Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The quark-gluon structure of hadrons Gerard van der Steenhoven 8 October 2003 Santorini, Greece Outline GSI MAMI DAFNE few nucleons COMPASS, HERMES (*) heavy nuclei ALICE quarks gluons neutrinos NESTOR, GRAN SASSO, ANTARES (*) Honestly stolen and ‘EUadapted’ from James Symons, NSAC chair 2000 - 2002, US • • • • • • Introduction Hadron spectroscopy Hadron spin structure Quark-gluon correlations Quark-gluon propagation Outlook Introduction • The physics of hadrons: Hadrons: complex multiquark-gluon systems. gluon Quark-antiquark pair • What we would like to understand: quark-gluon structure, global properties, origin of spin, confinement, interactions……… Elastic Scattering • Proton Form Factor ratio GEp(Q2)/GMp(Q2) • Surprising JLab data: Discrepancy with Rosenbluth L/T separation New data? Radiative corrections Is the shape of the proton what we think it is ?? Deep Inelastic Scattering • The proton structure function F2(x,Q2): • HERA data: High gluon density in in the proton! The problem of hadron physics • Extrapolate s to the size of the proton, 10-15 m: • If s 1 perturbative expansions fail… Enter: Non-perturbative QCD: – Proton structure & spin – Confinement – Hadron interactions l rproton s 1 – Hadron spectroscopy How to make progress? • Theory: lattice QCD chiral perturbation theory QCD inspired models (chiral soliton) Anthony Thomas • Experiment: searches for novel q-g structures polarization degrees of freedom exclusive reactions (DVCS) the nucleus as a femtometer probe Present talk Hadron spectroscopy • Allowed states in QCD: qq states mesons qqq states baryons qqqqq states pentaquarks? Discovery θ (1540) Harvest 2002 – 2003: * Discovery D sJ ( 2317) Discovery cc Ξ (3520) u u d d u d d s s a) Five quarks in a sstate configuration. u d d u b) Five quarks in a K+ -n molecular configuration. d u s c) Five quarks in a strong diquark correlation state. u ss d u d) Collective excitation of a multiquark configuration. Observation of narrow DsJ-states • BaBar studied decay D*sJ D*s (2112) 0 with D*s (2112) K K • Two new s c mesons ? • The K+K-+-spectrum: 0+ @ 2.32 GeV 1+ @ 2.46 GeV New charmed baryons • SELEX experiment at FermiLab (E781) – 600 GeV/c π/Σ beam – Decay schematic: – Discoveries: Ξcc (3460), Ξcc (3520) A new narrow S=+1 state • Predictions: – Bag models (Jaffe ’77; De Swart ’80): 1.8-1.9 GeV – Skyrme model (Praszalowicz ’87, Walisser ’92): 1.3 – 1.8 GeV – Chiral-Soliton Model (see talk by M. Polyakov, ‘97): E = 1.53 GeV and narrow! Spring8 data, hep-ex/0301020: • Discovery: – n K-K+n: +(1540) (see talk by T. Nakano) (1520) 0 θ (1540) Pentaquark observations? JLab ITEP See talk D. Tedeschi ELSA HERMES See talk A. Airapetian Why has it taken so long? • Experimentally: – Lack of particle ID (RICH) – Large combinatorial backgrounds at hadronic beams – Lack of luminosity at photon and electron beams • Theoretically: – Nobody realized that the +(1540) would be narrow… – Is the - - (1700) also narrow? Hadron spin structure • Possible carriers of proton spin: quark-antiquarks gluons orbital momentum • Mathematically: ½ = ½ Sq + DG + Lq ~ 25% >0? ??? Even they were puzzled… N. Bohr W. Pauli … but this is purely classic! How to probe the quark polarization? Polarized deep inelastic electron scattering Parallel electron & quark spins Anti-parallel electron & quark spins • Measure yield asymmetry: 1 N N A1 DPT PB N N • In the Quark-Parton Model: A1 g1 ( x) 1 2 e f Dq f ( x ) F1 ( x) F1 ( x) f Spin-dependent Structure Function Spin-dependent structure functions • NLO QCD analysis of all existing Excellent data for x > 0.01 g1 ( x) data: Polarized Parton Densities • First moments: – input scale Q02 4.0 GeV 2 – pol. singlet density: DSq 0.167 0.169 (stat) 0.133 (exp) 0.070 (th) – pol. gluon density: DG 0.616 0.388 (stat) 0.175 (exp) 0.424 (th) There must be other sources of angular momentum in the proton Flavour decomposition of spin • Semi-inclusive deep inelastic lepton scattering • Hadron tags flavour of struck quark • Derive purity of tag from unpolarized data Key issue: role of sea quarks in nucleon spin See talk B. Maiheu Sea quark polarization • Up and down quarks are oppositely polarized • Sea quarks: unpolarized... • First data on xDu Dd : (HERMES, hep-ex/0307064) Chiral Quark Soliton Model Gluon polarization • Photon-gluon fusion: – COMPASS (see F. Kunne): • Open charm production: D 0 ( D 0 ) K ( K ) D * D 0 s • High pT –pairs (> 1 GeV) – E161: D or C • Prompt photons (RHIC): or q g q photon or g cc The COMPASS experiment Beam: 160 GeV µ+ 2 . 108 µ/spill (4.8s/16.2s) Muon filter 2 MWPCs ECal2 & Hcal2 ~50m SM2 Muon filter 1 ECal1 & Hcal1 RICH GEM & MWPCs SciFi SM1 GEM & MWPCs Silicon SciFi Scintillating fibers GEM & Straws Micromegas &Drift chambers Polarized target Polarization: • Beam: ~80% • Target:<50%> First COMPASS results π μ,e K • Data being collected for: – – – – Vector Meson production Long. Polarized DG Trans. Polarized h1(x) Hyperon production Polarized Protons at RHIC Absolute Polarimeter (H jet) RHIC pC CNI Polarimeters BRAHMS PHOBOS RHIC s = 50 - 500 GeV PHENIX STAR Siberian Snakes Spin Rotators y y y y y y y 1 0 0 1 0 E x p e r i m e n td a t a ( 1 9 9 7 ) S i m u l a t i o n ( 1 9 9 7 ) 9 0 Partial Solenoid Snake Pol. Source 500 A, 300 s Partial Helical Snake AGS 8 0 AGS pC CNI Polarimeter AGS Quasi-Elastic Polarimeter 200 MeV Polarimeter Rf Dipoles E x p e r i m e n td a t a ( 2 0 0 2 ) S i m u l a t i o n ( 2 0 0 2 ) 7 0 Vertical Polarization LINAC BOOSTER 9 0 E x p e r i m e n td a t a ( 2 0 0 0 ) S i m u l a t i o n ( 2 0 0 0 ) S i m u l a t i o n ( 2 0 0 3 ) 8 0 7 0 6 0 6 0 5 0 5 0 4 0 4 0 3 0 3 0 2 0 2 0 1 0 1 0 0 5 1 0 1 5 2 0 2 5 3 0 G 3 5 4 0 4 5 0 5 0 First RHIC results • Measure forward 0 production at STAR: • Single spin-asymmetry in p p X 0 • Relevance: transverse spin • Red curve: Collins effect (~ transversity) • Blue curve: Sivers effect (~ p dependence of PDF) • Green curve: Twist-3 Transverse spin • Leading order quark distributions: momentum carried by quarks longitudinal quark spin, DS lattice QCD: DS . transverse quark spin, dS lattice QCD: dS .5 9 • Helicity conservation: gluons do not contribute to h1(x) • Novel testable QCD predictions: – Large value of the nucleon tensor charge dS – Very weak Q2 evolution of h1(x) Measuring transverse asymmetries • Semi-inclusive DIS with a transversely polarized H target: Transverse Target Magnet at HERMES • Evaluate the azimuthal asymmetry wrt Starget: 1 N h ( , s ) N h ( , s ) A ( , s ) PT N h ( , s ) N h ( , s ) h UT First data on transversity See talk N. Bianchi “Collins”: Ph Mh sin( s ) ~ h1 ( x) H1(1) ( z ) “Sivers”: Ph Mh sin( s ) ~ f1T(1) ( x) D1 ( z ) Quark-Gluon Correlations • Four independent Generalized Parton Distributions: ~ ~ H ( x, , t ), H ( x, , t ), E ( x, , t ), and E ( x, , t ) • GPDs enter description of many different processes: GPDs DVCS handbag diagram See talks by K. Goeke, M. Garcon, ... The remarkable properties of GPDs • Integrate GPDs over x: 1 1 ~ dx H ( x, , t ) GA (t ) dxH ( x, , t ) F1 (t ), 1 -1 1 1 ~ dxE ( x, , t ) GP (t ) dxE ( x, , t ) F (t ) 2 1 -1 • Second moment (X. Ji – 1997): 1 x H ( x, , t ) E ( x, , t ) dx A(t ) B(t ) 1 And take the limit t 0: J A (0) B 1 • q,g 2 q, g q,g (0) GPDs give access to Orbital Angular Momentum of Quarks A 3D view of quarks in the proton A.V. Belitsky et al, NP A711 (2002) 118c A.V. Belitsky et al, hep-ph/0307383 x=0.01 x=0.4 z z r r r r Experimental access to GPDs • Exclusive meson electroproduction: – Vector mesons (0): H ( x, , t ) and E ( x, , t ) – Pseudoscalar mesons (): H~ ( x, , t ) and E~ ( x, , t ) • Deeply virtual Compton scattering: – Beam charge asymmetry: – Beam spin asymmetry: – Longitudinal target spin asymmetry: Key differences Selected DVCS results • Azimuthal dependence beam-spin asymmetry: 1 N ( ) N ( ) ALU ( ) PT N ( ) N ( ) • Beam-charge and target spin asymmetries…….. Quark-Gluon Propagation • Energy loss mechanisms: – hadron-nucleon rescattering DEhadron A1/ 3 – quark-gluon propagation DE parton 2 A2 / 3 (QCD: LPM effect) • Relevance: – Verification novel QCD effect – Study of Quark-Gluon Plasma in relativ. heavy-ion collisions. Parton energy loss in DIS • Hadron attenuation in 14N and 84Kr: Data: see P. Di Nezza Search for quark-gluon plasma Dashed: see X. Wang [incl. LPM effect + tune g(x)] Solid: see A. Accardi [incl. Q2 rescaling effects] Energy loss in hot matter • 0 production in Au + Au collisions at Phenix: • Adjust energy loss to fit data (cf. cold matter) g hot matter g cold matter Prospects: short-term future • The origin of proton spin: – Gluon polarization, transversity and orbital motion • First measurements of DG and h1(x) Prospects: mid-term future Search for glueballs (ggg) and hybrid particles (qqg) (US: JLab 12 GeV upgrade) Prospects: long-term future • Precise verification of novel QCD predictions requires high-energy (> 50 GeV) & high-luminosity (> 1033 /s) • Proposed new lepton scattering facilities in the US: ELIC @ JLab with e-A coll at 4 x 65 GeV2 & 1035 cm2/s EIC @ BNL e-p coll at 10 x 250 GeV2 &1033 cm2/s Outlook • QCD hadron physics in 2003: – – – – – discovery pentaquarks first data on transverse spin exploration of GPDs quadratic parton energy loss? ………….. • The future: – many new data in coming years – new facilities under design Santorini ‘03 changes our perspective ! SPARE SLIDES FOLLOW ……. Orbital angular momentum • The origin of proton spin: ½ = ½ Sq + DG + Lq Flavour Decomposition: 0.3 High pT pairs: 1.0 Orb. ang. mom.: -0.65 ? • A new idea: azimuthal asymmetry in 0 production Ju = S u + L u Gluon Polarization at RHIC • Longitudinal double spin asymmetry in p+p: d d ALL d d • Dominant processes: or or photon or Direct photon production (heavy flavor) or Di-jet production Dominance of qg q • LO QCD calculations for 2 jet production (left) and direct photon production (right) Estimate of the asymmetries • Direct photoproduction: ALL ( pT ) Dg ( xg ) g ( xg ) A1 ( xq ) aˆ LL p From inclusive DIS data: A1p is large for x > 0.2 QCD: approaches unity if is emitted forward • Two jet-production: (Complication: disentangle contribution from various partonic processes) Sensitivity to Gluon Polarization • First evaluation of first moment of DG(x), i.e. . • Other relevant channels: inclusive , inclusive jets, J/y production, heavy flavor production, etc. Anticipated improvement in xDG(x) • Present QCD analysis • With new RHIC data from STAR M. Hirai, H.Kobayashi, M. Miyama et al.- preliminary Selected DVCS results • Azimuthal dependence beam-spin asymmetry: • Target-spin asymmetry: • Nuclear dependences Beam spin asymmetry for + • Measure BSA for semi-inclusive + production in DIS: • BSA ~ interference between L and T parts of X-section: sin LU A H ' LT Electron-Light Ion Collider Ion Source Snake IR Solenoid IR 5 GeV electrons Snake 50-100 GeV light ions Injector CEBAF with Energy Recovery Beam Dump s 20 45 GeV L 1034-35 cm2s -1 Polarized beams RHIC at BNL