Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Constraints on Axion-Like Particles from H.E.S.S. observations of PKS 2155-304 D. Wouters* and P. Brun* for the H.E.S.S. Collabora9on * CEA, Irfu, Centre de Saclay, F-‐91191 Gif-‐sur-‐YveGe, France Rencontres de Moriond 2013 Axion-‐like par9cles • 1977: U(1) Peccei-‐Quinn symmetry Possible explana9on for strong CP problem • par9cle associated to the breaking of the symmetry: Axion • Coupling with two photons: γ a gγa Axions: gγa ∝ m γ • Axion-‐like par9cles (ALPs): gγa and m unrelated but same phenomenology • Possible explana9on for dark maGer (for specific m, gγa) • CAST (solar ALPs) : gγa < 8*10-‐11 GeV-‐1 for m < 0.01 eV H.E.S.S. Collabora9on Rencontres de Moriond 2013 2 Axion-‐like par9cles in astrophysics • γ/ALP oscilla9ons in external magne9c field B Mixing for a γ • Possibly modify opacity of the universe to TeV γ-‐rays Background photons Extragalac9c background light (EBL) TeV γ-‐rays ALPs Sanchez Conde et al. 2009, PRD De Angelis et al. 2007, PRD Horns et al. 2012, PRD Simet et al. 2008, PRD … H.E.S.S. Collabora9on Rencontres de Moriond 2013 3 Phenomenology in turbulent magne9c field around 1 Pγ → γ 0.8 0.6 0.4 0.2 1 Pγ → γ Wouters and Brun, 2012, PRD • Magne9c fields in astrophysics usually turbulent • ALPs ⇒ Strong irregulari9es in energy spectra 0.1 1 10 100 1 10 102 10-1 10-2 With ALPs Without ALPs 10-1 Energy (TeV) B = 1 nG Coherence length s = 1 Mpc gγa = 8 10-‐11 GeV-‐1 m = 2 neV ⇒ Ec = 1 TeV • Amplitude of irregulari9es driven by gγa • Posi9on in energy driven by m • Signature detectable in TeV spectra H.E.S.S. Collabora9on Rencontres de Moriond 2013 4 Choice of the source • Brightest AGN observed by H.E.S.S. : PKS 2155-‐304 • Strong flare in July 2006: ∼ 7 Crab flux above 200 GeV Large sta9s9cs: accurate spectrum and sensi9vity to irregulari9es • Galaxy cluster observed around PKS 2155-‐304 Magne9c field in the cluster • Redshij z = 0.116 Magne9c field in intergalac9c medium H.E.S.S. Collabora9on Rencontres de Moriond 2013 5 Modeling of magne9c fields • Magne9c fields in galaxy clusters – Measurement by Faraday rota9on – B > 1 µG – Kolmogorov power spectrum on scales up to 10 kpc • PKS 2155-‐304 cluster – – – – Size of the cluster : 370 kpc No measurement of B and turbulence power spectrum Assumes B = 1 µG, Kolmogorov power spectrum on scales 1→10 kpc Conserva9ve descrip9on • Intergalac9c magne9c field – 10-16 G < Β < 10-9 G – Assumes turbulence on one scale, 1 Mpc H.E.S.S. Collabora9on Rencontres de Moriond 2013 6 PKS 2155-‐304 observa9ons with H.E.S.S. Observa9ons with 4 telescopes Dataset from 2006 flare: background free Energy resolu9on ∼ 15%, threshold of 250 GeV 45505 reconstructed γ-‐rays Unfolded spectrum: Well –modeled with log-‐parabola with EBL absorp9on (from Franceschini et al. 2008, A&A) dN/dE [ cm-2 s-1 TeV -1 ] • • • • 10-9 10-10 10-11 10-12 10-13 1 Energy [ TeV ] H.E.S.S. Collabora9on 5 χ - α = 3.18 ± 0.03 - β = 0.32 ± 0.02 - F( E > 200 GeV) = 8.38 ± 0.43 10-10 cm-‐2s-‐1 0 -5 Rencontres de Moriond 2013 1 Energy [ TeV ] 7 Method for the constraints (1) • Intrinsic spectral shape unknown • Es9mate irregulari9es in spectrum without spectral shape assump9on: i Energy • Look for anomalous devia9ons in triplet of successive bins • Es9mator of irregulari9es in spectrum • Assump9on: intrinsic spectrum log-‐linear on scales of 3 bins H.E.S.S. Collabora9on Rencontres de Moriond 2013 8 Method for the constraints (2) • Template of irregulari9es depends on exact magne9c field structure (unknown) • Simula9ons of spectra for given (m, gγa) with various magne9c field structure, in same observa9on condi9ons • Spectral shape: fiGed on data * ALP irregularity template • Reconstruc9on with same analysis chain P.D.F. of the irregularity es9mator for given (m, gγa) • Compare with es9mator value measured on data H.E.S.S. Collabora9on Rencontres de Moriond 2013 9 Method for the constraints (3) • Exclusion on a sta9s9cal basis: 1000 Measured value g a = 0.5 10-11 GeV-1 Entries g a = 10-10 GeV-1 500 0 10 1 10 I • Measured value slightly depends on the binning 2 Es9mate fluctua9ons with different bin sizes, take upper value H.E.S.S. Collabora9on Rencontres de Moriond 2013 10 Constraints (1) • Constraints expressed in parameters making them independent of B and L (size of conversion domain) 10 H.E.S.S. exclusions at 95% C.L. 1 Galaxy cluster Magnetic Field Intergalactic Magnetic Field 10-3 10-4 E H.E.S.S. Collabora9on Rencontres de Moriond 2013 11 Constraints (2) L → size of conversion domain s → coherence length • Transla9on to gγa and m with: B L L/s Cluster magne9c field 1 µG 370 kpc 37 IGMF 1 nG 478 Mpc 505 gγ a [ 10-11 GeV-1 ] 10 H.E.S.S. exclusions at 95 % C.L.: Intergalactic Magnetic Field (optimistic) Galaxy Cluster magnetic field (conservative) 1 10-1 CAST limit 1 10 102 m [ neV ] H.E.S.S. Collabora9on Rencontres de Moriond 2013 12 Conclusion • ALPs usually considered in γ-‐ray astronomy for «transparency hint » • ALPs signature: irregulari9es in γ-‐ray spectra • Mixing considered for: – Galaxy cluster magne9c field (conserva9ve) – Intergalac9c magne9c field (op9mis9c) • Constraints in limited mass range • First exclusion from TeV γ-‐ray astronomy H.E.S.S. Collabora9on Rencontres de Moriond 2013 13