Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
First-order linear equations A first-order linear equation has the general form y P( x) y Q( x) If Q( x) 0, the equation is called homogeneous; otherwise it is called inhomogeneous. For example, xy y 2 x is a linear equation, and an y y 2. inhomogeneous one, since it can be written as x Integrating factor method To solve the first-order linear equation y P( x) y Q( x) (1) we multiply the equation by a suitable function I(x): I ( x)( y P( x) y) I ( x)Q( x) (2) If the factor I(x) is chosen such that I ( x)( y P( x) y) ( I ( x) y) (3) then equation (2) becomes ( I ( x) y ) I ( x)Q( x), which can be solved by 1 I ( x) y I ( x)Q( x)dx C y I ( x)Q( x)dx C . I ( x) Integrating factor method Thus the key point to solve equation (1) is to find I(x) such that equation (3) holds true: I ( x)( y P( x) y ) ( I ( x) y ) I ( x) y I ( x) y. This is equivalent to I ( x) P( x) I ( x) (4) which is a separable equation for I(x). Its solution is P ( x ) dx I ( x) Ce . P ( x ) dx Simply taking C=1, we call I ( x) e an integrating factor of equation (1). Example Ex. Solve the equation y 3x 2 y 6 x 2 . 2 3 x dx x3 Sol. An integrating factor is I ( x) e e . Multiplying I(x) to the equation, we get x3 2 2 x3 x3 2 x3 e ( y 3x y) 6 x e (e y) 6x e e y 6 x e dx 2e C y 2 Ce x3 2 x3 Ex. Solve y x3 x3 . y sin x . x x 1 dx x x xy y sin x ( xy ) sin x C cos x xy cos x C y . x Sol. I ( x) e Example dy y . Ex. Solve the equation 2 dx 2 x y Sol. Not a linear equation? What if we treat x as dependent variable and y as independent variable: dx 2 x y 2 2 x y. dy y y 2 y dy dx I ( y) e y y 2 xy 3 y 1 dy d ( y 2 x) y 1 y 2 x ln | y | C dy x (C ln | y |) y 2 . 2 2 Example dy Ex. Solve the equation cos t y tan t 0. dt Sol. I (t ) e 2 sec2 tdt e tan t y Cetan t tan t 1. Ex. Solve the initial value problem y y , y (2) 1. 2 y ln y y x Sol. I ( y ) e 1 dy y y 2 x y ln y . y Example Ex. Solve the initial value problem y 2 y | x |, y (1) 1. 1 1 3 2 Sol. x 0 y C1e x ; y (1) 1 C1 e 2 4 4 1 1 2 x x 0 y C2 e x 2 4 1 1 3 2 1 y (0) y (0) C2 C1 C2 e 4 4 4 2 1 3 22 x 1 e x ( x 0) 4 2 4 y . ( 3 e2 1 )e 2 x 1 x 1 ( x 0) 4 2 2 4 2 x Homework 22 Section 9.3: 7, 10, 15 Section 9.6: 12, 14, 19 Page 648: 1