Download Slovenijo v informacijsko družbo - Department of Intelligent Systems

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
COGNITIVE
SCIENCE 2
KOGNITIVNA
ZNANOST 2
M. Gams
Institut „Jožef Stefan“
FIRST ANALYSIS




Easy – Hard question
- Easy – how to make AI?
- Hard – to explain consciousness, why and how
it appeared ...
Achievements in the computer age?
robots (work, walk …)
engineering intelligence (chess, applications)
runterstanding (Turing test)
Fast
technol.
progress,
slow
cognitive
Artificial intelligence – how to make computers intelligent,
Cognitive science - human-like computers
Moore’s law
Transistors
MIPS
Micro
2000
100M
Pentium
Processor
10M
1M
80486
80386
80286
100K
10K
1K
8086
8080
4040
1975 1980 1985 1990 1995 2000
500
25
1,0
0,1
0,01
Brain capacity
Cranial Capacity (cc)
2000
1800
1600
1400
1200
1000
800
600
400
Future
Homo
Homo
s
sapien
er
Homo
ectus
-500
generations
Europe
Homo habilis
Australopithecus africanus
Chimpanzee
4,0
2,0
1,0
0,5
Millions of Years Ago
-5000
generations
pra-Eva
0,1
-Die-out
Speed of progress
Memory capacity
Computers
Humans
1T
20G
1G
20M
1M
1K
Crossing
point
20K
Time
Where is the smart computer?
Intelligence, consciousness
3
10
6
10
9
10
12
Human-level intelligence
Unknown barrier
Principle of multiple knowledge
10
15
10
18
10
Computer intelligence
1940 1950 1960 1970 1980 1990 2000 2010 2020 2030
PARADOXES
Empirical lack of true human-level AI
 Sloman’s paradox – Einstein’s book
 Searl’s paradox Chinese room
 Chalmers zombie consciousness

The notion of a philosophical zombie is used mainly in thought experiments
intended to support arguments (often called "zombie arguments") against
forms of physicalism such as materialism, behaviorism and functionalism.
Physicalism is the idea that all aspects of human nature can be explained by
physical means: specifically, all aspects of human nature and perception can
be explained from a neurobiological standpoint.
4 basic viewpoints human vs comp
–
–
–
–
–
Humans are computers (everything is computable by
computers)
Humans are machines like computers, yet use different HW,
more appropriate for real-life tasks
Humans are in principle stronger than computers, yet are
still some kind of a machine, explainable by current science
(some functions are not computable by computers, i.e.
universal Turing machines)
Some human properties like soul can not be explained by
scientific means (the performance of the human brains is
NOT based only on scientific laws).
Roger Penrose

Oxford, črne luknje, Hawkings …

Controversial books on the connection between fundamental physics and
human consciousness. In The Emperor's New Mind (1989), he argues that
known laws of physics are inadequate to explain the phenomenon of human
consciousness. Penrose hints at the characteristics this new physics may
have and specifies the requirements for a bridge between classical and
quantum mechanics (what he terms correct quantum gravity, CQG). He claims
that the present computer is unable to have intelligence because it is a
deterministic system that for the most part simply executes algorithms, as a
billiard table where billiard balls act as message carriers and their interactions
act as logical decisions. He argues against the viewpoint that the rational
processes of the human mind are completely algorithmic and can thus be
duplicated by a sufficiently complex computer -- this is in contrast to views,
e.g., biological naturalism, that human behavior but not consciousness might
be simulated. This is based on claims that human consciousness transcends
formal logic systems because things such as the insolubility of the halting
problem and Gödel's incompleteness theorem restrict an algorithmically
based logic from traits such as mathematical insight.
Roger Penrose
In 1994, Penrose followed up The Emperor's New Mind
with Shadows of the Mind and in 1997 with The Large,
the Small and the Human Mind, further updating and
expanding his theories. Penrose's views on the human
thought process are not widely accepted in scientific
circles. According to Marvin Minsky, because people
can construe false ideas to be factual, the process of
thinking is not limited to formal logic. Furthermore, he
says that artificial intelligence (AI) programs can also
conclude that false statements are true, so error is not
unique to humans.
Penrose and Stuart Hameroff have speculated that
human consciousness is the result of quantum gravity
effects in microtubules.
Quantum physics

interpretation of the Schrëdinger equation:

- classical or Copenhagen or the GRW
interpretation

- Bohm's interpretation

- multiple-worlds interpretation.
Quantum computing
Deutch
Theory
well
defined,
practical
prototypes
In
principle not more powerful than
Turing machines
Can
perform differently
Supercomputing
Turing machine with oracle – Turing
Specific quantum computing – Komar
Trial-and-error – Putnam
Extended Turing machines
– with real numbers – Abramson
McCulloch-Pitts neurons – growing - Karp and Lipton
Analog – non simulatable - Rubel, Kononenko
Multiple computing - Gams
Interaction machines – Wegner
Coupled TM – open input - Copeland, Sylvan
Partially random machines
– truly random – Copeland, Turing
ZEUS MACHINE
Zeus machine - Boolos and Jeffrey 1974 – infinite computing,
each step is computed faster and faster
Example – computing/going from A to B, first half in 1sec, next
quarter in ¼ … end in 2 sec thus computing infinite numbers
The Supermind book, subtitled People harness
hypercomputation and more, authored by Selmer Bringsjord
and Michael Zenzen, aggressively attacks the strong-AI
viewpoint that human thinking processes are computationally
as strong as computers
Bringsjord, S. and Zenzen, M. J. (2003), Superminds, Kluwer.
Predstavitev osnovne teze –
principa mnogoterosti (1985-2001)
M. Gams: Weak intelligence: Through the principle and
paradox of multiple knowledge, Advances in
computation: Theory and practice, Volume 6, Nova
science publishers, inc., NY, ISBN 1-56072-898-1, pp.
245, 2001.
1. Najboljše rezultate je možno dosegati le ob uporabi
mnogoterih modelov (kibernetično).
2. Miselni procesi so mnogoteri. Povečana
računska/miselna sposobnost prihaja iz mnogoterih
procesov, ki interaktirajo med seboj (teoretično,
inteligentno). V principu je ta računski mehanizem
močnejši kot univerzalni digitalni računalnik oz.
Turingov stroj.
Potrditve osnovne teze
1. Formalni/matematični (od 2 do 10 samostojnih
modelov); ob predpostavkah realnega sveta pričakovani
boljši rezultati; smiselno kombiniranje-integriranje ob
razumnih predpostavkah (bolje kot 50%)
2. Simulacije modelov z različnimi metodami in parametri
kažejo podobno
3. Teoretične analize (Turingovi stroji)
4. Študij ljudi (mnogoterosti možganov sedaj in v
preteklosti; skupine ljudi)
5. Empirične meritve sistemov
6. Podobnost s fiziko (Heisenberg, teorija večih svetov)
Average-case analyses
qTF
max ( p1 , p2 )  (1  p1 ) p2 qFT  p1 p2

.
p1 (1  p2 )
Predstavitev osnovne teze –
principa mnogoterosti (1985-2001)
Turingov stroj
Predstavitev osnovne teze –
principa mnogoterosti (1985-2001)
Wegner 1997 – interakcija močnejša
Ljudje
Delamo
najbolje v skupinah (več glav več ve; slabo –
preveč kuharjev, slaba juha)
Človek
+ računalnik bolje kot samo človek ali samo
računalnik
Študij
možganov – dve hemisferi; razvoj človeških
možganov – čedalje bolj mnogoteri, študij opic
Študij
možganov – corpus calosum, split-brain research,
moški-ženski, dve hemisferi – izrazito mnogoteri
Potrjujejo
tezo o principu mnogoterosti pri ljudeh
Empirične potrditve - kibernetika, umetna
inteligenca, strojno učenje
- boljša klasifikacijska točnost
- empirično: na tisoče meritev-potrditev
- možno je preveriti model na konkretni aplikaciji s
prilagoditvijo parametrov modela
- več podobnih ugotovitev na specifičnih področjih
(statistika, prepoznavanje vzorcev …)
- omogočena ocena algoritmov vnaprej
- omogočena analiza delovanja algoritmov
(intuitivno in formalistično)
- omogočeno snovanje boljših algoritmov
Multiple-worlds /quantum computing

Travel in space (back, forward, but one
life)

How many universes, where?
- physical (more dimensions)
- mental
- potential in future

Quantum computing – drugačno
računanje, primitivni prototipi
/40
1. Analogija s fiziko – paradoksi, dograditev znanstvenih teorij
2. Kvantna fizika, teorija večih svetov, najbolj široka izmed
interpretacij (premočna, kje je neskončno svetov – v glavi,
mentalno, ali fizično, potovanja v času??), resna znanstvena
teorija, dr. Pavšič
Heisenbergov
večih Tako fizikalne, kvantne
3. Ali
niso te teorijeprincip,
prevečteorija
sofisticirane?
svetov
kot
mentalne? Recimo – kje v glavi je neskončno svetov, kje je
veliko osebnosti (miselnih procesov), zakaj internet ni
inteligenten?, zakaj agenti niso inteligentni?, ali znamo narediti
mnogotere inteligentne računalnike?
4. Precej odprtih vprašanj, nejasnosti, vendar znanstvene teorije
držijo - primerjajmo z drugimi principi.
Posledice osnovne teze
1. Podobno kot Heisenbergov princip ločimo med
sedanjimi in pravimi inteligentnimi sistemi.
2. Šibka inteligenca – Zakaj računalniki ne bodo nikoli
mislili (razen če ne bodo drugače narejeni)?
(namesto enega računalnika skoraj zadošča internet)
3. Za doseganje dobrih rezultatov nujne mnogotere
metode
4. Paradoks mnogoterega znanja:
več modelov = en model?
statično - dinamično
Weak intelligence through the principle
and paradox of multiple knowledge
PREFACE 1 ARTIFICIAL INTELLIGENCE 1.1 Artificial Intelligence Directions 1.2 History
of Artificial Intelligence 1.3 Where's the AI? 1.4 Storage/Memory vs. Processing/Thinking
1.5 Problems with Formalistic AI 1.6 Strong-AI Super-Projects
2 TRENDS OF COMPUTER PROGRESS 3 THE BRAIN
4 STRONG VERSUS WEAK AI 4.1 Description 4.2 Sloman's Engineering Gradation of
Strong-Weak AI
5 FUNDAMENTALS OF AI, COMPUTER SCIENCE AND SCIENCE IN GENERAL
5.1 Alan Turing 5.2 The Turing Test 5.3 Turing Machine and Church-Turing Thesis
5.4
Church-Turing Thesis and Turing Machines 5.5 Goedel's Theorem and the Halting
Problem 5.6 Penrose's Analyses of Goedel's Theorem 5.7 Is Interaction Stronger than
Algorithms?
6 THE PRINCIPLE AND PARADOX OF MULTIPLE KNOWLEDGE
6.1 Basic Definitions 6.2 The Principle of Multiple Knowledge 6.3 The Paradox of Multiple
Knowledge
7 CONFIRMATIONS OF THE PRINCIPLE 7.1 Multiple Knowledge in Empirical Learning
7.2 Simulated Multiple Models 7.3 Formal Worst-Case Analyses 7.4 Formal Average-Case
Improvements 7.5 Fitting the Model to Real-Life Applications 7.6 Human Multiple
Reasoning 7.7 Cognitive Sciences and Common Sense
Weak intelligence through the principle
and paradox of multiple knowledge
8 CONSEQUENCES
8.1 Occam's Razor Vs. Multiple Knowledge
8.2 Bayes' Classifier And Multiple Knowledge
8.3 Properties of Knowledge
9 MANY-WORLDS THEORY AND QUANTUM COMPUTING
9.1 Paradoxes of Modern Physics
9.2 Interpretations of Quantum Physics
9.3 The Many-Worlds Theory
9.4 Objections to the Many-Worlds Interpretation
9.4 Quantum Computing
9.5 From Many Worlds to the Principle of Multiple Knowledge
10 STRONG AI FIGHTS BACK
11 CONCLUSION
Posledice
1. Povečano razumevanje področja inteligence in zavesti,
intenziviranje raziskav v smeri umetne inteligence, bistveno
povečane možnosti novih odkritij
2. Popravki obstoječih osnovnih teorij – Occamovega rezila,
Church-Turingove teze, Turingovega stroja
3. Princip mnogoterosti je osnovni znanstveni princip