Download Ex. Write in slope-intercept form the equation of the line passing

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CHAPTER 5B
REVIEW
Graph the line with the given slope that contains the given point.
Find the y-intercept and then write the equation of the line.
Ex.
2
 3, 1 , m 
3
2
m
3
b 3
y  mx  b
2
y    x  3 
3
2
y  x3
3
Graph the line with the given slope that contains the given point.
Find the y-intercept and then write the equation of the line.
Ex.
1, 0 , m  3
m  3
b 3
y  mx  b
y  3 x   3 
y  3x  3
Write the equation of the line.
Ex. x1 y1
5,  3 ,
m2
y  y1  m  x  x1 
Ex. x1 y1
 4, 7  ,
m0
y  y1  m  x  x1 
y  3  2  x   5  
y   7   0  x  4 
y  3  2  x  5
y  3  2 x  10
3
3
y  7  0  x  4
y7  0
7 7
y  2 x  13
y7
Write the equation of the line.
Ex. x1 y1
Label your
x2 y2
points.
 4,  5 , 3,  2
Next find
the slope.
y2  y1 2  5 2  5 3
m



 3
x2  x1  3    4 
1
3 4
y  y1  m  x  x1 
y  5  3  x   4  
y  5   3  x  4
y  5  3x  12
5
5
y  3x  7
Now use the
point-slope
formula.
Write the equation of the line.
Ex. x1 y1
Label your
x2 y2
points.
 4, 4 , 8,  5
Next find
the slope.
y2  y1 5   4  5  4 9
3
m




x2  x1  8   4
8 4
12
4
y  y1  m  x  x1 
Now use the
point-slope
3
y   4     x  4 
formula.
4
3
y  4    x  4
4
1
3
y 4  x3
4
4
4
3
y   x 1
4
Write in slope-intercept form the equation of the line passing
through the given point and PARALLEL to the given line.
Ex.
x1 y1
m
5, 3 , y  4x  9
y  y1  m  x  x1 
y   3   4 x   5  
y  3  4  x  5
y  3  4 x  20
3
3
y  4 x  17
Ex.
x1 y1
3,your
 4 points.
, y 5
Label


 our
y1 slope?
m  x  x1 
Whaty is
y  4  0  x  3 
y  4  0  x  3
y40
4 4
y  4
y  0x  5
m
Write in slope-intercept form the equation of the line passing
through the given point and PERPENDICULAR to the given line.
Ex.
x1 y1
m  2
1
 4, 5  , y  x  7
2
y  y1  m  x  x1 
y   5   2  x   4  
y  5   2  x  4
y  5  2 x  8
5
5
y  2 x  13
Ex.
x1 y1
3
Label your
6, points.
3 , y   x  1
2
What isyour
 y1slope?
 m  x  x1 
2
y  3   x   6  
3
2
y  3   x  6
3
1
2
y3 x4
3 3 3
2
y  x7
3
m
2
3
Express each relation as a table, as a graph, and as a mapping
diagram. What is the domain and range? Is it a function?
Ex.
3,  3 ,  4, 1 , 3, 4 ,  1,  2
3
4
3
1
3
1
4
2
3
4
1
3
1
4
2
3,  4, 1
3, 1, 4,  2
Function or not?
Ex.
Function
Ex.
Not a Function
Evaluate the function.
Ex.
h  x   x 14; h  0
3
h  x   x  14
3
h  0    0   14
3
h  0  0  14
h  0  14
Ex.
1
g  x   x  8; g  42 
6
1
g  x  x  8
6
1
g  42   42  8
6 1
g  42  7  8
g  42  1
Describe the correlation.
Ex.
Ex.
Negative
No Correlation
Ex.
Amount of miles driven and gas in car.
Negative Correlation
Ex.
A persons weight and their GPA.
No Correlation
Rewrite the equation into Standard Form.
Ex.
Ex.
y  2 x  13
 2x  2x
2 x  y  13
y  8x 1
8x  8x
 1 1 1
8 x  y  1
88x
x  y  11
Rewrite the equation into Standard Form.
Ex.
Ex.
1
y   x7
3
1
1
 x x
3
3
 3  3  3
1
x y 7
3
xx 33yy  21
21
7
y  x 5
4
7
7
 x x
4
4
 4  4 4
7
 x  y  5
4
77x
x 4 y  20
FINAL JEOPARDY
QUESTION
Talk to your team and decide how
many points you would like to risk.
Write how many points you want to
risk on the top right of your paper.
Evaluate the function.
Ex.
h  x   2 x2  5x  11; h  3
h  x   2x  5x 11
2
h  3  2  3   5  3   11
2
h  3  2  9 15 11
h  3  18 15 11
h  3  33 11
h  3  44
Related documents