Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 113 Rate of Convergence or Divergence for Infinite Series Chapter 11 The topic of Infinite Series is an important topic for a standard second semester Calculus course. Convergence and divergence of series are usually discussed, along with power series, Taylor series, Maclaurin series, and perhaps other types of series. One topic that is rarely discussed is the rate of convergence or divergence. This handout gives tables describing the rate of convergence or divergence for some common series. For the convergence rate, the table is set out as describing the actual sum, along with how many terms are required for the error to be less than a specified amount. The tables given are derived from R. P. Boas, Jr. in his article “Partial Sums of Infinite Series, and How They Grow” from American Mathematical Monthly, Volume 84, Issue 4, pp. 237-258, and also the article by R.P. Boas, Jr., and J. W. Wrench, Jr., “Partial Sums of the Harmonic Series” from American Mathematical Monthly, Volume 78, Issue 8, pp. 864-870. 1. 2. ∞ X 1 n ln n(ln ln n)2 n=3 ∞ X 1 n(ln n)2 n=2 Series 1 2 4(s = 1.1) 4(s = 1.5) 3 4(s = 2) 5 4(s = 10) 4(s = 100) 6(r = .9) 6(r = .5) 6(r = .1) 7 8 9(x = .9) 9(x = .5) 9(x = .1) 10 3. 4. Sum 38.406768 2.109743 10.584448 2.612375 0.937548 1.644934 0.605522 1.000995 1+8×10-31 10 2 10 9 1.718282 1.291286 2.230273 0.564468 0.001000 1.062500 ∞ X ln n n2 n=2 ∞ X 1 s n n=1 5. 6. ∞ X 1 2 n ln n n=2 ∞ X rn n=0 7. 8. ∞ X 1 n! n=1 ∞ X 1 n n n=1 9. ∞ X 2 xn n=1 10. ∞ X n=1 Number of terms required to calculate the sum with error less than 1/2 times: 10−2 10−10 10−100 10−1000 T (3.14 × 1086 ) T4 (1) T4 (100) T4 (1000) 86 9 7.23 × 10 T (8.7 × 10 ) T2 (100) T2 (1000) T (33) T (113) T (1013) T (10013) 160000 1.6 × 1021 1.6 × 10201 1.6 × 102001 1685 5.47 × 1011 4.7 × 10102 4.6 × 101003 10 200 2 × 10 2 × 10100 2 × 101000 42 T (9) T (98) T (997) 1 11 1.1 × 1011 1.1 × 10111 1 1 10 1.21 × 1010 73 247 2214 21883 9 36 335 3324 3 11 101 1001 5 13 70 450 3 10 57 386 7 15 46 147 2 5 18 57 1 3 10 31 2 2 3 34 Note: T (x) = T1 (x) = 10x. Tn (x) = T (Tn−1 (x)). Table 1: Rate of Convergence n n−n Rate of Convergence or Divergence for Infinite Series, page 2 For a divergent series, the number of terms before the partial sums pass a particular sum can be computed. In order to easily compute the partial sums of a divergent series, the constant γ is needed, which is unique to each series. The constant γ is defined as ( n ) Z n X γ = lim f (k) − f (t)dt n→∞ 1 k=1 The partial sum, sn , of a series is approximately Z sn = n 1 1 f (t)dt − f (n) + γ − Rn , 2 for some remainder term Rn . Table 2 gives a small list of different divergent series and the number of terms required to make the sum greater than a particular integer. 1. 2. ∞ X 1 ln(ln n) n=3 ∞ X 1 n=2 Series Value of γ Number of terms required to make the sum greater than 3 ln n 3. 4. ∞ X 1 √ n n=1 ∞ X ln n n=2 n ∞ X 1 n n=1 ∞ X 1 6. n ln n n=1 5. 7. ∞ X 1 n ln n ln ln n n=3 1 2 3 4 5 6 7 7.21848 0.80193 0.539645 -0.0728158 0.577216 0.428166 2.299927 1 3 5 12 11 8717 1 10 3 1.3 × 1029 56 4 1 5 7 17 31 5 1 7 10 24 83 6 1 9 14 33 227 7 1 12 18 43 616 10 1 20 33 89 12367 20 6 56 115 565 100 112 489 2574 1000 1812 7764 250731 1.39 × 106 2.72 × 108 1.53 × 1043 1000000 2.62 × 106 1.55 × 107 2.50 × 1011 1.53 × 10614 T (4.3 × 105 ) 2.65 × 1019 1.1 × 10434 Note: T (x) = T1 (x) = 10x . Tn (x) = T (Tn−1 (x)). Table 2: Rates of Divergence 5.1 × 10 1.4 × 1079 3.1 × 1019 1.4 × 10215 T (1.3 × 104 ) T (108) T2 (2 × 106 ) 1.6 × 104321 T (.7 × 1090 T (5 × 1042 ) T2 (1.1 × 1041 ) T2 (4.3 × 105 ) T3 (4.3 × 105 ) T (4 × 10433 ) T2 (8 × 10431 ) Rate of Convergence or Divergence for Infinite Series, page 3 The partial sums of the harmonic series warrant closer scrutiny since it is a central part of a calculus course. Table 3 gives the partial sums of the harmonic series before and after a particular sum is passed. It should be noted that since the series diverges, this table could be extended indefinitely (There will always be a finite number of terms needed to have the partial sums exceed a particular sum). Note that it takes over 6 trillion terms before the sum of 30 is reached! 2000000 However, it pales in comparison to series 7 in table 2. That series takes 1010 terms before it reaches a sum of 20! That’s 1 followed by 10200000 zeros! n 1 2 3 4 10 11 30 31 82 83 226 227 615 616 1673 1674 4549 4550 12366 12367 33616 33617 91379 91380 248396 248397 675213 675214 1835420 1835421 sn 1.0000000 1.5000000 1.8333333 2.0833333 2.9289682 3.0198773 3.9949871 4.0272451 4.9900200 5.0020682 5.9999614 6.0043667 6.9996507 7.0012740 7.9998882 8.0004855 8.9999882 9.0002080 9.9999621 10.0000430 10.9999879 11.0000177 11.9999921 12.0000030 12.9999972 13.0000012 13.9999998 14.0000013 14.9999998 15.0000003 0000000 0000000 3333333 3333333 5396825 4487734 3092039 9543652 7990908 7268016 2200195 0834556 2051078 9713416 0043066 7199578 8271136 6293114 4792164 0827580 6178215 0863642 0835199 5166563 0366726 2948078 8104146 6205340 3343363 7826776 n 4989190 4989191 13562026 13562027 36865411 36865412 100210580 100210581 272400599 272400600 740461600 740461601 2012783314 2012783315 5471312309 5471312310 14872568830 14872568831 40427833595 40427833596 109894245428 109894245429 298723530400 298723530401 812014744421 812014744422 2207284924202 2207284924203 6000022499692 6000022499693 sn 15.9999998 16.0000000 16.9999999 17.0000000 17.9999999 18.0000000 18.9999999 19.0000000 19.9999999 20.0000000 20.9999999 21.0000000 21.9999999 22.0000000 22.9999999 23.0000000 23.9999999 24.0000000 24.9999999 25.0000000 25.9999999 26.0000000 26.9999999 27.0000000 27.9999999 28.0000000 28.9999999 29.0000000 29.9999999 30.0000000 Table 3: Partial Sums of the Harmonic Series 9502053 9545382 4111463 1484992 7659423 0371993 9975431 0973330 9794638 0161744 9905082 0040133 9964162 0013844 9983702 0001979 9995548 0002272 9998134 0000608 9999850 0000760 9999847 0000182 9999932 0000055 9999964 0000010 9999985 0000002