Download ANALYSIS of SIMULATED DATA Sample Mean and Sample

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ANALYSIS of SIMULATED DATA
Sample Mean and Sample Variance
• Assume iid RVs X1, X2, . . . , Xn as estimates of some quantity
of interest are produced by n runs of some simulation.
P
• Sample mean X̄ = n1 N
Xi is used estimate population
i=1
P
mean θ because E[X̄] = n1 ni=1 E[Xi] = n1 nθ = θ.
• Question: how good is X̄? Answer: try to use V ar(X̄):
V ar(X̄) = E[(θ − X̄)2]
n
1X
= V ar(
Xi )
n i=1
n
1 X
V ar(Xi))
= 2
n i=1
1 2 σ2
= 2 nσ = ,
n
n
and use Central Limit Theorem:
σ
P {|X̄ − θ| > c √ } ≈ P {|Z| > c} = 2(1 − Φ(c))
n
Eg. if c = 1.96, 2(1 − Φ(c)) ≈ .05,
if c = 2.58, 2(1 − Φ(c)) ≈ .01.
Problem: σ 2 is not known
1
SIMULATED DATA ANALYSIS CONT.
• Solution: estimate σ 2 using the sample
variance;
P
Start with σ 2 = E[(X − θ)2] ≈ n1 ni=1(Xi − X̄)2?
For statistical validity, check
n
n
X
X
E[ (Xi − X̄)2] = E[
Xi2] − nE[X̄ 2]
i=1
i=1
nE[X 2] − nE[X̄ 2]
n(V ar(X) + E[X]2) − n(V ar(X̄) + E[X̄]2)
n(V ar(X) + E[X]2) − n(σ 2/n + θ2)
(n − 1)σ 2
Pn
1
2
So define sample variance S = n−1 i=1(Xi − X̄)2,
q
Pn
1
sample standard deviation S = n−1 i=1(Xi − X̄)2 ≈ σ,
√
and sample standard error S/ n.
• Simulation Stopping
Method: given α and error tolerance δ,
P
j
1
2
let Sj2 = j−1
i=1 (Xi − X̄j ) .
√
Algorithm: sample Xi for i = 1, . . . , k until cSk / k < δ.
=
=
=
=
√
If cSk > δ k, when should stop occur?
Stop should occur at k ∗ ≈ c2Sk2/δ 2.
Example a) if c = 2, δ = .01, Sk = .1, k ∗ =?
2
SIMULATED DATA ANALYSIS CONT.
Example b)
N = 100;
for i= 1:N
X(i) = repair(4,3,1,2); % Crash time
end, disp([mean(X) std(X)])
1.5652
1.1066
if c = 2, δ = .01, k ∗ =?
for N = 50000, X̄ ≈ 1.5545, S ≈ 1.070;
another run: for N = 50000, X̄ ≈ 1.5494, S ≈ 1.078;
3
SIMULATED DATA ANALYSIS CONT.
Pj
1
2
• Computation of S : X̄j = j i=1 Xi.
Pj
1
2
Sj = j−1 ( i=1 Xi2 − j X̄j2) can be numerically unstable.
Consider iterative computation of Sj :
starting with X0 = S0 = S1 = 0, then
1
X̄j+1 = X̄j +
(Xj+1 − X̄j ),
j+1
j−1 2
2
)Sj + (j + 1)(X̄j+1 − X̄j )2.
Sj+1
=(
j
Also
2
Sj+1
j − 1 Sj2
=(
) + (X̄j+1 − X̄j )2.
j+1
j+1 j
4
SIMULATED DATA ANALYSIS CONT.
Interval Estimates for the Population Mean
√
• Assumption: for large n, n(X̄ − θ)/S ∼ N ormal(0, 1).
Given α, 0 < α < 1, let α = P {Z > zα},
with Z ∼ N ormal(0, 1), so zα = Φ−1(α), then
1 − α = P {−zα/2 < Z < zα/2}
√ X̄ − θ
1 − α = P {−zα/2 < n
< zα/2}
σ
√ X̄ − θ
< zα/2}
1 − α ≈ P {−zα/2 < n
S
S
S
1 − α ≈ P {X̄ − zα/2 √ < θ < X̄ + zα/2 √ }
n
n
S
S
E.g. 1 − .05 ≈ P {X̄ − 1.96 √ < θ < X̄ + 1.96 √ }
n
n
• Confidence Interval: given the sample mean X̄, and
the sample standard deviation S, the interval
S
S
Cα = X̄ − zα/2 √ , X̄ + zα/2 √
n
n
is a 100(1 − α)% (approximate) confidence interval for θ.
Notes:
a) For repeated runs, θ ∈ Cα 100(1 − α)% of the time;
b) If n is small, tα/2,n−1, from t−distribution, can be used.
5
SIMULATED DATA ANALYSIS CONT.
• Bernoulli p
Case: if Xi = 1 or 0 with X̄ ≈ θ = p, then
S ≈ σ = p(1 − p), so an α-confidence interval for p is
p
p
Cα = pn − zα/2 pn(1 − pn)/n, pn + zα/2 pn(1 − pn)/n
Examples
Repair Simulation: some Matlab results
N = 100;
for i= 1:N, X(i) = repair(4,3,1,2); end, disp(mean(X))
1.5414
N = 1000;
for i= 1:N, X(i) = repair(4,3,1,2); end, disp(mean(X))
1.5655
for i= 1:N, X(i) = repair(4,3,1,2); end, disp(mean(X))
1.4775
for i=1:N,X(i)=repair(4,3,1,2);end,disp([mean(X) 2*std(X)/sqrt(N)])
1.5864
0.072857
for i=1:N,X(i)=repair(4,3,1,2);end,disp([mean(X) 2*std(X)/sqrt(N)])
1.5497
0.067054
clear X, N=100;
for i=1:N,X(i)=repair(4,3,1,2);end,disp([mean(X) 2*std(X)/sqrt(N)])
1.6578
0.27878
disp(std(X))
1.3939
clear X, N=10000;
for i=1:N,X(i)=repair(4,3,1,2);end,disp([mean(X) 2*std(X)/sqrt(N)])
1.5482
0.021507
disp(std(X))
1.0753
clear X, N=100;
for i= 1:N,X(i)=insrnc(365);end,disp([mean(X) 2*std(X)/sqrt(N)])
0.11
0.062893
p
Note: 2 .11(1 − .11)/100 ≈ .0626.
6
Related documents