Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline Neutrino Physics and Astrophysics” • Motivations • Current status • The future: – Detection potential – What can we learn? • Extras: what else? C. Lunardini, arXiv:1007.3252 (review) Diffuse neutrinos from all SNe • Sum over the whole universe: Supernovae S. Ando and K. Sato, New J.Phys.6:170,2004. Motivations Clip art from M. Vagins Sooner and more • Faster progress – Alternative to a galactic SN! • ~20 events/yr/Mt everyday physics! • New science – What’s typical ? – New/rare SN types – Cosmological Sne • Physics in the 10-100 MeV window? Current status The “ingredients” Cosmological rate of supernovae Neutrino flux at production + Propagation effects: Oscillations Redshift …. Cosmology From Star Formation Rate From SN data Supernova rate RSN(z) ~RSN(0) (1+z)β , z<1 normalization uncertain This work: β=3.28, RSN(0) = 10-4 Mpc-3 yr-1 Beacom & Hopkins, astro-ph/0601463 Original spectra • Models: – Lawrence Livermore – Thompson, Burrows, Pinto (Arizona) – Keil, Raffelt, Janka (Garching) Keil,, Raffelt,Janka, 2003 Astrophys. J. 590 971 x=μ, τ • 3 1053 ergs , equipartitioned between 6 species Flavor oscillations • Self-interaction + MSW (H) + MSW (L) – Spectral swap Duan, Fuller, Quian, PRD 74, 2006 • Depend on θ13 and hierarchy – Normal (inverted): ∆m231>0 (∆m231<0) Jumping probability, PH C.L. & A. Y. Smirnov, JCAP 0306, 2003 Higher energy tail • p= 0 – 0.32 , p = 0 – 0.68 Chakraborty et al., hep-ph/08053131 DSNnF spectrum Exponential decay with E LL TBP KRJ C.L., in preparation Upper limits and backgrounds SuperKamiokande (Malek et al., PRL, 2003): Energy window Red dashed: Homestake Solid, grey: Kamioka anti-e flux: predictions C.L., Astropart.Phys.26:190-201,2006 The future: detection potential Detection technology mass Reaction Energy window Events/( 5 yrs) Water Cherenkov 0.4 Mt Anti-nue, 19 – 40 MeV inverse beta, (90% eff.) 27 - 227 Water + 0.0225 Mt Gadolinium (GADZOOKS) Anti-nue, inverse beta (90% eff.) 11 – 40 MeV 4 - 17 Liquid Argon 0.1 Mt nue + Ar, CC (100% eff.) 19 – 40 MeV 6 – 28 Liquid Scintillator (LENA) 50 kt Anti-nue, inverse beta (100% eff.) 11 – 40 MeV O(10) Water Energy window Background/signal ~ 5 -6 (at Kamioka) Fogli et al., JCAP 0504, 002, 2005 Bulk of events missed Large statistics: ~ 12 events/MeV/yr GADZOOKS Energy window Background/signal<1 Invisible muons reduced to 1/5 Beacom & Vagins, PRL93, 2004 Larger energy window: Bulk of events captured! Modest statistics… Scaling to Mt?? LAr Energy window Background/signal ~ 0.20.3 Bulk of events may be captured! Statistics modest: ~0.2 events/yr/MeV Scaling? C.L., in preparation What can we learn? Water+Gd: effective spectrum Normalized to 150 events, b=3.28 C.L., Phys.Rev.D75:073022,2007 A step beyond SN1987A! • Test SN codes of spectra formation, some oscillation effects, etc. 0.1 Mt yr • 0.1 Mt yr : – Tests part of parameter space – May not reach SN1987A region Yuksel, Ando and Beacom, Phys.Rev.C74:015803,2006 Chance to test b Normalized to 150 events r ~ 0.6 – 0.9 C.L., Phys.Rev.D75:073022,2007 New SN types: failed SNe • M > 40 Msun, 9-22% of all collapses • Direct BH-forming collapse (no explosion): – Higher energies: E0 ~ 20 – 24 MeV • For all flavors • Due to rapid contraction of protoneutron star before BH formation – Electron flavors especially luminous • (e- and e+ captures) Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, 091101 (2006), T. Fischer et al., (2008), 0809.5129, K. Nakazato et al., PRD78, 083014 (2008) Shen et al. (S) EoS BH NS K. Nakazato et al., PRD78, 083014 (2008) – Progenitor: M=40 Msun, from Woosley & Weaver, 1995 – “stiffer” eq. of state (EoS) more energetic neutrinos Number of events: water.. • Best case scenario: 22% failed, S EoS Total Normal Failed C.L., arXiv:0901.0568, Phys. Rev. Lett., 2009, J. G. Keehn and C.L., in preparation LAr • Bulk of events from failed SNe captured • Failed SN at least a 10% effect in energy window Total Normal Failed J. Keehn & C.L., in preparation Reducing uncertainties • Precise SN rates coming soon from astronomy http://snap.lbl.gov/ http://www.jwst.nasa.gov/, • Neutrino uncertainties more serious – SN modeling? – Galactic SN? C.L., Astropart.Phys.26:190-201,2006 Extras What else is there? Miroshnichenko et al., Space Science Reviews 91: 615–715, 2000 Neutrinos from solar flares? • LSD: 27 flares examined in 3 years Aglietta et al., 1990 Flare, best Flare,conservative • Mt-size advocated for detection Erofeeva et al., 1988; Bahcall PRL 1988 Kocharov et al., 1990, Fargion et al., 2008 Solar antineutrinos • Spin-flavor oscillations – νe anti-νe Rashba & Raffelt, Phys.Atom.Nucl.73:609-613,2010 Neutrinos from relic decay/annihilation • χ ν + anti-ν • χ+ χ ν + anti-ν Palomares Ruiz & Pascoli, Phys.Rev.D77, 2008 Palomares Ruiz, Phys.Lett.B ,2008 Yuksel & Kistler, PRD, 2007 Gamma rays MeV Dark Matter absorption Kile and Soni, Phys.Rev.D80:115017,2009 Summary • DSNnF may be seen with few years running! – 100 kt LAr : O(10) events – 0.4 Mt water : O(102) events • New science: – Typical neutrino emission – Sensitive to failed Sne – Other physics in energy window? • To advance further: – Resolve parameter degeneracies (theory) – reduce background at low E