Download CHAPTER 14 ELLIPSE Advanced Exercise Page 203

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CHAPTER 14 ELLIPSE
Advanced Exercise Page 203-204
1.
LHS ( PF1  PF2 ) 2  ((a  ex1 )  (a  ex1 )) 2  4e 2 x12
If P is ( x1 , y1 ) then equation of tangent at P must be
 d
Also
1
x12 y12

a 4 b4
1 x12 y12


d 2 a 4 b4

x12 y12

1
a 2 b2
xx1 yy1

1
a 2 b2
(*)
(**)
On eliminating y12 between (*) and (**), we get
x12  1 1  1
1 x12 1  x12 

 1 
  2  2  2  2
d 2 a 4 b2  a 2 
a a b  b


x12e2
b2 x12  b2 
b2 x12  b2  x12 a 2  b 2


.



1

1
1


1





a2
a2
d 2 a2  a2 
d 2 a2  a2  a2
 b2 
4a 2 1  2   4e2 x12
 d 

RHS  LHS
2.
SEE SOLVED EXAMPLE 7
3.
If P be (a cos  , b sin  ) then equation of tangent at P is
x
y
cos   sin   1
a
b
(i)
Also equation of normal at P is
Now height of OPN

1
cos 2  sin 2 
 2
a2
b
ax
by

 a 2  b2
cos  sin 
  distance O from (i)

ab
a 2 sin 2   b2 cos 2 
Base   distance of O from (ii)
1
and
(ii)

a 2  b2

a2
b2

cos 2  sin 2 
(a 2  b2 )sin  cos 
a 2 sin 2   b2 cos 2 
 Area A 
1 ab.(a 2  b 2 )sin  cos 
2 a 2 sin 2   b2 cos 2 
1
1
ab(a 2  b 2 )
ab(a 2  b 2 )
2
A  22

2
2
a tan   b cot 
a tan   b cot   2ab


max A 

1 ab.(a 2  b2 ) a 2  b 2

2
2ab
4
This will be attained when a tan   b cot 
 cos  
a
a b
2
2
 a2
 P is 
,
2
2
 a b
4.
,sin  
or tan  
b
a
b
a  b2
2

 ( with several equivalent points )
a 2  b2 
b2
Without loss of generality let us take A and B in the upper half plane and C in the lower plane.
Then it can be easily observed that if A be (a cos  , a sin  ) then B and C are the points

2

 a cos    3


2  

4



 , a sin   
  and  a cos   
3 
3




4  


 , a sin   
 respectively. (*)
3  


x2 y 2

 1 of the point
a 2 b2
P, Q, R respectively therefore P, Q, R must be the points (a cos  , a sin  ) ;
Now as A, B, C are the corresponding points on the auxiliary circle of

2

 a cos    3


2


 , a sin   
3



4


  and  a cos   
3



4


 , a sin   
3





Now equation of normal lines at P, Q, R are
ax sec   by cos ec  a 2  b2
2

ax sec   
3

2


  by cos ec   
3


 2
2
 a b

4

ax sec   
3

4


  by cos ec   
3



2
2
 a  b

To show that the lines are concurrent we observe the determinant D where D
2
a sec 
2

 a sec   
3

4

a sec   
3

b cos ec
2


 b cos ec   
3


4


 b cos ec   
3


a2  b2

2
2
 a b


2
2
 a b

sec 
cos ec
2
1
2 
2


  ab(a 2  b 2 ) sec   
 cos ec   
2
3 
3


4 
4


sec   
 cos ec   
3 
3


sin 
2

  sin   
3

4

sin   
3

cos 
2


 cos   
3


4


 cos   
3



 2


 2

sin 2
4 


 sin  2 

3 


8 


 sin  2 

3 


1
 ab(a 2  b 2 )
2
Where  
2 
2  
4


sin  cos  sin   
 cos   
 sin   
3 
3  
3


sin 
2

  sin   
3

2

sin   
3

cos 
2


 cos   
3


2


 cos   
3


4 


 cos   

3 


sin 2
4


 sin  2 
3


4


 sin  2 
3



4


 (**)  sin   
3






2


  sin   
3




 etc. 


(where  is the quantity outside the determinant )
 0 (apply R1  R1  R2  R3 )
5.
Let P and Q be (a cos  , b sin  ) and (a cos  , a sin  ) respectively. Then if R be ( h, k )
h
((a cos  ) s  (a cos  )r )
 a cos 
sr
, k
((b sin  ) s  (a sin  )r )
sr
We easily eliminate  from these equations to get the locus of R as
3
x 2 y 2 (r  s ) 2

1
a 2 (ar  bs)2
6.
Let P(a cos  , b sin  ) be any point on the ellipse
Then equation of line OP is y 
Equation of tangent at P is
Slope  
b sin 
x
a cos 
x2 y 2

 1.
a 2 b2
…(i)
x
y
cos   sin   1
a
b
b cos 
a sin 
 Equation of line perpendicular to this tangent and passing through the focus (ae, 0) is
y
a sin 
( x  ae)
b cos 
….(ii)
It is sufficient to show that abscissa of point of intersection of line in (i) and (ii) is
On equating (i) and (ii) we get
7.
a
e
b sin 
a sin 
x
( x  ae)
a cos 
b sin 

b2 x
 x  ae
a2

 b2 
a
x 1  2   ae  x.e2  ae  x 
e
 a 
x2 y 2
The ellipse is

1
25 4
Any tangent to this ellipse may be taken as y  mx  25m2  4
(*)
In order that (*) lies in the first quadrant we must take m  0 and  sign in the radical must be
chosen . Since (*) is a tangent to x 2  y 2  r 2 also , we must have c 2  r 2 (1  m2 )
 25m2  4  r 2 (1  m2 )
 m2 
r2  4
25  r 2
The given data is possible only when m2  0 i.e. 4  r 2  25 which is indeed given to us .
  
, 0  and (0,  )
 m 
Now , let (*) meet x-axis at A and y-axis at b then A and B are  
where   25m2  4.
4
Thus if ( h, k ) be the midpoint of AB then h  
Now 4k 2  25m2  4 

2m
,k 

2
on dividing we get m  
k
.
h
2
25k
 4.
h2
Thus Locus of ( h, k ) must be 4 x 2 y 2  4  25 y 2 .
8.
Tangent drawn at (t 2 , 2t ) of the parabola y 2  4ax
yy1  2a( x  x1 )
Now the ellipse is
or y.2t  2( x  t 2 )
(
a  1)
Or
2 x  2ty  2t 2  0
…(i)
x2 y 2

1
5
4
The equation of normal at ( 5 cos  , 2sin  ) is ax sec   by cos ec  a 2  b2
Or
5 sec   2 y cos ec  1
…..(ii)
Since (i) and (ii) are same lines we must have
Or
2 cos 
 t sin   2t 2
5
2
2t
2t 2


2 cos ec
1
5 sec 
…….…(*)
If t  0 then equating first and third ratio we get cos   0
    / 2 (there are exactly two points on the ellipse
x2 y 2

1
a 2 b2
whose eccentric angles  satisfy cos   0)
If t  0 then on equating second and third numbers in the double equality(*)
we get sin   2t . Also cos   t 2 5 on squaring and adding we get 
 (5t 2  1) (t 2  1)  0  t 2 
If t 
1
5
1
2
1
then sin   
, cos   
5
5
5
     tan 1 2 . If t  
4t 2  5t 4  1
 tan   2 (But  in the third quadrant )
1
1
1
then sin  
, cos   
5
5
5
 tan   2 with  in second quadrant      tan 1 2
9.
Let eccentric angle of the points where the line px  qy  r meets the ellipse be  and  then
x
  y  
 
cos
 sin
 cos
must be same as px  qy  r
a
2
b
2
2
5

  

   
 
 cos
 / a  sin
 / b cos
2 
2 

2


p
q
r
But as is given    

4
 cos
On substituting at (*)we get cos
 
 
2
2

 cos
(*)
 
2
 cos

4
ap cos  / 8
   bp cos  / 8
sin

r
2
r
On squaring and adding we get the required condition.
Objective Exercise 204-207
5.
x2 y 2

 1 then the equation
a 2 b2
ax sec  - by cosec  = a2 – b2 must be same as lx + my + n = 0
l
m
n
an
bn



 cos  
,sin  
2
2
a sec  b cos ec a 2  b2
l a b
m a 2  b2
If lx + my + n = 0 is a normal to the ellipse



12.
Square and add to get the condition given in choice (b)
Normal at P(a cos , b sin ) is ax sec  - by cosec  = a2 – b2
 a 2  b2 

a 2  b2 
 G is 
 and g is  0,
 etc.
 a sec  
 b cos ec 
Use (slope FB) (slope F′B) = -1 and b2 = a2(1 – e2)
14.
2ae  8,
8.
2a
 18 On multiplying we get 4a 2  18  8
e
Whence e 

 a 2  36  a  6
x2 y 2
2
 b 2  a 2 1  e 2   20  Equation of the ellipse is

1
3
36 20
IIT Page 207-209
1.
2.
3.
If r > 1 then 1 – r < 0, 1 + r > 0. The given equation implies (negative or zero) = 1 which is
impossible.
NOTE: If r < -1 then the equation is an ellipse and if -1 < r < 1 the equation represents a hyperbola
12 22
22 1
E 1, 2   
 1  0  1, 2  lies outside E, E  2,1 
  1  0  1, 2  lies inside E
9
4
9 4
C 1, 2   0  1, 2  lies inside C C  2,1  0   2,1 lies inside C.  only choice (d) fits.
For ellipse a2 = 16, b2 = 9, b2 = a2(1 – e2)  e 
7
4
 7,0 . Now radius of the circle
= distance between  7,0  and (0, 3) =  7  0    0  3
 Focus is (ae, 0) or
2
11.
2
4
By symmetry the quadrilateral is a rhombus .Therefore area is four times the area of the right
6
angled triangle formed by the tangent and axes in the 1st quadrant.
Now , ae  a2  b2  ae  2
12.
 5
 tangent ( in first quadrant ) at the end of latus rectum  2, 
 3
2 5 y
x
y
1 9
is
   1 i.e.
 1

Area = 4. . .3  27 sq .units .
9 3 5
9/ 2 3
2 2
x  3 3 cos  y  sin 
The equation of tangent at given  point is

1
27
1
x
y


 1  sum’s of the intercepts ‘s’ on axes is given by
3 3 sec cos ec
   ds
s  3 3 sec  cos ec    0,  ,
 3 3 sec tan   cos ec cot   0
 2  d
3 3 sin  cos
1
1



 tan 3  
 tan  
 
2
2
6
cos 
sin 
3 3
3
14.
Equation of auxiliary circle must be x 2  y 2  9 ……(1)

x y
 1
3 1
Equation of AM is
…….(2)
1
27
 12 9 
square units
,  Whence area of AOM  .OA  MN 
2
10
 5 5
From (1) and (2), we get M as  
15.
The ellips is

x2 y 2

1
16 4

equation of normal is 4 x sec θ  2 y cos ecθ  12
 7 cos θ

M is 
.sin θ    h, k 
 2

h
7 cos θ
2

4h 2
 k2 1
49
 cos θ 
2h
and k  sin θ
7
4 x2

locus of M is
…..(i).
 y2  1
49
3
4 3
e


Now e 2  1 
16 4
2

Equation of latus rectum of given ellipse is x  4 
solving (i) and (ii) we get
4
12  y 2  1
49

7
3
 2 3
2
y2  1
48 1


49 49
……(ii)
y
1
7
16.



required points are  2 3 
(D):
The ellipse is
1

7
 (C) is correct
x2 y 2

1
9
4
Equation of chord contact AB ( by
x  3y  3  0
……(i)
xx1 yy1

 1 ) is
a 2 b2
……..(ii)
Solve (i) & (ii) we get coordinates A and B as
 9 8
  , 
 5 5
17.
(C):
and (3, 0)
 (D) is correct.
Equation of altitude PE is y  4  3  x  3 and equation of altitude AD y 
Solving (i) & (ii) we get coordinates of orthocenter x 
18.
(A):
11
8
, y   (C) is correct
5
5
 h  3   k  4 
2
If the point is ( h, k ) we must have
8
5
2
 h  3k  3

2
10
10  h 2  6h  9  k 2  8k  16   h 2  9k 2  9  6hk  6h  18k
Required locus is 9 x 2  y 2  6 xy  54 x  62 y  241  0 ( a parabola )  (A) is correct.
20.
2 3 sin 3 θ
1
From the figure Area of PQR   2 3 sin θ  2sec θ  2cos θ  
cos θ
2
This decreases as θ increases since f '  θ   0
3
 15 
1
1
1
Now  h  1   cos θ 
 Max area 1 = 2 3  
  4
2
4
2
 4 

8
2 3  15. 15 45  5

1  45

16
8
5
3
 3
And Min. area  2 = 2 3  
  2
 2 

2 33 3 9
  8 2  36
4
2
8
Thus,
8
5
1  8 2  9
AIEEE/IIT MAINS Page 209-210
6.
(a)

Foci of the given ellipse are  7,0

Now radius of the circle = 4  equation of circle is  x2  y 2  6 y  7  0
7.
(c)
Given ellipse is
x2 y 2

1
6
2
… (1)
The equation of any tangent to it is y  2 x  6m2  2
… (2)
Also perpendicular to (2) through the center of ellipse is
y
1
x
m
… (3)
eliminating ‘m’ from (2) and (3) Gives the required locus as ( x2  y 2 )2  6x2  2 y 2
9
Related documents