c2 sin (β ln x )) r2 α y = e ln x (c1 cos(β ln x ) + c2 sin (β ln x )) y = c1 x r1 + c2 x r2 y = xα ( c1 cos ( β ln x ) + c2 sin ( β ln x ) ) i repeated real roots r1 = r2 y = c1e r1t + c2te r1t y = c1e r1 ln x + c2 ln xe r1 ln x r1 y = c1e ln x + c2 ln xe ln x r1 y = c1 x r1 + c2 x r1 ln x 3.6 # 8 x 2 y ′′ + 3 xy ′ − 4 y = 0 → Cauchy-Euler y = x m ⇒ y′ = mx m −1 ⇒ y ′′ = m ( m − 1) x m − 2 x 2 y ′′ = m ( m − 1) x m − 2 x 2 = m ( m − 1) x m 3 xy′ = 3mx m −1 x = 3mx m −4 y = −4 x m 0 = m ( m − 1) + 3m − 4 x m ⇒ m 2 + 2m − 4 = 0 0 m= −2 ± 4 − 4 (1)( −4 ) 2 = −2 ± 20 −2 ± 2 5 = = −1 ± 5 2 2 Real Distinct Roots ⇒ y = c1 x −1+ 5 + c2 x −1− 5 5 3.6 # 16 x 3 y′′′ + xy′ − y = 0 → Cauchy-Euler y = x m ⇒ y′ = mx m−1 ⇒ y′′ = m ( m − 1) x m −2 ⇒ y′′′ = m ( m − 1)( m − 2 ) x m−3 x 3 y′′′ = m ( m − 1)( m − 2 ) x m−3 x3 = m ( m − 1)( m − 2 ) x m xy ′ = mx m−1 x = mx m − y = − xm 3 0 = m ( m − 1)( m − 2 ) + m − 1 x m ⇒ m3 − 3m 2 + 3m − 1 = 0 ⇒ ( m − 1) = 0 0 m = 1, Repeated Root with multiplicity 3 ⇒ y = c1 x + c2 x ln x + c3 x ( ln x ) 2 6