Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Inverse Trigonometric Functions _____________________________________________________________________ 1. Find the principal values of the following (i) 1 Sin -1       6  (ii) Tan -1 ( -3 )     3  2     4  Tan -1 ( - ) 1 Sec -1 ( - )  2     3  (i) 3 If Tan -1   = find Sin 3   5 (ii) 1 If Cot -1   = find Cos  1    5 2  (iii) 4   5 (ii)  17     6  (iv) 4 7  1     3 2 Evaluate (i) 3 5 Sin ( Cos -1 ) Cos ( Tan -1 (iii) 4   5 3 ) 4 4 2 Tan  Cos 1  Tan 1   3 5 3   5 1 3 2 Tan -1 = Tan-1x, x = (v) 4. Cosec - (v) 1 If Sin -1   = Tan -1x, find x 3. (iv)     6  ( - ) 2. (iii)  1     10  1 4 Sin  Cos 1  2 5 Prove that 1 a) Sin -1 b) 2 Tan -1 5 + Sin -1 1 = Sin x 2 5 -1 =  2  2x   2   x 1  5. 6. c)  x Cosx  Tan -1  = d) Sin -1 e) ab   bc   ca  Tan -1   + Tan -1   + Tan -1   =0  1  Sinx  4 2  2  -1 -1  x 1  x  x 1  x  = Sin x - Sin  1  ab   1  ab  x  1  ca  Solve for x 2x Tan -1 b) Tan -1 (x + 1) + Tan -1 (x-1) = Tan -1 1 x2 Prove that if Sin -1 then x= + Cot -1 1 x2  = , (x > 0) 3 2x a) 2a 1 a ab . 1  ab 2 + Sin -1 2b 1 b2 8 13 , (x > 0) 2  3  1   4 = 2 Tan -1 x 7. If two angles of a triangle are Tan -1 2 and Tan -1 3, prove that the third angle is 8. Prove that Sec2 (Tan -1 2) + Cosec 2 (Cot -1 3) = 15. 9. Solve : Sin -1 x + Sin -1 ( 1-x ) = Cos -1 x ( 0, ½ ). 10. Simplify : a) Sec -1     2 x 1  1 (2 Cos -1 x) 2  x  1 x b) Sin -1      ( Tan -1 x ) c) Cot -1  1  x 2  x     1  Tan 2 Tan 1     5 4 11. Evaluate: 12. If Sin -1x - Cos -1x = 13. 1 1 2 Tan -1   + Tan -1   is _________ 14. Evaluate : Sin 2 Cos 1     3    6  , find x  1 1    Tan x  4 2  7    17   3    2    7    4  3    5    24     25   . 4 15. Prove that  2  1 2 Tan -1   + Tan -1   = Cos -1   16. Prove that Tan -1  17. Prove that Tan -1  18. Simplify Sin -1  4 9  5  1  Cosx  1  Cosx   x = + , 0 < x <   2  1  Cosx  1  Cosx  4 2  1 x2  1 x2   =  + 1 Cos-1 x2, -1 < x < 1. 2 2  4 2  1 x  1 x   Sinx  Cosx   2   ,   <x< 4 4   x   4   Sinx  Cosx     =  x   . 4  2   Cos -1  19. Prove that 20. Solve the equation : 2 Tan -1 (Cos x) = Tan -1 (2 Cosec x)    4 21. Write in simplest form a) Tan -1  x  1  x 2  , x  R    1 1    Cot x  2 2  b) Tan -1  1  x 2  x  , x  R 1 1   Cot x  2   1  x 2 1  , x  0 c) Tan -1   1 1   Tan x  2     x   1 x 1  , x 0 d) Tan -1   x 2    ax  ax   , -a < x < a   e) Tan -1    ,  2 2  a a x  f) Tan -1  x  x  1 x2 g) Sin -1   2 -a < x < a  ,     < x < Hint: (let x = sin α) 4 4  1 x  1 x   , 0 < x < 1 Hint: (let x = cos 2α) h) Sin -1    2  1  x  i) Sin  2 Tan 1 ,   1 x    1 1    Tan x  2 2  1 1 x   Cos  a 2 1 1 x   Sin  a 2  1    Sin x  4   1 1    Cos x  4 2   1 x2      j) Cot -1   a  ,  2 2  x  a   k) Tan -1   x  x  ,  2 2   a x   1 x   Sec  a   x > a  1 x   Sin  a  -a < x < a    2 2   x a  l) Sin -1  22.  1 x   Tan  a  Solve for x a) Cos -1 x + Sin -1 x  = 6 2 (1)  1  1 x  1  b) Tan -1    Tan -1 x = 0 , x > 0 Hint: (let x = cos α)  1 x  2 23. Prove that Tan -1 24.  3 x xy   - Tan -1 xy 4 y The value of Cos -1  Cos  13    6  is ----------    6   1  Evaluate: sin   sin 1    (Ans:√3/2 ) (CBSE 2008)  2  3  26. Solve for x: tan 1 (2 x)  tan 1 3 x   [ Ans : 1/6 , -1] (CBSE 2008, 2009) 4 1 1 1 1  27. Prove tan 1  tan 1  tan 1  tan 1  ( CBSE 2008) 3 5 7 8 4   x 1  1  x  1  28. Solve for x: tan 1    tan    [ Ans : +/-(1/√2)]  x 2  x  2 4 2008) 3 2 ) [ Ans : 29. Using principal value, evaluate sin 1 (sin ] (CBSE 2009) 5 5 25. 30. What is the principal value of  1  1 sin 1    cos 1   (CBSE 2010)  2   2  [ Ans :  ] 2 (CBSE 31. 32. 33. 34. 35.   3  ? [ Ans : - ] What is the principal value of sin 1   (CBSE 2010)  3  2  1 1 x  Prove tan 1 x  cos 1  ,.....x  0,1 (CBSE 2010) 2 1 x  Prove that tan 1 1  tan 1 2  tan 1 (3)   (CBSE 2010)   x 1  1  x  1  If tan 1    tan    , find the value of x. (CBSE 2010)  x 2  x  2 4 (Same as Q28)  12  3  56  Prove cos 1    sin 1    sin 1   (CBSE 2010)  13  5  65   36. Write the value of sin   sin1 3  1    2   (CBSE   2011) 37.Prove the following:  1  sin x  cot-1   1  sin x  1  sin x  x     , x   0,  (CBSE 2011) 2 1  sin x   4 x xy  )(CBSE 2011)  (Sol: 4 xy 38.Find the value of tan-1   - tan-1  y