Download = ∫ Physics 121 (Physics 2) Formulas, page 1 of 2 ∫= ∫

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Physics 121 (Physics 2) Formulas, page 1 of 2
Area of circle = πr2 Circumference of circle = 2πr 1 meter = 1000 mm = 100 cm 1 kg = 1000 g
Surface area of sphere = 4πr2 Volume of sphere = (4/3)πr3 , 1 µC = 10-6 C 1 nC = 10-9 C
1/4πεo = ke = 9 x 109 N-m2/C2 , εo = 8.85 x 10-12 C2/N-m2, µo = 4π x 10-7 T-m/A
e = 1.60 x 10-19 C , me = 9.11 x 10-31 kg
F=
Point charges:
1 q1q2
r̂
4 πε 0 r 2
E=
1 Q
r̂
4 πε 0 r 2
where
r̂ is
a unit vector
ke ≡
1
= 9 x10 9
4 πε 0
n Superposition: contributions to the field or force from point Fnet on 1 = ∑ F1,i = F1,2 + F1,3 + F1,4 + .....
charges add as vectors at a point of interest
i= 2
Shell Theorem (spheres only): mimics point charge outside; inside E or F is zero
E = force per unit test charge at a point
F = qE
Fnet = ma
p 1
Dipole moment:
p = qd τdipole = pXE Udipole = -p.E
Eon dipole axis ≈ +
for
2πε
πε 0 z 3
For continuous charge distributions:
E=
∫
dist
ke
dq
.r̂
r2
(integrate over the distribution)
σ = surface charge density E cond sheet = σ/εo Enon-cond sheet = σ/2εo Eline = (1/2πεo)λ/r
dΦE = E . ndA = EAcos(φ)
ΦE = electric flux = qenc /εo = ∫ E . dA over a Gaussian surface
∆V = ∆U/q = - ∫ E cosθ ds = -
V – Vo = -E(x – xo)
Q = CV
∫
E . ds
∆Uel = q∆V
V = keQ/r
2
Electrostatic PE: Uel = Q /2C = CV /2
Cparallel = ΣCi 1/Cseries = Σ (1/Ci ) Cseries= C1C2 /( C1+C2 )
Dielectric constant: Cdie; = κ Cvac
Csphere = 4πεoR
q = ∫ idt = i∆t
R=V/i
dq = idt
i = dq/dt
R = ρL/A
V = iR
U = keQq/r
2
∆W nc = ∆Emech = ∆K +∆U
Cparallel plates= κεoA/d
i = ∫ J • d2 A = J∆A J = qnvdrift
ρ = ρ0 (1 + α(T – T0))
E = - dV/dx
J = σE σ = 1/ρ
Ohms Law: R independent of V
Rseries = ΣRi 1/Rparallel = Σ1/Ri Rpara = R1R2 /( R1 + R2) P = dUel/dt = iV
Presistor = i2R = V2/R
Junction rule: Σiin = Σiout
Loop rule: Σ ∆Vi = 0 around any closed circuit path. Follow currents.
RC Circuits: RC = time constant for circuit
charging: i(t) = (V/R)e-t/RC
Q(t) = CVcap(t) = CV∞ (1 - e-t/RC)
discharging: i(t) = (Qo/RC)e-t/RC
Q(t) = Qoe-t/RC
Fm =
τ = µxB U = -µ . B |µ|
µ| = NiA normal to loop
period = 2πm/(qB) ω = qB/m
f = ω /2π = 1/period
q vxB Fe = qE
Fm = i LxB
Cyclotron motion : r = mv/(qB)
Biot Savart: dB = (µo/4π)(i ds sinθ)/r2 where dB is in the direction of ds x r
µo = 4π x 10-7 T-m/A
Bwire = µoi / 2πr Barc = µoiφ /4πR Bcircle = µoi /2R Bsolenoid =µ0in F = µoi1i2 L /2πd (2 straight wires)
Amperes law:
Page 1
∫ B ds
= µ 0ienclosed
4/11/2012
for a closed “Amperian” loop
large z
Physics 121 (Physics 2) Formulas, page 2 of 2
Magnetic flux: dΦB = B.dA
Faraday’s Law:
ΦB =
∫
Eiind = - N dΦB/dt
Eind = BLv (slidewire)
Eself-induced = - L di/dt
B.dA
ΦB =BAcos(θ)
ΦB = 0 over every Gaussian surface
Lenz’s Law: induced flux, current, & emf oppose the change in ΦB
Eind = NABω sin(ωt) (rotating coil)
L = NΦB/i
Magnetic energy: UB = Li2/2
LR circuits: L/R= inductive time constant =τL
growth phase: VL(t) =
E e-Rt/L
Decay phase : VL(t) = -Rio e
LC circuit: Resonance at
LCR circuit: driven at
i(t) = Imaxsin(ωDt - φ)
ωres = 1 /
-Rt/L
i(t) = iinfinity(1 - e-Rt/L)
iinfinity = E/R
i(t) = io e-Rt/L
i0 = E/R
LC . No damping
ωd= 2πf
E(t) = Emaxsin(ωDt)
Em
Impedance: Z ≡ R 2 + (X L - X C ) 2
Reactances: XC = 1/ωdC
XL = ωdL
Voltage across inductance leads the current by 90o
Voltage across capacitance lags the current by 90o
Resonance occurs at ωd = ωres = 1 / LC
Phase angle:
tan(φ) = (XL – XC)/R
cos(φ) = R/Z
Irms = Imax/ 2
Vrms = Vmax/ 2 Irms = Vrms / Z
Pavg = IrmsVrmscos(φ) = I2rmsR
Transformer: Vs/Vp = Ns/Np = Ip/Is
Φ
VL-VC
Im
VR
Z
ωDt-Φ
Φ
X L- X C
R
Prefixes: n (nano) = 10-9 , µ (micro) = 10-6 , m (milli) = 10-3, M (Mega) = 10+6
Useful Integrals:
∫ dx / (a
2
∫x
n
dx = x n + 1 n + 1
+ x 2 ) = (1 / a ) tan −1 ( x / a )
∫ dx x + a = ln(x + a) ∫ e
∫ dx / (a
2
+ x 2 )3/2 = x / (a 2 a 2 + x 2 )
± αx
dx = ± e αx / α
∫ dx /
a 2 + x 2 = ln( x + a x + x 2 )
Physics 1: v = vo + at
x – xo = vo t + ½at2
v2 = vo2 + 2a(x – xo)
x – xo = ½(v + vo)t
ac = v2 /r
Fnet = ma = dp/dt
τnet = I α = dL/dt τ = r x F L = r x p
Vectors: Components: ax = a⋅cos(θ) ay = a⋅sin(θ) a = axi + ayj
| a | = sqrt[ ax2 + ay2 ] θ = tan-1(ay/ax) Addition: a + b = c implies cx = ax + bx, cy = ay + by
Dot product: a⋅b = a⋅b⋅cos(φ) = axbx + ayby + azbz unit vectors: i⋅i = j⋅j = k⋅k = 1; i⋅j = i⋅k = j⋅k = 0
Cross product: | a x b | = a⋅b⋅sin(φ); c = a x b = (ay⋅bz − az⋅by )⋅i + (az⋅bx − ax⋅bz )⋅j + (ax⋅by − ay⋅bx )⋅k
a x b = − b x a, a x a = 0 always; c = a x b is perpendicular to a-b plane; if a || b then | a x b | = 0
i x i = j x j = k x k = 0,
Page 2
ixj=k
4/11/2012
jxk=i kx i=j
Related documents