Download Sean Grullon

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Searching for High Energy Diffuse
Astrophysical Neutrinos with
IceCube
Sean Grullon
For the IceCube Collaboration
TeV Particle Astrophysics 2009
Stanford Linear Accelerator Laboratory
Overview
• Astrophysical Neutrinos & Searching for a
Diffuse Flux of Muon Neutrinos
• Muon Energy Estimation
• 22 String Diffuse Analysis Results
• Outlook for 40 Strings
• Questions & Discussion
Sean Grullon – TeVPA 2009
2
Neutrinos as Cosmic Messengers
Neutrinos help answer many questions in
astrophysics:
•What are the sources of
highest energy cosmic
rays? Are there pp and p
interactions at the source?
•Can neutrino production
be linked to TeV  sources,
GRBs, AGN?
• Can a superposition of
faint neutrino sources
cause a detectable
signal?
Sean Grullon – TeVPA 2009
3
2007-2008:
18 Strings
2006-2007:
13 Strings
IceTop
2005-2006: 8 Strings
Air shower detector
threshold ~ 300 TeV
2004-2005 : 1 String
InIce
first data 2005
upgoing muon 18.
July 2005
80-86 Strings,
60 Optical Modules per
AMANDA
String
19 Strings
677 Modules
Sean Grullon – TeVPA 2009
4
Cosmic ray
Atmospheric m
n
m
Astrophysical
(signal) n
Atmospheric n
Sean Grullon – TeVPA 2009
5
Downgoing Muon Rejection
• Apply quality cuts on Data, Corsika MC, and
Atmospheric Neutrino MC
Sean Grullon – TeVPA 2009
6
Diffuse Analysis Strategy
• Find an excess of astrophysical neutrinos
(E-2) over atmospheric neutrinos (E-3.7) at the
high-energy tail of an energy distribution
Sean Grullon – TeVPA 2009
8
Energy Estimation
•Convert what is measured, Cherenkov light, to an estimate of the Muon
energy.
•Simplest estimation: Number of Triggered Optical Modules (NCh)
•More Sophisticated: Muon Energy Loss (dE/dX)
m
p

e+e-
photo-nuclear
pair-creation
bremsstrahlung
Sean Grullon – TeVPA 2009
9
Reconstructing The Muon energy
loss
Formulate LLH:
k
 log P({ni } | {mi })   ni log mi m   N log m  m
Approximate as:
dusty
i 1
clean
Incorporate Ice Properties:
Sean Grullon – TeVPA 2009
shallow
10
deep
Muon Energy Correlation – 40 Strings
dE/dX Reco
NChannel
•dE/dX reco more linearly correlated with Muon energy
Sean Grullon – TeVPA 2009
11
Energy Resolution – 40 Strings
Width
0.27
Width
0.43
•dE/dX reco has narrower energy resolution
Sean Grullon – TeVPA 2009
12
Energy Resolution as a Function
of Muon Energy – 40 Strings
Sean Grullon – TeVPA 2009
13
The dE/dX distribution of IC22
275.7 days LiveTime
•Find cut that minimizes
average upper limit
•Energy Cut > 1.4
Keep
•Background above cut
= 4.1 Events
•Observed Data above cut
= 4.0 Events
• Sensitivity:
2.5 x10-7
GeV cm-2 s-1 sr-1
Sean Grullon – TeVPA 2009
14
The dE/dX distribution of IC40
300 days LiveTime - MC Only
Sean Grullon – TeVPA 2009
15
Likelihood Analysis Method
• Likelihood - product over bin-by-bin Poisson probabilities:
k
L  P({ni } | {mi })  
i 1
Events observed in bin i
mi n
i
ni !
e  mi
Events expected in bin i
mi  N c ci   N p pi  N e ei
Conventional Atmospheric ν
Prompt ν
Sean Grullon – TeVPA 2009
Astrophysical ν
16
Fitting Example: 1 Year IC40 - No
Astrophysical or Prompt ν
•“Data” Poisson sampled
from 1 year of Atm. ν MC
Sean Grullon – TeVPA 2009
17
Allowed Regions, No Astrophysical or
Prompt ν : 1 Year of IC40
Preliminary IC40 Diffuse Sensitivity:
E2 < 1.1 x 10-8 GeV cm-2 s-1 sr-1
No Systematics included
Sean Grullon – TeVPA 2009
18
Models & Limits
IC22
WB
IC40
Sean Grullon – TeVPA 2009
19
Summary
• A reliable log-likelihood reconstruction of the muon
energy loss is now available for IceCube analyses.
• The IC22 sensitivity is E2 < 2.5 x 10-8 GeV cm-2 s-1 sr-1
above a dE/dX cut of log10(dE/dX) >= 1.4
• 275.7 days of IC22 data were analyzed and compared
with the Bartol + naumov RQPM atmospheric neutrino
simulation.
No data excess over the atmospheric neutrino prediction
observed above the dE/dX cut.
• The IC40 analysis uses a likelihood method giving a
preliminary sensitivity of E2 < 1.1 x 10-8 GeV cm-2 s-1 sr-1
and the incorporation of systematic errors is currently
underway.
Sean Grullon – TeVPA 2009
21
Backup slides
Sean Grullon – TeVPA 2009
22
Systematics – IC22
New from
IceCube
Data
AMANDA
depth
Atms. Nu MC
Coinc. Mu
• Observed data
exceeds MC by a
factor of 2 in deep
ice
• Deep Ice 40%
clearer.
Single
Mu
Sean Grullon – TeVPA 2009
24
COGZ
COGZ
Systematic Test (low energy, NCh<50)
Data
COGZ
upgoing cos(zenith) horizon
Data - MC
Atms. Nu MC
upgoing cos(zenith) horizon
• Data excess is observed even
with the low energy events
(conventional atmospheric
neutrinos)
• Divide the detector in 2 depths
: upper half and lower half
Sean Grullon – TeVPA 2009
25
Systematic Test
Upper Half
Estimator
Energy Sensitivity Bartol+Naumov 1e-7 E-2
data
-7
cut
x 10
RQPM
MC
log10(dEdX) >=0.97
NCh
>=68
0.50
0.41
7.9
7.9
12.2
15.0
5
3
log10(NPe) >=2.85
0.54
8.0
11.3
5
Lower Half
Estimator
Energy Sensitivity Bartol+Naumov 1e-7 E-2
data
-7
cut
x 10
RQPM
MC
log10(dEdX) >=0.91
NCh
>=80
log10(NPe) >=3.15
0.58
0.47
15.5
12.8
14.0
15.7
0.64
2.4
6.4
Sean Grullon – TeVPA 2009
14
25
4
26
Sensitivities: Likelihood Method
Extraterrestrial Only
Energy Estimator
MRF
Limit
MCν
0.04
4* 10-9
MCμ
0.066
6.6* 10-9
Photorec
0.101
1.01* 10-8
MuE
0.122
1.22* 10-8
NChan
0.125
1.25* 10-8
Sean Grullon – TeVPA 2009
28
Fitting Example: No Signal
Sean Grullon – TeVPA 2009
29
Fitting Example: No Signal
Sean Grullon – TeVPA 2009
30
Allowed Signal and Prompt
Regions
Sean Grullon – TeVPA 2009
31
Fitting Example: Signal + Prompt +
Conventional Atmospheric Neutrinos
“Data”
sampled
from
Atm Nu
backgro
und
Sean Grullon – TeVPA 2009
34
Allowed Extraterrestrial and
Prompt Regions
Sean Grullon – TeVPA 2009
35
Related documents