Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
First-Order Differential Equations Review Exercises: - Chapter 1 Section 1.1 General and Particular Solution Solve the following 1st order differential equation and obtain its general and particular solution. (1) dy 3x 2 5 dx (3) dy x2 x ex x 0 , y 0 dx x 1, y 1 (5) f ' ( x) x f (0) 2 , 4 x4 (2) dy e2x dx x 0, y 5 2 (4) dy sin 5 x dx x 18 , y 20 (6) d f ( x) ln x f (0) 1 dx Section 1.2 To solve First-Order Differential Equations Solve the following differential equation by separating the variable: dy y 2 xy 2 (2) dx x 2 y x 2 dy xy (1) dx 1 y (3) ( y 3) (5) (4) dy 2y dx x( y 1) (7) tan x (9) dy 4 y dx x dy xy y dx (6) cos 2 x dy 1 y dx dy 3 x 2 ( y 2) dx dy y3 dx (8) cos x e 2 y y y' e y sin 2 x y (0) 8 (10) x dy 2y 2 x dx y (1) 0 Solve the following homogeneous equation using reducible to separable form y (11) y ' 1 x put y ux y y (12) y ' 1 x x y (13) x dy y ex dx put y ux (14) 2 x 2 dy x2 y2 dx 2 put y ux put y ux 1 (15) ( x y ) y ' x y 0 (17) ( x y 1) put y ux dy (2 x 2 y 3) dx dy y 2 xy dx put y ux put u x y (18) (2 x 4 y 5)dy (2 y x 2.5)dx (19) dy ( y x 1) 2 dx (16) x( x y ) put u x 2 y put u y x 1 Section 1.3 Exact Differential Equations Solve the following using exact differential equation: (1) y 3 dx 3xy2 dy 0 (2) (2 x e y )dx xe y dy 0 (3) (2 xy 2 3)dx (2 x 2 y 4)dy 0 (4) ( x 2 y 2 )dx 2 xy dy 0 (5) (5x 4 y)dx 4( x 2 y 3 )dy 0 (6) (3 y )dx (cos y x) dy 0 (7) 2xyex dx e x dy 0 2 (9) (11) 2 (8) e x y dx (1 e x y )dy 0 dy yx y xy 2 cos x sin x dx dy y cos xy e 2 y (10) dx 2 xe2 y x cos xy 2 y dy (3 x 2 y 2 e y ) 2( xy 3 2) dx (12) (1 xe y ) 2 dy ey dx Solve the following by determining the integrating factor: (13) y dx x dy 0 (14) 3 dx e y x dy 0 (15) 2 y dx xdy 0 (16) ( x y 2 ) dx xy dy 0 (17) 2 y dx (1 6 x y ) dy 0 (18) (19) 2 y 2 dx (1 8xy) dy 0 y 2 dx 3xy dy 0 (20) y sin xdx (2 cos x 4 y 2 )dy 0 Hint* (13-16) apply case (a), (17-20) apply case (b). Section 1.4 Solving by Inspection Method 2 Solve the following 1st order linear differential equation by inspection method: (3) 6 x 2 y 12 xy y 2 dx 6 x 2 xy dy 0 (5) y 4 2 y dx xy3 2 y 4 4 x dy 0 x y dx x y dy 0 (7) (2) xdy y x 2 e x dx (1) xdy ydx (4) xdy ydx xy3 dy 0 (6) xdy ydx 1 x 2 0 (8) ( x 2 3 y 2 ) dx 2 xydy 0 (9) 2 xy 2 y 2 dx x 2 4 xy dy 0 (10) 3xdy 4 ydx 0 Section 1.5 First-Order Linear Differential Equations Solve the following 1st order linear differential equation by using the integrating factor: (1) dy yx dx (3) dy y x dx x (5) x dy y x sin x dx (7) ( x 1) (9) ( x 1) (2) y '5 y e 2 x , y (0) 0 (4) (6) sin x dy y ( x 1) 2 dx dy y ( x 1) 4 , dx dy 1 1 y e x dx x dy y cos x sin x cos x dx (8) (1 x 2 ) y (4) 9 (10) x dy xy 2 dx dy y x cos x , dx y ( ) 0 Section 1.6 Bernoulli’s Equation Solve the following Bernoulli’s equations: (1) dy 1 y xy 2 dx x (3) dy 1 y 2x 2 y 3 dx x (2) dy 2x xy dx y (4) 3 y 2 dy y 4 e3x dx 3 (5) dy 2 y y 3 x 1 dx (6) x 2 y 1 3 dy x y 3 cos x 2 dx Section 1.7 Ricatti’s Equation Solve the following Ricatti’s equations: (1) x 2 dy 2 2 xy x 2 y 2 0 dx dy (3) y 2 2 xy x 2 1 dx (2) x dy y 2 y 2 2x2 dx dy y 2 y (4) 1 dx x 2 x dy dy (6) y2 2 y 8 0 y 2 xy 1 dx dx Section 1.8 Applications to series Electrical Circuit (5) 2 x (1) A simple R-L series circuit with R =1 , L =25 H and E (t ) e t V was connected. Determine the current i(t) given that the initial current i(0) = 0. (2) A 30 volts electromotive force is applied to an R-L series circuit which the resistance R is 2 ohms and inductance L is 25 Henry. Given the initial condition where i(0) = 0, find the current i(t). Determine the current as t approaches infinity t . (3) A simple R-C circuit with R = 20 , C = 10 3 F and E (t ) e t V was connected. Determine the charge q(t) given that the initial charge q(0) = 0. Determine the current i(t). (4) A 100 volts electromotive force is applied to an R-C series circuit which the resistance R is 1000 ohms and capacitance C is 1 10 4 Farad. Given the initial condition where i(0) = 0.2, find the charge q(t) on the capacitor. Determine the charge and current as t = 0.001 sec. If t approaches infinity t , find the charge q () . 4 Second-Order Ordinary Differential Equations Review Exercises: - Chapter 2 Section 2.2 Constant Coefficient of Second Order Homogeneous Equation Solve the general solution: (problems 1-6: apply real roots, problems 7-10: apply equal roots, problems 11-16: apply complex roots.) (1) d2y dy 7 12 y 0 2 dx dx d2y dy (3) 4 5y 0 2 dx dx (2) d2y dy 3 2y 0 2 dx dx d2y dy (4) 4 2 10 6 y 0 dx dx (5) d2y dy 3 2 y 0 2 dx 4 dx (6) d2y dy 9 9y 0 2 dx dx (7) d2y dy 8 16 y 0 2 dx dx (8) d2y dy 14 49 y 0 2 dx dx (9) 1 d2y dy 3 3 y0 2 2 dx dx 2 (10) 4 (11) d2y dy 4 7y 0 2 dx dx d2y dy (13) 3 2 9 54 y 0 dx dx (15) d2y 64 y 0 dx 2 (12) d2y 192 dy 3y 0 2 4 dx dx d2y dy 2 10 y 0 2 dx dx d 2 y 4 dy 2 (14) 2 2 y0 3 dx 3 dx (16) d2y 11y 0 dx 2 Solve the initial-value problems: (17) d 2 y dy 2 y 0 , y ( 0 ) 4 , y ' ( 0 ) 5 dx 2 dx (18) d2y dy 4 5 y 0 , y (0) 0 , y ' (0) 2 2 dx dx 5 (19) d2y dy 4 4 y 0 , y (0) 1, y ' (0) 1 2 dx dx (20) d2y dy 4 4 y 0 , y (0) 3 , y ' (0) 1 2 dx dx d2y dy 3.2 2.56 y 0 , y (0) 0 , y ' (0) 2 2 dx dx (21) (22) d2y dy 4 5 y 0 , y ( 0) 2 , y ' ( 0) 4 2 dx dx (23) 2 d2y dy 4 3 y 0 , y (0) 2 , y ' (0) 1 2 dx dx (24) d2y 13 y 0 , y (0) 1 , y ' (0) 3 dx 2 (25) d2y 3 y 0 , y ( 0 ) 1 , y ' ( 0 ) 3 dx 2 Solve the boundary-value problems: (26) d2y dy 4 5 y 0 , y (1) 0 , y ' (1) 1 2 dx dx (27) d2y dy 2 2 2 y 0 , y (1) 2 , y ' (1) 0 2 dx dx (28) d2y dy 2 5 y 0 , y ( 0) 1 , y 1 2 dx dx 4 Section 2.3 Wronskian Test For Linear Independence of Solutions (29) Using Wronskian equation, referring to problems (1, 2, 7, 8, 11, 12) and test for independence: Section 2.4 Non-homogeneous Equations Solve the below problems (30 - 50) using Undetermined Coefficient Methods: 6 (30) d2y 4 y 8x 2 2 dx (31) d2y 4 y 4x 2 2x 3 2 dx (32) d2y dy 5 6 y 12 2 dx dx (33) d2y dy 5 6y x2 2 2 dx dx (34) d2y dy 5 6 y 4 sin 4 x 2 dx dx (35) d2y dy 6 10 y 2 sin 2 x 2 cos 2 x 2 dx dx (36) d2y dy 4 2 y 2x 2 x 2 2 dx dx d2y dy (37) 3 2 y 2e x 2 dx dx (hint* apply rule 1: multiply by x) (38) d2y dy 2 3 y 4e x 2 dx dx (hint* apply rule 1: multiply by x) (39) d 2 y dy 2 y 6e x dx 2 dx (hint* apply rule 1: multiply by x) d2y dy (40) 3 2 y 8e x 2 dx dx (hint* apply rule 1: multiply by x) (41) d2y dy 2 y 3e x 2 dx dx (hint* apply rule 1: multiply by x 2 ) (42) d2y dy 8 16 y 5 e 4 x 2 dx dx (hint* apply rule 1: multiply by x 2 ) d2y dy (43) 2 3 y x 2e 2 x (hint* apply rule 2) 2 dx dx 7 (44) d2y 4 y 4 x 5 6 xe2 x 2 dx (45) d2y dy 6 9 y 3x 2 1 6e 3 x (hint* apply rule 1 and 2 together) 2 dx dx (hint* apply rule 2) Solve the initial value problems: (46) d2y dy 1 3 3 2 y 2 x 2 , y (0) , y ' 0 2 2 2 dx dx (47) d2y dy 4 3 y 10e 2 x , y (0) 1 , y' 0 3 2 dx dx (48) d2y dy 7 4 5 y 39e 3 x , y (0) , y' 0 1 2 2 dx dx (49) d2y dy 1 5 2 8 y 4e 2 x , y (0) , y ' 0 2 2 3 dx dx (50) d 2 y dy 2 y e x sin 2 x , y (0) 1 , y' 0 3 2 dx dx Solve the below problems (51-56) using variation of parameters: (51) d2y dy 3 2 y e4x 2 dx dx (52) d2y dy 6 9 y xe3 x 2 dx dx (53) d2y 4 y csc 2 x dx 2 (54) d2y 4 y tan 2 x dx 2 d2y dy (55) 3 2y ex 1 2 dx dx 8 (56) d2y dy 1 3 2y x 2 dx dx e 1 Section 2.5 Euler-Cauchy Differential Equations Make use of either solution of the form y x m or solution by Operator D method, solve the following differential equation: (57) x 2 d2y dy x 8y 0 2 dx dx (58) x 2 d2y dy x y0 2 dx dx (59) x 2 d2y dy x 9y 0 2 dx dx (60) x 2 d2y dy 3x 3 y 2 x 2 2 dx dx d2y dy (61) x 5x 2 y x 2 2 dx dx 2 (62) x 2 d2y dy 5 x 4 y 2 sin 2 x 2 dx dx 9