Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Fig. 9-1 Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Organic +O molecules 2 Cellular respiration in mitochondria ATP ATP powers most cellular work Heat energy Fig. 9-UN1 becomes oxidized (loses electron) becomes reduced (gains electron) Fig. 9-UN2 becomes oxidized becomes reduced Fig. 9-3 Reactants Products becomes oxidized becomes reduced Methane (reducing agent) Oxygen (oxidizing agent) Carbon dioxide Water Fig. 9-UN3 becomes oxidized becomes reduced Fig. 9-UN4 Dehydrogenase Fig. 9-6-3 Electrons carried via NADH and FADH2 Electrons carried via NADH Citric acid cycle Glycolysis Pyruvate Glucose Oxidative phosphorylation: electron transport and chemiosmosis Mitochondrion Cytosol ATP ATP ATP Substrate-level phosphorylation Substrate-level phosphorylation Oxidative phosphorylation Fig. 9-8 Energy investment phase Glucose 2 ADP + 2 P 2 ATP used 4 ATP formed Energy payoff phase 4 ADP + 4 P 2 NAD+ + 4 e– + 4 H+ 2 NADH + 2 H+ 2 Pyruvate + 2 H2O Net Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e– + 4 H+ 2 Pyruvate + 2 H2O 2 ATP 2 NADH + 2 H+ Fig. 9-9-4 Glucose ATP 1 Hexokinase ADP Glucose-6-phosphate 2 Phosphoglucoisomerase Fructose1, 6-bisphosphate 4 Fructose-6-phosphate ATP Aldolase 3 Phosphofructokinase ADP 5 Isomerase Fructose1, 6-bisphosphate 4 Aldolase 5 Isomerase Dihydroxyacetone phosphate Dihydroxyacetone phosphate Glyceraldehyde3-phosphate Glyceraldehyde3-phosphate Fig. 9-9-9 2 NAD+ 6 Triose phosphate dehydrogenase 2 Pi 2 NADH + 2 H+ 2 1, 3-Bisphosphoglycerate 2 ADP 7 Phosphoglycerokinase 2 ATP 2 Phosphoenolpyruvate 2 ADP 2 3-Phosphoglycerate 8 Phosphoglyceromutase 2 ATP 2 10 Pyruvate kinase 2-Phosphoglycerate 9 2 H2O Enolase 2 Phosphoenolpyruvate 2 ADP 10 Pyruvate kinase 2 ATP 2 2 Pyruvate Pyruvate Fig. 9-19 Glucose CYTOSOL Glycolysis Pyruvate No O2 present: Fermentation O2 present: Aerobic cellular respiration MITOCHONDRION Ethanol or lactate Acetyl CoA Citric acid cycle Fig. 9-18b 2 ADP + 2 P i Glucose 2 ATP Glycolysis 2 NAD+ 2 NADH + 2 H+ 2 Pyruvate 2 Lactate (b) Lactic acid fermentation Fig. 9-18a 2 ADP + 2 P i Glucose 2 ATP Glycolysis 2 Pyruvate 2 NAD+ 2 Ethanol (a) Alcohol fermentation 2 NADH + 2 H+ 2 CO2 2 Acetaldehyde Fig. 9-17 Electron shuttles span membrane CYTOSOL 2 NADH Glycolysis Glucose 2 Pyruvate MITOCHONDRION 2 NADH or 2 FADH2 6 NADH 2 NADH 2 Acetyl CoA + 2 ATP Citric acid cycle + 2 ATP Maximum per glucose: About 36 or 38 ATP 2 FADH2 Oxidative phosphorylation: electron transport and chemiosmosis + about 32 or 34 ATP Fig. 9-4 2 e– + 2 H+ 2 e– + H+ NADH H+ Dehydrogenase Reduction of NAD+ NAD+ + + H+ 2[H] Oxidation of NADH Nicotinamide (reduced form) Nicotinamide (oxidized form) Fig. 9-5 H2 + 1/2 O2 2H (from food via NADH) Controlled release of + – 2H + 2e energy for synthesis of ATP 1/ 2 O2 Explosive release of heat and light energy 1/ (a) Uncontrolled reaction (b) Cellular respiration 2 O2 Fig. 9-13 NADH 50 2 e– NAD+ FADH2 2 e– 40 FMN FAD Multiprotein complexes FAD Fe•S Fe•S Q Cyt b 30 Fe•S Cyt c1 I V Cyt c Cyt a Cyt a3 20 10 2 e– (from NADH or FADH2) 0 2 H+ + 1/2 O2 H2O Fig. 9-7 Enzyme Enzyme ADP P Substrate + Product ATP Fig. 9-UN7 INTERMEMBRANE SPACE H+ ATP synthase ADP + P i MITOCHONDRIAL MATRIX ATP H+ Fig. 9-14 INTERMEMBRANE SPACE H+ Stator Rotor Internal rod Catalytic knob ADP + P i ATP MITOCHONDRIAL MATRIX Fig. 9-16 H+ H+ H+ H+ Protein complex of electron carriers Cyt c V Q ATP synthase FADH2 NADH 2 H+ + 1/2O2 H2O FAD NAD+ ADP + P i (carrying electrons from food) ATP H+ 1 Electron transport chain Oxidative phosphorylation 2 Chemiosmosis Fig. 9-10 CYTOSOL MITOCHONDRION NAD+ NADH + H+ 2 1 Pyruvate Transport protein 3 CO2 Coenzyme A Acetyl CoA Fig. 9-11 Pyruvate CO2 NAD+ CoA NADH + H+ Acetyl CoA CoA CoA Citric acid cycle FADH2 2 CO2 3 NAD+ 3 NADH FAD + 3 H+ ADP + P i ATP Fig. 9-12-8 Acetyl CoA CoA—SH NADH +H+ H2O 1 NAD+ 8 Oxaloacetate 2 Malate Citrate Isocitrate NAD+ Citric acid cycle 7 H2O NADH + H+ 3 CO2 Fumarate CoA—SH 6 -Ketoglutarate 4 CoA—SH 5 FADH2 NAD+ FAD Succinate GTP GDP ADP ATP Pi Succinyl CoA NADH + H+ CO2 You should now be able to: 1. Explain in general terms how redox reactions are involved in energy exchanges 2. Name the three stages of cellular respiration; for each, state the region of the eukaryotic cell where it occurs and the products that result 3. In general terms, explain the role of the electron transport chain in cellular respiration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 4. Explain where and how the respiratory electron transport chain creates a proton gradient 5. Distinguish between fermentation and anaerobic respiration 6. Distinguish between obligate and facultative anaerobes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings