Download Algebra 2 Chapter 10 Worksheet 1*Exponential Functions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Hon Math III Unit 5 Quiz Review Guide
Exponential & Logarithmic Functions
I. Simplify each expression:
1.
x
45
x
20
166 n4
4. 3 n7
8
9a 4b  3 2a b
2.
5 x  3  5 2 x 1
3.
5.
(a 6 )
6. ( m
2
2 x5 3 x
)
II. Solve each Equation or Inequality:
7.
10.
4
2 x3
7
 64
5 x3
x 1
 49
8.
8
3
5 x
11. 4
2
3
13. 7 x  1  27
 27
3 x  10
2x
9. 25
 1
 
 16 
14. 5  ( 3 x  5)
2 x 4
1
2
3 x 1
 8 
12.  
 27 
1
 
 5
2 x7
x4
 9
 
 4
8 3 x
4
15. 9  2 x  1  6
III. Write each equation in logarithmic form:
16. 5
3
1

125
17.
8  16
3
4
18.
ab  c
19.
7 2 x  1  343
IV. Write each logarithmic function in exponential form:
20. log 6 36  2
1
 3
21. log 4
64
22.
log 8 4 
26.
log 16 4
2
3
23.
log x y  z
27.
log b b 5
V. Evaluate each expression:
24.
log 3 27
25. log 6
1
36
VI. Condense each log expression below into a single log expression and coefficient of 1:
28.
3 log 2 x  2 log 2 y
29.
log z 14  log z 2
30. 5 log 5 a  3 log 5 b  2 log 5 c
VII. Solve each log equation or inequality:
31.
33.
35.
log 2 x  5
log x 216  3
log 7 ( x  6)  log 7 (3 x  4)
32.
log 7 x  2
34.
log 5 ( 2 x  1)  2
36.
log a (5 x  2)  log a ( x  6)
VII. Solve each log equation or inequality:
log 9 (3 x  7)  log 9 ( x  2)
37. log 4 ( x  7)  log 4 ( 2 x  8)
38.
39. log 2 ( x )  log 2 ( 3)  log 2 (7 x  16)
40. log 2 ( x  5)  log 2 (5 x  2)  log 2 (3)
2
2
VIII. Find the Inverse of each function given:
41. f ( x ) 
7
3 x
44. f ( x )  3 log 5 (4 x )
42. g( x ) 
2x  1
5x  4
45. g( x )  3  7  2
x
43. h( x )  log 3 ( x  5)
46. h( x )  ( 2  7)
x
1
3
Related documents