Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Outline
subspaces
sittichoke somam
Mahidol Witthayanusorn School
13 สิงหาคม พ.ศ. 2555
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 1/ 25
Outline
Outline
1
Subspace
Examples of subspaces
Building Subspaces
2
Linear Combination and Span
Linear Combination
Spanning
Test
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 2/ 25
Subspace
Linear Combination and Span
Examples of subspaces
Building Subspaces
Outline
1
Subspace
Examples of subspaces
Building Subspaces
2
Linear Combination and Span
Linear Combination
Spanning
Test
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 3/ 25
Subspace
Linear Combination and Span
Examples of subspaces
Building Subspaces
Definition
A subset W of a vector space V is called a subspace of V if W is
itself a vector space under the addition and scalar multiplication
defined on V .
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 4/ 25
Subspace
Linear Combination and Span
Examples of subspaces
Building Subspaces
Definition
A subset W of a vector space V is called a subspace of V if W is
itself a vector space under the addition and scalar multiplication
defined on V .
Theorem
If W is a set of one or more vectors from a vector space V , then W
is a subspace of V if and only if the following conditions hold.
If u and v are vectors in W , then u + v is in W .
If k is any scalar and u is any vector in W , then ku is in W
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 4/ 25
Subspace
Linear Combination and Span
Examples of subspaces
Building Subspaces
Example
Lines through the origin are subspaces of R2 and of R3
Planes through the origin are subspaces of R3
W = {0v }, V is any vector space.
W is the set of continuous functions, V is a function space.
the functions that are continuously differentiable on (∞, −∞)
form a subspace of F (∞, −∞)
W = {p(t) ∈ P2 such that P(2) = 0}, V = P2
W = {A ∈ Mnn |A is symmetric matric}, V = Mnn
W = {(an ) ∈ R|(an ) is convergent}, V is sequence space
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 5/ 25
Subspace
Linear Combination and Span
Examples of subspaces
Building Subspaces
Show that W isn’t subspase of V
Example
V = R2
S = {(x, y ) ∈ R2 |x ≥ 0 and y ≥ 0}
T = {(x, y ) ∈ R2 |(x ≥ 0 and y ≥ 0) or (x ≤ 0 and y ≤ 0)}
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 6/ 25
Subspace
Linear Combination and Span
Examples of subspaces
Building Subspaces
Theorem
If Ax = 0 is a homogeneous linear system of m equations in n
unknowns, then the set of solution vectors is a subspace of Rn .
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 7/ 25
Subspace
Linear Combination and Span
Examples of subspaces
Building Subspaces
Example (Solution Spaces That Are Subspaces of R3 )
(1)
(2)
(3)
(4)
1 −2 3
x
0
2 −4 6 y = 0
3 −6 9
z
0
1 −2 3
x
0
−3 7 −8 y = 0
−2 4 −6
z
0
0
1 −2 3
x
−3 7 −8 y = 0
4
1
2
z
0
0 0 0
x
0
0 0 0 y = 0
0 0 0
z
0
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 8/ 25
Subspace
Linear Combination and Span
Examples of subspaces
Building Subspaces
Theorem
If W1 , W2 , . . . , Wr are subspaces of a vector space V , then the
intersection of these subspaces is also a subspace of V .
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 9/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Outline
1
Subspace
Examples of subspaces
Building Subspaces
2
Linear Combination and Span
Linear Combination
Spanning
Test
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 10/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Definition
A vector w is called a linear combination of the vectors v1 , v2 , . . . , vn
if it can be expressed in the form
w = k1 v1 + k2 v2 + · · · + kn vn
where k1 , k2 , . . . , kn ∈ F
Example
V = R3 and i = (1, 0, 0), j = (0, 1, 0), . . . , k = (0, 0, 1)
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 11/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Theorem
If S = {w1 , w2 , . . . , wr } is a nonempty set of vectors in a vector
space V , then:
1
The set W of all possible linear combinations of the vectors in
S is a subspace of V .
2
The set W in part (a) is the “smallest” subspace of V that
contains all of the vectors in S in the sense that any other
subspace that contains those vectors contains W .
Example
Let u = (1, 2, −1), v = (6, 4, 2) be vector in R3 . Show that
w = (9, 2, 7) is a linear combination of u, v and that w 0 = (4, −1, 6) is
not a linear combination of u and v .
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 12/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Definition
If S = {v1 , v2 , . . . , vn } is a set of vectors in a vector space V , then
the subspace W of V consisting of all linear combinations of the
vectors in S is called the space spanned by v1 , v2 , . . . , vn , and we
say that the vectors S = {v1 , v2 , . . . , vn } span W . To indicate that W
is the space spanned by the vectors in the set S = {v1 , v2 , . . . , vn } ,
we write
W = span(S) or W = span{v1 , v2 , . . . , vn }
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 13/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Example
Spaces Spanned by One or Two Vectors.
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 14/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Example
Spaces Spanned by One or Two Vectors.
Example
Spanning Set for Pn .
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 14/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Example
Spaces Spanned by One or Two Vectors.
Example
Spanning Set for Pn .
Example
Determine whether v1 = (1, 1, 2), v2 = (1, 0, 1), and v3 = (2, 1, 3) span
the vector space R3 .
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 14/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Theorem
If S = {v1 , v2 , . . . , vn } and S 0 = {w1 , w2 , . . . , wk } are two sets of
vectors in a vector space V , then
span{v1 , v2 , . . . , vn } = span{w1 , w2 , . . . , wk }
if and only if each vector in S is a linear combination of those in S 0
and each vector in S 0 is a linear combination of those in S.
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 15/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Theorem
If V is a vector space over F and v1 , v2 , . . . , vk , vk+1 are vector in V ,
then span{v1 , v2 , . . . , vk } ⊂ span{v1 , v2 , . . . , vk+1 }
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 16/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Theorem
Let v1 , v2 , . . . , vk be a vector space vector F
span{v1 , v2 , . . . , vk } = span{v1 , v2 , . . . , vk+1 } ↔ vk+1 ∈ span{v1 , v2 , . . . , vk }
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 17/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Which of the following are linear combinations of u = (0, −2, 2) and
v = (1, 3, −1)
1
(2, 2, 2)
2
(3, 1, 5)
3
(0, 4, 5)
4
(0, 0, 0)
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 18/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Which of the following are linear combinations of
"
#
"
#
"
4
0
1 −1
0
A=
,B =
,C =
−2 −2
2 3
1
#
2
4
"
1
2
3
4
#
6 −8
−1 −8
"
#
0 0
0 0
"
#
6 0
3 8
"
#
−1 5
7 1
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 19/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
In each part express the vector as a linear combination of
P1 = 2 + x + 4x 2 , P2 = 1 − x + 3x 2 and P3 = 3 + 2x + 5x 2
1
−9 + 2x + 5x 2
2
6 + 11x + 6x 2
3
0
4
7 + 8x + 9x 2
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 20/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
In each part, determine whether the given vectors span R3
1
v1 = (2, 2, 2), v2 = (0, 0, 3), v3 = (0, 1, 1)
2
v1 = (2, −1, 3), v2 = (4, 1, 2), v3 = (8, −1, 8)
3
v1 = (3, 1, 4), v2 = (2, −3, 5), v3 = (5, −2, 9), v4 = (1, 4, −1)
4
v1 = (1, 2, 6), v2 = (3, 4, 1), v3 = (4, 3, 1), v4 = (3, 3, 1)
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 21/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Suppose that v1 = (2, 1, 0, 3), v2 = (3, −1, 5, 2) and v3 = (−1, 0, 2, 1)
Which of the following vectors are in Span{v1 , v2 , v3 }?
1
(2, 3, −7, 3)
2
(0, 0, 0, 0)
3
(1, 1, 1, 1)
4
(−4, 6, −13, 4)
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 22/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Determine whether the following polynomials SpanP2
p1 = 1 − x + 2x 2 , p2 = 3 + x, p3 = 5 − x + 4x 2 , p4 = −2 − 2x + 2x 2
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 23/ 25
Subspace
Linear Combination and Span
Linear Combination
Spanning
Test
Let f = cos2 x and g = sin2 x. Which of the following lie in the space
spanned of f and g ?
1
cos 2x
2
3 + x2
3
1
4
sin x
5
0
13 สิงหาคม พ.ศ. 2555 : subspaces
p. 24/ 25