Download Example

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
2.7
Study of properties of functions
1.Monotonicity of functions
2.Exterme values of functions
3.Global maxima and minima
4.Convexity of functions
5.Construct the graph of a function
2.7.1 Monotonicity of functions
Th2.7.1Let f ( x) be continuous on I , and differentiable in I , then
(1)The necessary and sufficient condition for the function f to be
monotone increasing (decrea sin g ) on I is f   0( 0).
(2) If f   0( 0) in I , then f is strictly monotone increasin g
(decreasin g ) on I .
Example Discuss the monotonicity of the function
Solution:
2

f ( x)  6 x  18 x  12  6( x  1)( x  2)
x  1, x  2
let f ( x)  0 , we have
x
( , 1)
1
(1 , 2)
f (x)
f (x)

0

2
2
0
( 2 ,  )

1
y
so
is strictly monotone increasing in
  ,1 , and  2,   
And the monotone decreasing interval is
(1 , 2).
2
1
o
1 2
x
Note:
The partition points may be the points where the function f
is not differentiable.
y y  3 x2
For instance,
o
x

Exampl e 2. 7. 2 Prove t hat tanx > x if x  (0, ).
2
Example 2.7.3 Prove that
1 x
e 
i f 0  x  1.
1 x
2x
2.7.2 Extreme values of functions
Lemma 2.5.1 (Fermat lemma) if f:U  x0  
is
differentiable at x0 , and x0 is a local maximum
(local minimum)point,then f ( x0 )  0.
So an extreme point of a differentiable function must be a
stationary point, but the converse is not necessarily true.
say, f ( x )  x i s not di f f er ent i abl e at x  0,
but x  0 i s t he mi ni mal poi nt of f .
Note:
f ( x0 )  0

the possible extreme points x 0 
 f ( x0 ) doesn ' t exi
Th2.7.2
1)i f f ' ( x )  0f or x  ( x0   , x0 ),and f ' ( x )  0 for x  ( x0 , x0   ),
t hen f ( x )has a maxi mum at x0;
2)I f f ' ( x )  0 for x  ( x0   , x0 ),and f ' ( x )  0 when x  ( x0 , x0   ),
t hen f ( x )has a mi ni mum at x0;
0
3)I f f ( x )has t he same si gh inU ( x0, ),
'
t hen x0 i s not an ext r eme poi nt of f .
Example Find the extreme values of
Solution
 13
2
1) f ( x )  ( x  1)  ( x  4)  3 ( x  1) 
2
3
5( x 1)
3 3 x 1
2) let f ( x)  0 , we get a stationary point x1  1;
x2  1 is non  differentiable point of f .
3) Make a table as follows:
x ( ,  1) 1

f (x) 
0
f (x)
( 1 , 1)

1
0
3 3 4
(1,   )

Th2.7.3
and
then
then
has a maximum at
x0 
has a minimum at. x0

Example Find the extreme value of
Solution 1)
f ( x)  6 x ( x 2  1) 2 ,
f ( x)  6 ( x 2  1)(5 x 2  1)
2)
Let f ( x)  0 , we get x1  1, x2  0 , x3  1
3) Judge
f (0)  6  0, so x2  0 is a minimal point and f (0)  0.
y
f (1)  0, but byTh 2.7.2, x  1 are
not extreme point s.
1
1
x
Th2.7.4
f
and
then:1) If n is even
( n)
( x0 )  0 ,
is an extreme point
is a minimum point ;
is a maximum point .
2) when n is odd,


is not an extreme point .
f ( n ) ( x0 )
( x  x0 ) n
f ( x)  f ( x0 )  f ( x0 )( x  x0 )   
n!
 o(( x  x0 ) n )
y
In above example
f ( x )  6 x( x 2  1)2 ,
f ( x )  6( x 2  1)(5 x 2  1)
f ( x)  24 x (5 x 2  3) , f (1)  0
so
1
are not extreme points .
Note:
Th2.7.3 and Th2.7.4 are both sufficient.
1
x
3.Global maxima and minima
Continuous function f(x) on a closed interval must have a
global maximum and a global minimum.
How to find the global maximum and minimum:
(2) The global maximum
M  max
Global minimum
f (a) , f (b)
Example Find the global maximum and minimum of
Solution
si nce f ( 3) 20,
f (4)  6
f (1)  0
3 1
f( )
2 4
f (2)  0
1
Example2.7.6.Let p  1, x  [0,1], prove: p1  x  (1  x )  1
2
p
p
Note :
(1) If f ( x) is monotone increasing on the interval  a , b  ,
then the global maximum and minimum must be abttained
at the end po int .
(2)if continuous function on  a , b  has only one extreme
po int, then this point must be the global point .
Example2.7.7 A cylindrical container with volumeV0 and without
cov er is to be made of a sheet of iron.How should we design it if
we wish to use the least amount of material ?
4.Convexity of functions
If the graph of a function is convex down, then the function
is called a convex function, while a function whose graph is
convex up, is called a concave function.
The property of being convex up or convex down for the graph
of a function is called the convexity of the function.
Definition2.7.2 Let f : I  , if x1 , x2  I
the inequality
x1  x2
1
f(
)  ( f ( x1 )  f ( x2 ))
2
2
holds, then f is called a convex function on I ;
if x1 , x2  I and x1  x2 , we have
x1  x2
1
f(
)  ( f ( x1 )  f ( x2 ))
2
2
then f is called a strictly convex function on I .
If the inequality sign is reversed , then f is called a concave
function or strictly concave function on I respectively.
Th2.7.5 Assume that f is twice differentiable in the int erval I ,
then
(1) f is a strictly convex (convex) function if f ( x )  0

( 0), x  I ;
(2) f is a strictly concave (concave) function if
f ( x)  0 ( 0), x  I

The transition point on the cruve between the concave arc
and convex arc is called an inf lection po int of f ( x).
Example Find the convex and concave interval of
Sou: 1)
3
2

y  12 x  12 x ,
 36 x( x  23 )
2)
(0,1) ( 2 , 11 )
3 27
2,
x

0
,
x

we
get
let y  0
1
2 3
3)
x ( , 0)

y
y convex
(0 , 23 )
0

0
1 concave
( 23 ,  )

0
2
3
2
3
11
27
convex
So f is convex on( , 0)and ( 2 ,  );and is concave on
3
)
( 0 , 1 ) and ( 23 , 11
27 are both inflection points.
(0, 23 )
Exampl e 2. 7. 10 St udy t he convexi t y of t he f ol l owi ng
f unct i ons
(1)f ( x )  x ,( x  0,   1),
(2) f ( x )  ln x( x  0)
Example2.7.11
Prove that  a  b   16(a  b ), a  0, b  0, a  b.
5
5
5
Th2.7.6 If f is continuous and strcitly convex in an
interval I , then f has at most one global minimum
point, and if there exists a unique local minimum
point in I , then it must be global minimum po int in I .
Method of proving inequality:
1.By mean value theorem
2.By the monotone theorem
3.By the global maximum
4.By the convexity of the function
5.Construct the graph of a function
机动
目录
上页
下页
返回
结束
Oblique asymptote
If
( P79 T1)
( k x  b)
( k x  b)
Then y  k x  b .
f ( x) b
k  lim [
 ]
x x
x
1
lim [ f ( x)  kx  b ]  0 
x  x
f ( x)
k  lim
x x
(or x  )
f ( x)
b
lim [
k  ]0
x x
x
b  lim [ f ( x)  k x]
x
(or x  )
机动
目录
上页
下页
返回
结束
Solution:
x3
 y
,
( x  3)(x  1)
so
and
lim y   ,
x3
(or x  1)
y  x2
x  3 andx  1
f ( x)
x2
k  lim
 lim 2
x x
x  x  2 x  3
3
1
 2 x 2  3x
b  lim [ f ( x) x]  lim 2
x
x  x  2 x  3
 y  x  2 is oblique asymptote. .
机动
目录
上页
下页
返回
结束
Example Paint the graph of
Solution : 1) domain
2) y  x 2  2 x , y  2 x  2 ,
l et y  0,
l et y  0,
3)
4)
x ( , 0)
y

y

y
x 1 3
y 23 2
1
0
0
2
(max)
(0 ,1)


1

4
3
2
3
(inflec
tion)
(min)
机动
2
2 ( 2 ,  )
0


(1, 2)

0
1
目录
上页
下页
返回
结束
3
Related documents