Download Unit 5 Review Worksheet

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Secondary Math III
Name: ______________________________________________
Unit 5 REVIEW
Period: _______________
Simplify each problem. Express answers in simplest form (leave in factored form; do NOT multiply out). List
ALL DOMAIN RESTRICTIONS on all odd numbered questions. Show work.
1.
15𝑚𝑛7
10𝑚4 𝑛4
2.
3𝑥𝑦
𝑥𝑦+𝑥
3.
𝑥 2 +5𝑥+6
𝑥 2 −4
4.
𝑥 2 +2𝑥−3 𝑥 3 +𝑥 2
∙ 𝑥+3
𝑥2
5.
𝑥 2 +2𝑥−8
𝑥−2
÷ 3𝑥+3
𝑥 2 +4𝑥+3
6.
12𝑥+6
6𝑥 2 +9𝑥+3
÷
2
21𝑥 −21
7𝑥 3 −7𝑥 2
7.
5𝑥 3𝑥 2 +12𝑥
∙ 7𝑥−7
𝑥+4
8.
2𝑥
5𝑎𝑏3
+ 3𝑎2 𝑏2
9.
𝑥
𝑥+1
+ 3𝑥+6
𝑥 2 −4
10.
𝑥
2
− 2
𝑥 2 +5𝑥+6
𝑥 +4𝑥+4
11.
𝑥
𝑥+3
6𝑥
𝑥 2 −9
12.
𝑥
𝑥−𝑦
3
÷ 𝑥 2 −2𝑥+1
−
4𝑦
+
𝑦
𝑥 2 −𝑦 2
−
2𝑥
𝑥+𝑦
Solve each equation. Show all work. Simplify all answers. Remember to check for extraneous solutions.
13.
2(x + 5) – 7 = 3(x – 2)
14.
100−4𝑥
3
15.
2x2 = 19x + 33
16.
2
𝑥
= 4+𝑥
17.
5
6
18.
5
𝑥
+2 = 3
𝑥
= 𝑥−2 + 1
1
=
5𝑥+6
4
+6
2
1
Graph by finding the vertical and horizontal asymptotes without the use of a calculator. Then use your calculator and the
table of values to graph the curve.
𝑥
𝑥
19. 𝑦 = 𝑥−3
20. 𝑦 = 𝑥 2 −4
y
y











x













x




21.
Find ALL the zeros of the following polynomial. f (x) = 2x3 – 5x2 – 11x – 4 (REVIEW)
a.
Divide (2x3 – 5x2 – 11x – 4) ÷ (x – 4) using either long or synthetic division.
b.
Using the quotient you got from above, completely factor 2x3 – 5x2 – 11x – 4.
c.
What are the zeros of 2x3 – 5x2 – 11x – 4?
d.
What is the end behavior of f (x) = 2x3 – 5x2 – 11x – 4?
e.
Draw a rough graph of f (x) = 2x3 – 5x2 – 11x – 4.
f.
Solve and write your answer in interval notation: 2x3 – 5x2 – 11x – 4 > 0
g.
Solve and write your answer in interval notation: 2x3 – 5x2 – 11x – 4 ≤ 0
22. Graph the piecewise function:
𝑓(𝑥) = {
(𝑥 + 1)2 + 1, 𝑖𝑓 𝑥 > −1
−𝑥 + 1, 𝑖𝑓 𝑥 ≤ −1
23. Graph the piecewise function, then find the function values.
2𝑥 − 1, 𝑥 ≤ 0
𝑓(𝑥) = {1
𝑥 + 3, 𝑥 > 0
2
a. f(-2) =
b. f(0) =
c. f(2) =
Related documents