Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
UNIT-I
Section A
1.The particular integral of D2y+4y=cosx is
1
1
(a)cosx (b)sinx (c) cosx
(d) sinx
3
3
2.If x is charge on the condenser,then the current I is
(a)1 (b)
ππ₯
ππ‘
(c)0 (d)
3.The solution of
π2 π₯
ππ‘ 2
π2 π¦
ππ¦
ππ₯
ππ₯
2 +4
+ 4π¦ = 0 ππ
(a)y=Ae2x+Be-2x (b)y=e2x(Acos2x+Bsin2x) (c)y=(Ax+B) e-2x
(d)y=(Ax+B) e2x
4.The particular integral of(D2-3D+2)y= e2x is
1
1
3
4
(a) e2x (b)x e2x (c)xex (d) e2x
5.The complementary function of (D2+4)y=x2 is
(a)y=Ae2x+Be-2x (b)y=e2x(Acos2x+Bsin2x ) (c) )y=Ae3x+Be-2x (d)
Acos2x+Bsin2x
6. .The particular integral of
(a)
1 -3x
e
2
(b) -
1
3
xe-3x
(c)
π2 π¦
ππ₯ 2
1
4
+4
ππ¦
ππ₯
+ 3π¦ = e-3x is
xe-3x (d) -
1
2
xe-3x
7. The solution of (D2-5D+6)y=0 is
(a)y=Ae2x+Be3x
(b)y=Ae2x+Be-3x (c)y=Ae-2x+Be3x
-3x
8.The particular integral of (D2+1)y=ex is
(d)y=Ae -2x+Be
(a)
1 -x
e
2
(b )
1 x
e
2
(c)1
(d) )
1 x
e
4
9.In a second order linear differential equation with constant
coefficients,the particular integral is given by
(a)f(D)*X (b)f(D)/X (c)X/f(D) (d)X+f(D)
10.The complementary function for a second order differential equation
is of the form c1emx+c2enx,the roots of the equation in the operator form
are
(a)real and equal (b)real and distinct
(c)imaginary (d)of type πΌ ± π½
11.suppose if the roots of the auxillary equation are say -1 and -2 ,the
complementary function is of type
(b)(A+Bx) emx (c)(Ax2+Bx+c)emx (d)eΞ±x(AcosΞ²x
(a)Aemx+Benx
+AsinΞ²x)
12.Which of the following cannot be represented by a differential
equation?
(a)motion of simple pendulum (b)motion of a car (c)oscillations of a
spring
(d)changing and discharging of a condenser through R and L
13. The C.F for the differential equation(D2-4D+3)y=sin2x is
(a)y=Ae -x+Be -3x (b)y=Ae x+Be -3x (c)y=Ae -x+Be 3x (d)y=Ae x+Be
3x
14.The particular integral of (D2+16)y=e-3x is
(a)
1 -3x
e
9
(b)
1
25
e-3x (c)A e3x+B e-3x (d)none of t
15.If x is the charge ,the differential equation for the circuit is
ππ
π₯
ππ‘
π
L +Ri+ =Esinwt where i is the current which is equal to
(a)
ππ₯
ππ‘
(b)
ππ
ππ‘
(c)
ππΏ
(d)none of these
ππ‘
16.The particular integral of (D2-2D+1)y=xex is
π₯2
π₯3 x
e
3
(a) ex (b)
2
(c)
π₯3 x
e
2
(d)
π₯3 x
e
6
17.The particular integral of (D2-4D+4)y=xe2x is
3 2x
(a)x e
18.
(b)
π ππ₯
(π·βπ)2
π₯ 3 2x
e
6
(c)e2x(x+2)
=_________
π₯
(a)
(d)xe-ax
ax
2
e
(b)
π₯ 2 ax
e
2
(d)none of these
(c)xe-ax (d)none of these
19.The solution of (D2+3D-40)y=0 is
(a)y=Ae-8x+Be5x (b) y=Ae8x+Be -5x
above
(c)y=Ae-8x+Be -5x (d)none of the
20.The solution of (D2+2D+5)y=xex is
(a)y=e-5/2 x(Acos
β17
β17
2
2
x+Bsin
β5
β5
2
2
x) (b)y=eβ17/2 x(Acos( )x+Bsin( )x)
5x
(c)y=e (Acos17x+Bsin17x) (d)y=e
β17
(Acos5x+Bsin5x)
21.Particular integral of(D-1)2y=exsinx is
(a)xcosx (b)-xexsinx (c)xexsinx (d)excosx
22. Particular integral of(D+2)2y=xe-2x is
(a)
π₯2
6
e
-2x
(b)
π₯
6
e
-2x
(c)
π₯3
6
e
23.The degree of the equation(
-2x
(d)
π₯4
2
e -2x
π2 π¦ 2 ππ¦ 3
) +( ) P+Qy=0
ππ₯ 2
ππ₯
is
(a)one (b)two (c)three (d)none of these
24.If a second order differential equation is expressed in the
π2 π¦ ππ¦
form
+ P(x)+Q(x)y=R(x) then it is called_________equation
ππ₯ 2 ππ₯
(a) linear (b)nonlinear (c)homogeneous (d)none of these
25.The complementary function of (D2+D-2)y=sin2x is
(a)y=Ae-3x+Be-2x (b) y=Aex+Be-2x (c) y=Ae-x+Be-2x (d)(Ax+B) e2x
26.The particular integral of (D2-6D+9)y=e 9x is
(a)
π₯2 x
e
2
(b)
π₯ 2 3x
e
2
(c)
π₯
2
e2x (d)
π₯ 2 3x
e
2
Section B
1. Solve(D2+5D+6)y=5e-2x
2. Solve:(D2-8D+9)y=8sin5x
3.Solve (D2+3D+2)y = x2
4. Solve D2-4D-5)y = 4cos3x
5 .Solve (D2+16)y =cos4x
Section C
1. Solve (D2-4D-3)y=excos2x
2. Solve(D2+4)y=xsinx
3. Solve (D2-4D+3)y = sin 3x cos 2x
4. For an electric circuit with circuit constants L,R,C the charge q on a
π
plate of the condenser is given by LπΜ +RπΜ + = E sinππ‘.The circuit is
π
tuned to resonance so that π2=
1
πΏπΆ
.If
4πΏ
R2<
π
and q = i = 0 at t=0 .Show
that
Q=
πΈ
π
π
[-cos ππ‘+π
βπ
π‘
2πΏ
(cos pt+
π
2πΏπ
sin pt)
5. Solve (D2+3D+2)y =sinx +x2
UNIT-II
Section -A
1.Convergence towards the solution by Gauss-seidal method in
comparison with Gauss-Jacobi method is
(a)faster (b)slower (c)same (d)not comparable
π
β
2.The simpson`s rule isβ«π π¦ dx= (A+4B+2C),where A is
3
(a)sum of first and last ordinates (b)sum of the even ordinates (c)sum
of the odd ordinates (d)product of x and y
3.Gauss-Jordan method belongs to
(a)direct method (b)indirect method (c)bisection method (d)none of the
above
4.Simpson`s one βthird rule on numerical integration is called a
(a)open formula (b)closed formula (c)Bessel`s formula (d)none of
these
5.Which of the following is correct?
(a)Gauss Elimination method is indirect method (b)Gauss-seidal
method is direct method
(c) Gauss-Jordan method is direct method (d) Gauss-Jacobi method is
direct method
π
β
6.The Trapezoidal rule is β«π π¦ dx= (A+2B) where B is
2
(a)sum of first and last ordinates (b)sum of the even ordinates (c)sum
of the odd ordinates (d)sum of the remaining ordinates
7.Which of the following is a wrong statement?
(a) Gauss Elimination method and Gauss-Jordan method are direct
method
(b) Gauss-seidal method and triangularisation method are direct
method
(c) Gauss-seidal method and Gauss-Jacobi methods are iterative type
(d) Gauss Elimination method and triangularisation method are
direct method
8. Which of the following is a direct method ?
(a) Gauss Elimination (b) ) Gauss-seidal (c) Gauss-Jacobi (d)none
9.In simpson`s rule,the number of intervals is always
(a)odd (b)even (c)odd or even (d)none
10. In simpson`s rule,the approximation is closer when it is
(a)large (b)smaller (c)large or small (d)none
11.Choose the wrong statement
(a) Gauss method the matrix is reduced to triangular matrix
(b) Gauss-Jordan method the matrix is reduced to diagonal matrix
(c) Gauss method is an elimination method
(d) Gauss-Jordan method makes use of iteration
12.Choose the correct answer
(a)The accuracy is the same in trapezoidal rule method and simpson`s
rule method
(b) The accuracy is greater in trapezoidal rule method than simpson`s
rule method
(c) The accuracy is greater in simpson`s rule method than trapezoidal
rule method
(d)none of the above statement is true
13.As soon a new value for a variable is bound by iteration,it is used
immediately in the following equation
(a) Gauss-seidal (b) Gauss-Jacobi (c) ) Gauss-Jordan
these
(d)none of
14.The order of error in trapezoidal formula is
(a)0 (b)h (c)h2(d)h3
15.Which one of the following is a iterative method to solve
simultaneous equation
(a) Gauss Elimination method(b) Gauss-seidal method (c) GaussJordan method (d)Triangularisation method
16. Simpson`s one βthird rule will give exact result,if the entire curve
y=f(x) is itself a
(a)ellipse (b)circle (c)parabola (d)hyperbola
17.the error in simpson`s rule is of order
(a)h4 (b)h (c)h2(d)h3
18.The rate of convergence in Gauss-seidal method is roughly ---------- times than that at Gauss-Jacobi method
(a)one (b)two (c)three (d)four
19.When Gauss-Jordan method is used to solve AX=B,A is transform
into a------------- matrix
(a)upper triangular (b) lower triangular (c)diagonal (d)identity
20.Simpson`s three-eight rule can be applied only if the number of
subintervals is a
(a)multiple of 3 (b)multiple of 2 (c)multiple of 4 (d)none of these
21.If a set of numerical values of the integral f(x) is applied to
π
β«π π (π₯ ) ππ₯, π‘βππ π‘βππ‘ ππππππ π ππ ππππ€π ππ
(a)a numerical integration (b)quadrature (c)interpolation (d)none of
these
22.Condition for the convergence of Gauss-seidal method is that the
coefficient matrix is
(a)singular (b)non-singular (c)diagonally dominant (d)none of these
23. The condition for the convergence of Gauss-Jacobi
method
Is
(a)βππ=1 |
πππ
πππ
| β€ 1 for jβ i (b) βππ=1 |
πππ
πππ
| >1 for jβ I (c) βππ=1 |
πππ
πππ
| <1 for
jβ I (d)none of these
π
β
24. β«π π¦ dx= (y1+4(y2+y4+β¦β¦β¦+y2n)+2(y3+y5+β¦β¦β¦β¦β¦+y2n3
1)+y2n+1)is
1
(a)Trapezoidal rule (b)simpson`s rule (c)Romberg rule (d)none of
3
these
25.which one is more reliable in the following?
(a) simpson`s rule
these
(b) Trapezoidal rule (c)both (a) & (b) (d)none of
Section B
1. Solve the following equations by Gauss-elimination method
X+3y+3z=16,x+4y+3z=18,x+3y+4z=19
2. Solve the following equations by Gauss-Jacobi method,perform five
iterations only 27x+6y-z=85,6x+15y+2z=72,x+y+54z=110
3. Solve the following equations by Gauss elimination method
2x+y+4z = 12,8x-3y+2z = 20,4x+11y-z = 33
1 ππ₯
4. Evalute β«0
1+π₯
by Trapezoidal rule taking h = 0.25
5. Solve the following equations by Gauss-elimination method
3X+4y+5z=18,2x-y+8z=13,5x-2y+7z=20
Section C
1.Solve the given system of equations by using Gauss-Seidal iteration
method
20x+y-2z=17,3x+20y-z=-18,2x-3y+20z=25
1 ππ₯
2. (Evaluate β«0
1+π₯ 2
using simpsonβs 1/3 rule taking h=1/6
3. Solve the following equations by Gauss elimination method
2x+y+4z = 12,8x-3y+2z = 20,4x+11y-z = 33
1 ππ₯
4. Evalute β«0
1+π₯
by Trapezoidal rule taking h = 0.25
5. Solve the given system of equations by using Gauss-Seidal iteration
method
28x+4y-z=32 , x+3y+10z=-24, 2x+17y+4z=35
UNIT-III
Section-A
β
1.If F[f(x)]=F(s),thenβ«ββ |πΉ (π₯ )|2 dx is
β
β
β
(a)β«ββ(π(π₯ ))2 ds (b) β«ββ |πΉ (π )|2 ds (c) β«β0 |πΉ (π )|2 ds (d)none of
these
2.The complex fourier transform of f(x) is given by F[f(x)]=
(a)
1
β
1
β
1
β
β« π(π₯) eisx dx (b) β2π β«ββ π(π₯) dx (c) β2π β«ββ π(π₯) cosnx dx
β2π ββ
(d)
1
β
β« π(π₯) sin nx dx
β2π ββ
3. If F[f(x)]=F(s),then F[f(x-a)]=
(a)F(s-a) (b)F(s) (c)F(s+a) (d)0
4. If f(x) is an odd function of x,its fourier transform will be--------functions of s
(a)odd (b)even (c)analytic (d)circular
5.F[af(x)+bg(x)]=
(a)aF[f(x)]+bF[g(x)] (b)F[f(x)]+F[g(x)] (c)0 (d)1
6.The fourier cosine transform of f(t) =
2 β
2 β
2
(a)β β«0 Μ
Μ
Μ
ππ (s) cost ds (b) )β β«0 Μ
Μ
Μ
ππ (s) ds (c) )β cost ds (d)1
π
π
π
7. If F[f(x)]=F(s),then F[e2ax f(x)=
1
1
π
π
(a)F(s+a) (b)F(s-a) (c) F(s+a) (d) F(s-a)
8.The fourier cosine transform Fc[f(x)cosax]=
1
1
1
1
2
2
π
2
(a)F(s+a) (b) {Fc(s+a)+Fc(s-a)} (c) {Fc( )-Fc(s-a)} (d) {Fc(s+a)-Fc(sa)}
9. The fourier sine transform Fs[f(x)sinax]=
1
1
1
1
2
2
π
2
(a)F(s+a) (b) {Fs(s+a)+Fs(s-a)} (c) {Fs( )-Fs(s-a)} (d) {Fs(s+a)-Fs(sa)}
10. . If F[f(x)]=F(s),then F[f(x-a)]=
(a)e-iasF[f(x)] (b)
π βπππ
|π|
(c) eiasF[f(x)] (d) easF[f(x)]
11.If Fs(s) and Gs(s) are the fourier sine transforms of f(x) and g(x)
β
respectively thenβ«0 π (π₯ )π(π₯ )ππ₯ =
β
β
(a)β«0
β
Fs(s)Gs(s)ds (b) β«ββ
Fs(s)Gs(s)ds (π) β«0
Fs(s)ds (d)0
12.F[eiaxf(x) ] is
1
π
π
π
(a) F( ) (b)eias F(s) (c)F(s+a) (d)(-is)nF(s)
13.Parseval`s theorem is useful it f(x),the given function is defined as in
(a)[0,β] (b) (0,1) (c) (-1,1) (d) (-β, β)
14.The fourier transform of f(x) is given by
(a)
1
β
(d)
β
1
β
β
1
π(π‘) eist dt (b)
π(π‘) eist dt (c)
π(π‘) eist dt
β«
β«
β«
ββ
β0
ββ
π
β2π
β2π
1
β
π(π‘) eist dt
β«
ββ
2π
15.Which of the following is not a fourier transform?
(a)f(x)=
1
β
β
1
β
β
β« β« π(π‘) eis(t-x) dt dx (b) f(x)=2π β«ββ β«ββ π(π‘) cos s(t-x)
2π ββ ββ
2
β
β
β
dt dx (c) f(x)= β«0 β«0 π(π‘) sin st. sin sx dt dx (d)F(s)=β«0 π(π‘) e-st dt
π
16.F[af(x)+bg(x)]=aFf(x)+bFg(x) is called
(a)shifting property (b)linearity property (c)similarity property (d) none
of the above
17.If f(x) and g(x) are any two functions,thenf*g=
β
β
(a)β«ββ π(π‘) dt (b) β«ββ
(d)
π(π₯ β π‘)π(π₯ + π‘)dt (c)
β
1
1
β
β« π(π‘) g(x-t) dt
β2π ββ
β« π(π‘) g(x-t) dt
β2π 0
18.The fourier transform of xπ
(a) π
βπ 2
2
(b)is (c)is) π
βπ 2
2
βπ₯2
2
is
(d)s
19.F[xnf(x)]=
(a)
ππ
ππ π
n-1
(x ) (b)
ππ
ππ
π
Μ
Μ
n (d) (-i)n )
π
(s)
(b)
(π(s))
π
ππ
ππ
ππ π
Μ
π(s)
Μ
Μ
(a)f(-s) (b) π (-s)
(c)β π(-s)
(d)f(s)
20.F[f(-x)]=
Μ
21.If f(x) is an even function of x,its fourier transform π(s)
will be------------- function of s
(a)odd (b)even (c)multiple (d)inverse
22.The fourier transform of f(t)=e-a|t|,a>0 is
2
2
π
π
(a)β a/a2+s2 (b)a/a2+s2 (c) )β
(d)
π
2
β
Μ
23.If F[f(x)]= π (s)
,then β«ββ |π(π₯ )|2 dx=
β
Μ
2 ds (b) ) β«β | π(s)|
Μ
2 ds (c) β«β | π(s)|
Μ
ds (d)0
(a) β«ββ( π(s))
ββ
0
(a)-s πΜ
π (s) (b) πΜ
π (s)
24.Fs[f `(x)]=
25.The fourier sine transform of
π βππ₯
π₯
is
2
π
π
2
π
π
π
π
π
π
(a)β (b)tan-1( ) (c) (d) β tan-1( )
Section B
(c)-s fc(s) (d) βs πΜ
π (s)
1. Find the fourier transform of f(x) = π
βπ₯2
2
2.Find the fourier sine transform of xe-ax
3.Find the fourier cosine transform of π βπ₯
2
4.Find the fourier transform of f(x) defined by f(x)={x2,|x|β€a and
0,|x|>a
5. Find the fourier sine and cosine transform of e-ax
Section C
1. Find the fourier transform of the function defined by
π2 β π₯ 2 , |π₯| β€ π
f(x)= {
0
, |π₯| > π
β
ππ₯
2.Using Parsevalβs indentity evaluate β«0
(π2 +π₯ 2 )2
3. Find the fourier transform of f(x)={1-π₯ 2 ,|x|β€1 and 0,|x|>1
4.Find the fourier sine transform of f(x)=
1
π₯(π2 +π₯ 2 )
5. Find the fourier transform of the function defined by
π₯2
|π₯| β€ π
f(x)= {
0
|π₯| > π
UNIT IV
Section-A
1
β
1.Ξ²(m,n)= (a)β«0 π₯ πβ1 (1-x)n-1dx (m,n>0) (b)β«0 π₯ πβ1 (1-x)n-1dx
(m,n>0)
β
1
(c)β«ββ π₯ πβ1 (1-x)n-1dx (m,n>0) (d)β«0 π₯ π (1-x)n dx (m,n>0)
2.Πn =
(a)n! (b)n (c)n+1 (d)(n+1)!
3Π(n+1)=
(a))(n+1)! (b)nΠn
1
(c)Πn
(d)1
π
4.Π =
(a)βπ (b)Ο (c)2Ο (d)
5.Π1 =
(a)1 (b)-1 (c)0 (d)undefined
2
β
2
1
1
(a)β«0 π βπ₯ xn-1 dx (b)β«0 π βπ₯ xn-1 dx (c)β«0 π βπ₯ xn
6.Πn =
1
dx (d)β«0 π π₯ xn+1 dx
Π7Π5
7.
Π12
is the value of --------- (a)Ξ²(7,5) only (b)Ξ²(5,7) only (c)Ξ²(7,5) or
Ξ²(5,7) (d)
35
12
8.1.3.5β¦..(2n-1)βπ =
Ξ²(m,n)
Ξ²(m,n+1)
π+π
π+π
9.
= (a)
Π(n+1)
10.
π
=
3
11.Π =
2
(a)2nβπ +
(b)
Ξ²(m,n)
π
(c)
1
2
Ξ²(m,n)
π
(a)Πn (b)nΠn+1 (c)nΠn
(a)Ο (b)β
π
2
π
2
(c)βπ
1
(b)Π(n+ ) (c)2n (d)Πn
2
Ξ²(m+1,n+1)
(d)
π+π
(d)n
(d)1
1
1
12.β«0 π ππ2πβ1 π cos2n-1ΞΈdΞΈ = (a) Ξ²(m,n) (b)Ξ²(m,n) (c) Ξ²(m,n)
2
4
(d) none of these
13.Ξ²(1,1)=
(a)1 (b)0 (c)-1 (d) none of the above
14.Π
β1
2
(a)βπ
=
π
2
15.β«0 π ππ3ΞΈ cosΞΈdΞΈ =
1
1
1
2
2
2
(c)-2 Π (d) Π
(b)ββπ
1
1
1
2
2
2
(a) Ξ²(2,1) (b) Ξ²(3,1) (c)Ξ²(2,1) (d) Ξ²(4,2)
β
16.The value of the integral β«0 π βπ₯ x3 dx is
(a)Π2 (b)Π3 (c)Π1 (d)β
π
2
17.β«0 βπ‘πππ dΞΈ =
π
2
18..β«0 π ππ ΞΈdΞΈ =
n
1 3
1
4 4
4
(a) Π Π / 2 (b) Π
π
(a)β«0 πππ π ΞΈ
(c)Π
3
4
(d)1/2
π
2
β
dΞΈ (b)β«0 πππ nΞΈdΞΈ (c)β«0 πππ πΞΈ dΞΈ
π
2
(d)β«0 πππ π ππ
1
19.Ξ²(m, )=
2
(d) )Π
(a) 22m.Ξ²(m,m) (b)) 22m-1 .Ξ²(m,m) (c)) 22m+1 .Ξ²(m,m)
3
2
20..Πp.Π1-p =
(a)
π
π ππππ
(b)
πππ ππ
π
1
1
π
π
2
2
π
π
21..Ξ²(m,m) .Ξ²(m+ ,m+ ) = (a) 21-4m(b)
22.The duplication formula .Π2m is
22πβ1
(b)
π
22πβ1
(d)
π
.ΠmΠm+
1
2
(c)
22π
π
(c)
π ππππ
π
(d)Ο
(c)Ο m (d)Ο 24m
(a).Πm+
1
2
.Πm
.Πm+1
1
23.The exact value of Π = (a)0.7724 (b)4.7724 (c)1.7724 (d)0.5772
2
24.Gauss`s pi function is defined interms of the gamma function by the
equation Ο(n)= --------
(a) Πn (b) Πn+1
(c) Πn-1
(d)n Πn-1
25.β« β« β« π₯ a-1 yb-1zc-1 dxdydz= -----------(a) .
Πa ΠbΠc
(b) Πa Πb Πc (c) Πa+b+c+1
Πa+b+c+1
(d) Πabc
Section B
1
1
1. Evaluate:β«0 π₯ π (log )n dx
π₯
π
2
2.show that β«0 βπ‘πππ dΞΈ =
3. Prove that Ξ²(m,n) =
1 3
4 4
π€ π€
2
β π¦ πβ1
β«0 (1+π¦)π+π dy
β
β
4.Evalute (i) β«0 π₯ 4 e-x dx (ii) β«0 π₯ 6 e-3x dx
5. show that ο’ (m, n) ο½ 2ο² sin 2m ο1 ο± cos 2n ο1 ο± dο±
Section C
1
1.Show that Ξ²(m, )=22m-1 Ξ²(m,m)
2
2.Prove that Ξ²(m,n)=
π€ππ€π
π€π+π
1
3. Express β«0 π₯ π (1 β π₯ π )π dx interms of gamma function and
1
β«0 π₯ 5 (1 β π₯ 3 )10 dx
4. evaluate
ο° /2
5. Evaluate ο²
0
tan ο± dο±
UNIT V
Section-A
1.arg(z1z2)= ------------ where z1 and z2 are two complex numbers
(a)arg z1+arg z2 (b) arg z1- arg z2
(c) arg z1.arg z2
(d)argz1/argz2
2.|z-i|=5 on the argan Π€ diagram is a _____________(a)point (b)circle (c)a straight line (d)none of these
3.(1+iβ3)n+.(1-iβ3)n = -----------ππ
(a)2n+1cos
3
(b) 2ncos
ππ
3
ππ
(c) 2n+1sin
4.If x=cos ΞΈ+isin ΞΈ,then xn+
1
π₯π
3
ππ
(d) 2ncos
2
= ---------
(a)cosnΞΈ+isinnΞΈ (b) cosnΞΈ-isinnΞΈ (c)2 cosnΞΈ (d) cosΞΈ-isinΞΈ
5.|z1+z2|β₯ --------------- where z1,z2 are complex numbers
(a)|z1|+|z2| (b)|z1|-|z2|
(c)|z1| (d)|z2|
6.(cos ΞΈ+isinΞΈ)n = --------------(a)cosnΞΈ-isinnΞΈ (b)cosnΞΈ+isinnΞΈ
(c) cosΞΈ+isinΞΈ
(d)
cosΞΈ+isinΞΈ
π
7.The values of (cos ΞΈ+isinΞΈ)3+(cos ΞΈ-isinΞΈ)3 is
(a)2 (b) 1 (c)2cos2ΞΈ (d) 0
8.sin ΞΈ = ----------(c)ΞΈ (d) 1
(a)ΞΈ +
π3
3!
+
π5
5!
+β¦β¦β¦β¦. (b) ΞΈ -
π3 π5
3!
+
5!
-β¦β¦β¦β¦.
9.cos ΞΈ = ----------- (a)1+
β¦β¦β¦(c) 1-
π2
2!
cos3ΞΈ+isin3ΞΈ
10.
cos2ΞΈ+isin2ΞΈ
+
π4
4!
π2
2!
+
π4
4!
+β¦β¦β¦β¦. (b) 1+ΞΈ +
π2 π4
2!
+
4!
-
-β¦β¦β¦β¦. (d)0
= ------------ (a) cos5ΞΈ+isin5ΞΈ (b) cos5ΞΈ-isin5ΞΈ (c)
cosΞΈ+isinΞΈ (d) cosΞΈ-isinΞΈ
π
π
1
8
8
2
11.(cos + isin )8 = --------- (a)1 (b)-1 (c)0 (d)
π§
12.If z1and z2 are two complex numbers, then arg( 1) = -------π§2
(a)arg z1+arg z2 (b) arg z1- arg z2
(c) arg z1
(d)argz2
13.If z=3+4i ,the value of z π§Μ
is
(a)25 (b)7 (c) 1 (d)12
14.The complex conjugate -4-9i is
(a)4+9i
(b)-4-9i (c)4-9i (d)-4+9i
15.Express (3+2i)+(-7-i)in standard form
(a)-4+I (b)4+I (c)-4-I (d)-7+i
16.The value of e2iΞΈ-e-2iΞΈ is
(a)2i sin2ΞΈ (b) 2i cos2ΞΈ (c) 2sin2ΞΈ (d) 2cos2ΞΈ
17.The argument of z=1+I is
π
π
2
4
(a) (b)
(c)
3π
4
(d)
π
8
18.Choose the wrong statement
(a)The modulus of the product of 2 complex is the product of their
moduli
(b) The modulus of the sum of 2 complex numbers never exceeds the
sum of their moduli
(b) ) The modulus of the sum of 2 complex numbers is greater than the
sum of their moduli
(b) ) The modulus of the difference of 2 complex numbers is greater
than or equal to the difference of their moduli
19.cosnΞΈ = --- (a)cosnΞΈβ
π(πβ1)
cosn-3ΞΈ+β¦ (c) cosnΞΈ sinΞΈ+
(b)
2
cosn-1ΞΈ cos3ΞΈ (d)none of these
1
20.cos6ΞΈ= -----1
2!
π(π+1)
cosn-2ΞΈ sin2ΞΈ +β¦.. (b)ncosn-1ΞΈsinΞΈ nπ3
(a) (cos6ΞΈ+6cos4ΞΈ+15cos2ΞΈ+10)
32
(cos6ΞΈ+15cos2ΞΈ) (c)cos6ΞΈ (d)10
16
21The polar form of 1+i is
π
π
π
π
π
π
4
π
4
π
4
4
2
2
4
4
(a)cos +isin (b) 2(cos +isin ) (c)β2cos +isin )
β2(cos +isin )
π
π
4
4
π
π
(cos 3 +isin 3
(cos +isin
22.
)4
)3
= ------- (a)1 (b)0 (c)2 (d) 3
23.The amplitude form of 1+iβ3 is
(a)tan-1 β3 (b)Ο (c)
π
2
(d) -1
24.|1+i| = ------- (a)2 (b)1 (c)-1 (d)β2
25.(1+cosΞΈ +isinΞΈ)n +(1+ cosΞΈ -isinΞΈ)n = --------(a)2n+1cosn
π
2
cosn
π
2
(b)2n cos
π
2
cosn
π
2
Section B
(c) 1 (d) 0
(d)
1. Show that the triangle formed by the points β3+i,β2+β2i,1+β3I in
the Argand plane is isosceles
2.If
sin π 5045
π
=
5046
show that ΞΈ=1β° 58β approximately.
3. Express cos 6ΞΈ interms of cos ΞΈ
4.Prove that (1+iβ3)n +(1-iβ3)n = 2n+1 cos
ππ
3
5.show that the points -45-5i , 1-i and 6+3i in the Argand diagram are
collinear.
Section C
1. Show that the point representing the complex numbers 5+4i ,3-2i,-43i,-2+3i
form a parallelogram.
2.Prove that
3. Prove that
4. If
sin π
π
=
πππ 7π
πππ π
sin 7π
sin π
5045
5046
= 64cos6ΞΈ-112cos4ΞΈ+56cosΞΈ-7
=7-56 sin2π +112sin4π -64sin6π
prove that π is 1β°58β nearly.
5.Expand cos8 π in terms of sin π