Download Linear Regression - Holistic Numerical Methods

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Linear Regression
Industrial Engineering Majors
Authors: Autar Kaw, Luke Snyder
http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM
Undergraduates
8/11/2017
http://numericalmethods.eng.usf.edu
1
Linear Regression
http://numericalmethods.eng.usf.edu
What is Regression?
What is regression? Given n data points ( x1, y1), ( x 2, y 2), ... , ( xn, yn )
best fit y  f (x ) to the data. The best fit is generally based on
minimizing the sum of the square of the residuals,
Sr.
Residual at a point is
( xn, yn )
i  yi  f ( xi )
y  f (x)
Sum of the square of the residuals
n
Sr   ( yi  f ( xi ))
i 1
3
2
( x1, y1)
Figure. Basic model for regression
http://numericalmethods.eng.usf.edu
Linear Regression-Criterion#1
Given n data points ( x1, y1), ( x 2, y 2), ... , ( xn, yn) best fit y  a0  a1 x
to the data.
y
x,y
i
i
 i  yi  a0  a1 xi
x2 , y2
x ,y
n
n
x ,y
3
3
 i  yi  a0  a1 xi
x1 , y1
x
Figure. Linear regression of y vs. x data showing residuals at a typical point, xi .
Does minimizing
n

i 1
4
i
work as a criterion, where i  yi  (a 0  a1 xi )
http://numericalmethods.eng.usf.edu
Example for Criterion#1
Example: Given the data points (2,4), (3,6), (2,6) and (3,8), best fit
the data to a straight line using Criterion#1
Table. Data Points
x
10
8
y
6
4.0
3.0
6.0
4
2.0
6.0
2
3.0
8.0
0
y
2.0
0
1
2
3
4
x
Figure. Data points for y vs. x data.
5
http://numericalmethods.eng.usf.edu
Linear Regression-Criteria#1
Using y=4x-4 as the regression curve
Table. Residuals at each point for
regression model y = 4x – 4.
10
y
ypredicted
ε = y - ypredicted
8
2.0
4.0
4.0
0.0
6
3.0
6.0
8.0
-2.0
2.0
6.0
4.0
2.0
3.0
8.0
8.0
0.0
y
x
4

i 1
i
4
2
0
0
0
1
2
3
4
x
Figure. Regression curve for y=4x-4, y vs. x data
6
http://numericalmethods.eng.usf.edu
Linear Regression-Criteria#1
Using y=6 as a regression curve
Table. Residuals at each point for y=6
x
y
ypredicted
ε = y - ypredicted
2.0
4.0
6.0
-2.0
3.0
6.0
6.0
0.0
2.0
6.0
6.0
0.0
3.0
8.0
6.0
2.0
10
8
4

i 1
i
y
6
4
2
0
0
0
1
2
3
4
x
Figure. Regression curve for y=6, y vs. x data
7
http://numericalmethods.eng.usf.edu
Linear Regression – Criterion #1
4

i 1
i
 0 for both regression models of y=4x-4 and y=6.
The sum of the residuals is as small as possible, that is zero,
but the regression model is not unique.
Hence the above criterion of minimizing the sum of the
residuals is a bad criterion.
8
http://numericalmethods.eng.usf.edu
Linear Regression-Criterion#2
n
Will minimizing

i 1
i
work any better?
y
x,y
i
i
 i  yi  a0  a1 xi
x2 , y2
n
n
x ,y
3
x1 , y1
x ,y
3
 i  yi  a0  a1 xi
x
Figure. Linear regression of y vs. x data showing residuals at a typical point, xi .
9
http://numericalmethods.eng.usf.edu
Linear Regression-Criteria 2
Using y=4x-4 as the regression curve
Table. The absolute residuals
employing the y=4x-4 regression
model
y
ypredicted
|ε| = |y - ypredicted|
2.0
4.0
4.0
0.0
3.0
6.0
8.0
2.0
2.0
6.0
4.0
2.0
3.0
8.0
8.0
0.0
8
6
y
x
10
4
2
0
4

i 1
10
i
0
4
1
2
3
4
x
Figure. Regression curve for y=4x-4, y vs. x data
http://numericalmethods.eng.usf.edu
Linear Regression-Criteria#2
Using y=6 as a regression curve
Table. Absolute residuals employing
the y=6 model
2.0
y
4.0
8
|ε| = |y –
ypredicted|
ypredicted
6.0
6
y
x
10
2.0
4
3.0
6.0
6.0
0.0
2.0
6.0
6.0
0.0
3.0
8.0
6.0
2.0
4

i 1
11
i
2
0
0
4
1
2
3
4
x
Figure. Regression curve for y=6, y vs. x data
http://numericalmethods.eng.usf.edu
Linear Regression-Criterion#2
4

i 1
i
 4 for both regression models of y=4x-4 and y=6.
The sum of the errors has been made as small as possible, that
is 4, but the regression model is not unique.
Hence the above criterion of minimizing the sum of the absolute
value of the residuals is also a bad criterion.
4
Can you find a regression line for which
regression coefficients?
12

i 1
i
 4 and has unique
http://numericalmethods.eng.usf.edu
Least Squares Criterion
The least squares criterion minimizes the sum of the square of the
residuals in the model, and also produces a unique line.
n
2
n
S r    i    yi  a0  a1 xi 
2
i 1
i 1
y
x,y
i
i
 i  yi  a0  a1 xi
x2 , y2
n
3
 i  yi  a0  a1 xi
x
13
n
x ,y
3
x1 , y1
x ,y
Figure. Linear regression of y vs. x data showing residuals at a typical point, xi .
http://numericalmethods.eng.usf.edu
Finding Constants of Linear Model
n
n
2
Minimize the sum of the square of the residuals: S r    i    yi  a0  a1 xi 
To find a 0 and
a1
we minimize
Sr
with respect to
a1
i 1
2
and
i 1
a0 .
n
S r
 2  yi  a0  a1 xi  1  0
a0
i 1
n
S r
 2  yi  a0  a1 xi  xi   0
a1
i 1
giving
n
n
n
a  a x   y
i 1
0
n
1 i
i 1
n
a x  a x
i 1
14
0 i
i 1
1 i
i 1
2
n
i
  yi xi
(a0  y  a1 x)
i 1
http://numericalmethods.eng.usf.edu
Finding Constants of Linear Model
Solving for a 0 and
a1 
directly yields,
a1
n
n
n
i 1
i 1
i 1
n x i y i  x i  y i
n

2 
n x i   x i 
i 1
 i 1 
n
2
and
n
a0 
15
n
n
n
x y x x y
i 1
2
i
i 1
i
i 1
i
i 1
2


n xi2   xi 
i 1
 i 1 
n
n
i
i
(a0  y  a1 x)
http://numericalmethods.eng.usf.edu
Example 1
As machines are used over long periods of time, the output product
can get off target. Below is the average value of how much off target a
product is getting manufactured as a function of machine use.
Table. Off target value as
a function of machine use.
16
Millimeters
Off Target,
h
30
1.10
33
1.21
34
1.25
35
1.23
39
1.30
44
1.40
45
1.42
1.4
h, (millimeters)
Hours of
Machine
Use, t
1.5
1.3
1.2
1.1
1
25
30
35
40
45
50
t,(hours)
Figure. Data points for h vs. t data
http://numericalmethods.eng.usf.edu
Example 1 cont.
Regress the data to h 
will be 2mm off target.
a0  a1t
and find when the product
Table. Summation data for linear regression
With n  7
th
t
h
Hours
Millimeters
Hours2
Millimeter-Hour
30
1.10
900
33
33
1.21
1089
39.93
34
1.25
1156
42.50
35
1.23
1225
43.05
39
1.30
1521
50.70
44
1.40
1936
61.6
45
1.42
2025
63.9
260
8.91
9852
334.68
t2
a1 
7
7
7
i 1
i 1
i 1
n ti hi  ti  hi
2
7

2 
n ti   ti 
i 1
 i 1 
7334.68  260 8.91

2
79852   260 
 0.019179 mm  h
7
7

i 1
17
http://numericalmethods.eng.usf.edu
Example 1 cont.
_
_
The value for a0 can then be found using a 0  h  a1 t where
7
_
h
7
h
i 1
i
 1.2729 mm
n
_
_
t
t
i 1
n
i
 37.143 hours
_
a0  h a1 t
 1.2729  0.0197937.143
 0.56050 mm  h
h  0.56050  0.019179t
18
http://numericalmethods.eng.usf.edu
Example 1 cont.
The linear regression model is now given by h  0.56050  0.019179t
Figure. Linear regression of hours of use vs. millimeters off target.
19
http://numericalmethods.eng.usf.edu
Example 1 cont.
Solving for when
h  2 mm yields
h  0.56050  0.19179t
2  0.56050  0.019179t
2  0.56050
t
0.019179
 75.056 hours
20
http://numericalmethods.eng.usf.edu
Example 2
To find the longitudinal modulus of composite, the following data is
collected. Find the longitudinal modulus, E using the regression model
Table. Stress vs. Strain data
  E and the sum of the square of the
Strain
Stress
residuals.
(%)
(MPa)
21
0
0.183
306
0.36
612
0.5324
917
0.702
1223
0.867
1529
1.0244
1835
1.1774
2140
1.329
2446
1.479
2752
1.5
2767
1.56
2896
3.0E+09
Stress, σ (Pa)
0
2.0E+09
1.0E+09
0.0E+00
0
0.005
0.01
0.015
0.02
Strain, ε (m/m)
Figure. Data points for Stress vs. Strain data
http://numericalmethods.eng.usf.edu
Example 2 cont.
Residual at each point is given by
 i   i  E i
The sum of the square of the residuals then is
n
S r    i2
i 1
n
   i  E i 
2
i 1
Differentiate with respect to E
n
S r
  2 i  E i ( i )  0
E
i 1
n
Therefore
E
 
i 1
n

i 1
22
i
i
2
i
http://numericalmethods.eng.usf.edu
Example 2 cont.
Table. Summation data for regression model
σ
ε2
εσ
With
i
ε
1
0.0000
0.0000
0.0000
0.0000
2
1.8300×10−3
3.0600×108
3.3489×10−6
5.5998×105
3
3.6000×10−3
6.1200×108
1.2960×10−5
2.2032×106
and
4
5.3240×10−3
9.1700×108
2.8345×10−5
4.8821×106
12
5
7.0200×10−3
1.2230×109
4.9280×10−5
8.5855×106
6
8.6700×10−3
1.5290×109
7.5169×10−5
1.3256×107
7
1.0244×10−2
1.8350×109
1.0494×10−4
1.8798×107
8
1.1774×10−2
2.1400×109
1.3863×10−4
2.5196×107
9
1.3290×10−2
2.4460×109
1.7662×10−4
3.2507×107
10
1.4790×10−2
2.7520×109
2.1874×10−4
4.0702×107
11
1.5000×10−2
2.7670×109
2.2500×10−4
4.1505×107
12
1.5600×10−2
2.8960×109
2.4336×10−4
4.5178×107
1.2764×10−3
2.3337×108
12

12

i 1
2
i
 1.2764  10 3
 
i 1
i
Using
i
 2.3337  10 8
12
E
 
i 1
12
i i

i 1
2
i
2.3337 108

1.2764 103
 182.84 GPa
i 1
23
http://numericalmethods.eng.usf.edu
Example 2 Results
The equation   182.84 describes the data.
Figure. Linear regression for Stress vs. Strain data
24
http://numericalmethods.eng.usf.edu
Additional Resources
For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice
tests, worksheets in MATLAB, MATHEMATICA, MathCad
and MAPLE, blogs, related physical problems, please
visit
http://numericalmethods.eng.usf.edu/topics/linear_regr
ession.html
THE END
http://numericalmethods.eng.usf.edu
Related documents