Download Bessel`s differential equation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
5.3 One of Two Special Equations - Bessel’s Equation
1. Bessel’s equation and solution:
Bessel’s differential equation: x 2 y UU xy U Ÿx 2 " 7 2 y 0, where 7 (read as nu) is a real number.
Since a 2 Ÿx x 2 0 when x 0, the equation has singular points: x 0. Since
Ÿx 2 " 7 2 xPŸx x 1x 1 Ÿa 0 1 ,
x 2 QŸx x 2
x 2 " 7 2 Ÿb 0 "v 2 x2
are analytic, x 0 is a regular singular point. By Frobenius’ Theorem, there exists at least one solutions of
.
the form: y ! m0 c m x mr .
a. The indicial equation:
rŸr " 1 a 0 r b 0 rŸr " 1 r " v 2 r 2 " r r " v 2 r 2 " v 2 0.
Indicial roots: r o7.
.
yU .
! c m Ÿm r x mr"1
and y UU m0
! c m Ÿm r Ÿm r " 1 x mr"2 .
m0
b. Substitute y, y U and y UU into the equation x 2 y UU xy U x 2 y " 7 2 y 0.
.
! c m Ÿm r Ÿm r " 1 x
m0
.
mr
! c m Ÿm r x
.
mr
m0
! cmx
.
mr2
m0
" ! 7 2 c m x mr 0.
m0
In the 3rd summation, replace m 2 by k : m k " 2, k m 2, when m 0, k 2.
In the 1st, 2nd and the last summation replace m by k .
.
.
.
.
k0
k0
k2
k0
! c k Ÿk r Ÿk r " 1 x kr ! c k Ÿk r x kr ! c k"2 x kr " ! 7 2 c k x kr 0.
¡ c 0 Ÿr Ÿr " 1 c 0 Ÿr " 7 2 c 0 ¢x r .
! k2
c 1 Ÿr 1 Ÿr c 1 Ÿr " 7 2 c 1
c k Ÿk r Ÿk r " 1 c k Ÿk r c k"2 " 7 2 c k
x kr 0
c 0 Ÿr Ÿr " 1 c 0 Ÿr " 7 2 c 0 c 0 Ÿr 2 " v 2 0
c 1 Ÿr 1 Ÿr c 1 Ÿr " 7 2 c 1 c 1 ¡Ÿr 1 2 " v 2 ¢ 0
c k Ÿk r Ÿk r " 1 c k Ÿk r c k"2 " 7 2 c k c k ¡Ÿr k 2 " v 2 ¢ c k"2 0, k 2, 3, . . .
From the first equation, since c 0 p 0, r ov. When r ov, Ÿr 1 2 " v 2 p 0 in the 2nd equation.
So, c 1 0. Let r v. Then we have the following recurrence relation:
c 0 is arbitrary, c 1 0
ck "1
"1
c k"2 c k"2 , for k 2, 3, . . . .
kŸk 2v Ÿv k 2 " v 2
c. Since c 1 0, c 3 0, . . . , c 2m"1 0, for m 1, . . . .
Now consider k 2m, where m 1, . . . .
"1
c 2m"2 2 "1
c 2m"2 , m 1, . . . .
c 2m 2mŸ2m 2v 2 mŸm v 1
m 1, c 2 "1
c0
2 2 Ÿ1 Ÿ1 v m 2, c 4 Ÿ"1 2
"1
c
c0
2
2 2 Ÿ2 Ÿ2 v 2 2Ÿ2 2!Ÿ2 v Ÿ1 v :
Ÿ"1 m
c0
2 2m m!Ÿm v Ÿm " 1 v . . . Ÿ1 v m m, c 2m .
! c 2m x
yv .
c0 !
2mv
m0
.
m0
Ÿ"1 m
x 2mv
2 2m m!Ÿm v Ÿm " 1 v . . . Ÿ1 v .
Ÿ"1 m Ÿv 1 2 v
Ÿ"1 m
x 2mv c 0 Ÿv 1 2 v ! 2mv
x 2mv
2mv
2
m!Ÿm v 1 2
m!Ÿm
v
1 m0
c0 !
m0
.
c0 !
2
m0
2mv
Ÿ"1 m
x 2mv
m!Ÿm v 1 .
Gamma function: Ÿx ; t x"1 e "t dt
0
Properties: Ÿi Ÿx 1 xŸx ; Ÿii Ÿn 1 n!
It is also called the generalized factorial.
TI-89: ;Ÿt^Ÿx " 1 ' e^Ÿ"t , t, 0, . Example Evaluate 1
2
1
2
5
2
and .
=
TI-89: ;Ÿt^Ÿ"1/2 ' e^Ÿ"t , t, 0, . 5
2
3
2
1
3
2
3
2
(use (-) for –)
3
2
1
1
2
3
2
1
2
1
2
3
4
= 1. 329 34
2. The General Solution of Bessel’s Differential Equation:
Let
.
J v Ÿx !
m0
.
Ÿ"1 m
Ÿ"1 m
x 2mv x v ! 2mv
x 2m for x in I.
2mv
2
m!Ÿm v 1 2
m!Ÿm
v
1 m0
Since x 0 is the only singular point of Bessel’s equation, the radius of convergence R is . and therefore
the interval of convergence I is either "., 0 or 0, . . J v Ÿx is called the Bessel function of the first
kind of order v.
Case 1. If v is not an integer, a general solution of Bessel’s equation for all x p 0 is
y C 1 J v Ÿx C 2 J "v Ÿx .
Case 2. If v is a nonnegative integer, say v n, then
S
.
J n Ÿx !
m0
2
Ÿ"1 m
x 2mn X
2 2mn m!Ÿm n !
n
2
1
=x cosŸx " =Ÿ 2 4 2
1
0
10
20
30
x
40
50
60
-1
-2
J n Ÿx red n 0, green n 1, blue n 2
J Ÿx 0.
lim
xv. n
S Note that
J "n Ÿx Ÿ"1 n J n Ÿx which can be shown as follows.
.
J "n Ÿx !
m0
Ÿ"1 m
x 2m"n 2m"n
2
m!Ÿm " n !
.
!
mn
2
2m"n
Ÿ"1 m
x 2m"n
m!Ÿm " n !
Let m s n Ÿs m " n . Then
.
J "n Ÿx !
mn
.
!
s0
Ÿ"1 m
x 2m"n 2 2m"n m!Ÿm " n !
.
!
s0
Ÿ"1 sn
x 2Ÿsn "n
2 2Ÿsn "n Ÿs n !Ÿs n " n !
.
Ÿ"1 sn
Ÿ"1 m
2sn
n
x
x 2mn Ÿ"1 n J n Ÿx .
Ÿ"1 !
2mn
2 2sn Ÿs n !s!
2
Ÿm
n !m!
m0
Since J "n Ÿx Ÿ"1 n J n Ÿx , J n and J "n are linearly dependent. Define
1
Y v Ÿx ¡J v Ÿx cosŸv= " J "v Ÿx ¢, v may not be an integer.
sinŸv= Y v Ÿx is called the Bessel function of the second kind of order v. The another form of the general
solution:
y C 1 J v Ÿx C 2 Y v Ÿx .
2 J 0 Ÿx + ln x
Y 0 Ÿx =
2
3
2
" =
.
!
k1
Ÿ"1 k
1 1 . . . 1 x 2k ,
2
k
2 2k Ÿk! 2
+ 0. 57721566
n
" x=
.
!
k0
n"1
"n
" x=
2 J n Ÿx + ln x
Y n Ÿx =
2
Ÿ"1 k
2 2kn k!Ÿk n !
!
k0
Ÿn " k " 1 ! 2k
x
2 2k"n k!
1 1 . . . 1
2
k
1 1 . . . 1
2
kn
x 2k , + 0. 57721566.
Since
Y n Ÿx lim
Y Ÿx ,
v¯n v
when v n,
y C 1 J n Ÿx C 2 Y n Ÿx .
3. Properties of Bessel Functions:
a. J "n Ÿx Ÿ"1 n J n Ÿx b. J n Ÿ"x Ÿ"1 n J n Ÿx (when n is even, J m is even, and when n is odd, J m is odd. )
U
U
U
c. xJ v Ÿx vJ v Ÿx " xJ v1 Ÿx , J 0 Ÿx "J 1 Ÿx ,
Y 0 Ÿx "Y 1 Ÿx 9x 2 y UU 9xy U 9x 2 " 1 y 0.
4
It is not in a Bessel equation form yet. Divide both sides of the equation by 9 :
9x 2 y UU 9xy U 9x 2 " 1 y 0 ® x 2 y UU xy U x 2 " 1 y 0
4
36
This is a Bessel equation with v o 1 . Since v is not an integer,
6
y C 1 J 1 Ÿx C 2 J " 1 Ÿx 6
6
Example Find the general solution of the equation:
.
C 1 x 1/6 !
m0
C 1 x 1/6
1
2 1/6 C 2 x "1/6
C 1 x 1/6
Ÿ"1 m
1
2 2m 6 m!Ÿm 7
6
1
2 "1/6 "
5
6
.
7
6
1
2 13/6 "
x 2m C 2 x "1/6 !
m0
13
6
1
2 11/6 x2 11
6
2
1
2 25/6 x2 2m"
1
6
19
6
1
2 23/6 Ÿ"1 m
m!Ÿm 5
6
x 2m
x 4 ". . .
17
6
x 4 ". . .
0. 960 311 " 0. 205 781 x 2 0. 02 37x 4 " C
C 2 x "1/6
0. 994 397 " 0. 298 319 x 2 0. 0407 x 4 . . .
Example Consider the differential equation x 2 y UU xy U 2x 2 " 1 y 0.
9
dy
d2y
, and 2 .
dz
dz
ii Find the general solution in z with expressing the first 3 nonzero terms for each solution.
iii Find the general solution in x with expressing the first 3 nonzero terms for each solution.
i Set z 2 x and rewrite the differential equation as a Bessel equation in z,
i The equation x 2 y UU xy U 2x 2 " 1 y 0 is not in a Bessel equation form.
9
Let z 2 x. Then we have the following substitution:
4
z , and dz dx
2
x
dy
dy dz
dx
dz dx
and the equation becomes:
yU 2
dy
,
dz
y UU 2
z 2 Ÿ2 d y 2
dz 2
which is a Bessel equation in z:
2
dy U
dy U dz
dy
d2y
2 2 2
d Ÿ 2
dz
dx
dz dx
dz
dz
z Ÿ 2 dy Ÿz 2 " 1 y 0,
9
dz
2
z 2 y UU zy U Ÿz 2 " 1 y 0, v o 1
3
9
1
ii Since 7 o 3 , the general solution of the differential equation is:
y C 1 J 1 Ÿ 2 x c 2 J " 1 Ÿ 2 x 3
.
C1 !
m0
3
.
1
1
Ÿ"1 Ÿ 2 x 2m 3
Ÿ"1 m Ÿ 2 x 2m" 3
C
2!
1
2m" 13
2 2m 3 m!Ÿm 1 13 m!Ÿm 1 " 13 m0 2
m
.
C 1 x 1/3 !
m0
.
C 1 x 1/3 !
m0
.
1
Ÿ"1 m 2 m 6
1
2 2m 3 m!Ÿm 2 m
1
6
Ÿ"1 m
m!Ÿm 4
3
4
3
1
Ÿ"1 m 2 m" 6
1
2 2m" 3 m!Ÿm x 2m C 2 x "1/3 !
m0
.
x 2m C 2 x "1/3 !
m0
2 m"
1
6
Ÿ"1 m
m!Ÿm 2
3
2
3
x 2m
x 2m
iii
y C 1 x 1/3
1
" 7/6 1 7 x 2 13/6 1 10 x 4 " C
2 1!Ÿ 3 2 2!Ÿ 3 2 1/6 0!Ÿ 43 C 2 x "1/3
C 1 x 1/3
C 2 x "1/3
1
" 5/6 1 5 x 2 11/6 1 8 x 4 " C
2 1!Ÿ 3 2 2!Ÿ 3 2 "1/6 0!Ÿ 23 0. 9958 " 0. 3734x 2 0. 0400x 4 " C
0. 8299 " 0. 6224x 2 0. 0934x 4 " C
Example Consider the differential equation 4x 2 y UU 4xy U x " 1 y 0.
36
dy
d2y
, and 2 .
dz
dz
ii Find the general solution in z with expressing the first 3 nonzero terms for each solution.
iii Find the general solution in x with expressing the first 3 nonzero terms for each solution.
i Set z x and reduce the differential equation to a Bessel equation in z,
i The equation 4x 2 y UU 4xy U x " 1 y 0 is not a Bessel equation.
36
Let z 2 x. Then we have the following substitution:
dy 1
Ÿ z x , or x z 2 , and dz 1 dz 2z
dx
2 x
yU y UU 5
dy U
dy U dz
d
dx
dz dx
dz
dy
dy dz
dy
dy
Ÿ 1 1
2z dz
dx
dz dx
dz 2 x
1 dy
2z dz
dz dx
2
dy "1
d2y 1
1 1 d y " 1 dy
Ÿ
Ÿ
Ÿ
2z
dz 2z 2
4z 2 dz 2
4z 3 dz
dz 2 2z
and the equation becomes:
dy
d2y
4z 4 Ÿ 1 2 2 " 1 3
4z dz
4z dz
which is a Bessel equation in z:
4z 2
dy 1
Ÿ Ÿz 2 " 1 y 0
36
dz 2z
v o1
z 2 y UU zy U Ÿz 2 " 1 y 0,
6
36
1
ii Since 7 o 6 , the general solution of the differential equation is:
y C1J 1 Ÿ x C2J" 1 Ÿ x 6
6
.
C1 !
m0
.
C1 !
m0
.
1
Ÿ"1 m Ÿ x 2m 6
1
2 2m 6 m!Ÿm 1 2
2m 16
Ÿ"1 m
m!Ÿm .
C 1 x 1/12 !
m0
2 2m
1
6
1
6
Ÿ"1 m
m!Ÿm m0 2
.
x m 12 C 2 !
1
7
6
1
Ÿ"1 m Ÿ x 2m" 6
C2 !
m0
2m" 16
2
2m" 16
Ÿ"1 m
m!Ÿm .
7
6
1
6
m!Ÿm 1 "
x m C 2 x "1/12 !
m0
2 2m"
1
6
1
5
6
x m" 12
Ÿ"1 m
m!Ÿm 5
6
xm
iii
y C 1 x 1/12
C 2 x "1/2
c 1 x 1/12
c 2 x "1/12
1
" 13/6 1 13 x 25/6 1 19 x 2 " C
7
2 2!Ÿ 6 2 1!Ÿ 6 2 0!Ÿ 6 1/6
2
"1/6
1
" 11/6 1 11 x 23/6 1 17 x 2 " C
5
2 2!Ÿ 6 2 1!Ÿ 6 0!Ÿ 6 0. 9006 " 0. 1930x 0. 0111x 2 " C
0. 9984 " 0. 2995x 0. 0204x 2 " C .
Example Verify that y x n J n Ÿx is a particular solution of the equation: xy UU Ÿ1 " 2n y U xy 0. Find
a particular solution of the equation: xy UU " y U xy 0.
Check:
U
U
U
UU
y U nx n"1 J n Ÿx x n J n Ÿx , y UU nŸn " 1 x n"2 J n Ÿx nx n"1 J n Ÿx nx n"1 J n Ÿx x n J n Ÿx xy UU Ÿ1 " 2n y U xy
xŸnŸn " 1 x n"2 J n x nx n"1 J Un x nx n"1 J Un x x n J UUn x Ÿ1 " 2n Ÿnx n"1 J n x x n J Un x xŸx n J n Ÿx "n 2 x n J n x 2n J UUn x n1 J Un x 2n J n
x n Ÿx 2 J UUn Ÿx xJ Un Ÿx Ÿx 2 " n 2 J n Ÿx 0
xy UU " y U xy xy UU Ÿ1 " 2Ÿ1 y U xy 0,
n1
A particular solution is:
.
y x J 1 Ÿx x !
1
m0
Ÿ"1 m
x 2m1 2 2m1 m!Ÿm 1 !
.
!
m0
Ÿ"1 m
x 2m2
2 2m1 m!Ÿm 1 !
1 x 2 " 1 x 4 1 x 6 ". . .
16
2
384
Example One mathematical model for the free undamped motion of a mass on an aging spring is given by
my UU ke ")t y 0, where ) 0.
6
2 k e ")t/2 . Reduce the differential equation to a Bessel equation in s.
i Let s )
m
ii Find the general solution of the differential equation in a series form.
iii Solve the initial-value problem: 4y UU e "0.1t y 0, yŸ0 1, y U Ÿ0 " 12 .
i The equation my UU ke ")t y 0 is not a Bessel equation.
ds 2
)
dt
k
m
" ) e ")t/2 "
2
k ")t/2 " ) s,
m e
2
k e ")t/2 ) 2 s.
d 2 s " k " ) e ")t/2 )
m
m
2
2
2
dt 2
dy ds
dy
dy
,
")s
2
ds dt
dt
ds
d2y
dy
dy
dy
ds d
")s
")s
d
d
2
2
dt dt
ds dt
ds
dt
ds
dt 2
2
2
2
2 dy
dy
d y ds
d y
")
")s ")s
) s
2
2
2
2
2
2
ds
ds
dt
ds
ds
d2y
2
kŸe ")t/2 y
2
dt
2
) 2 s 2 d y ) 2 s dy k s ) m
m
2
2
2 k
ds
ds 2
2
2
d y
dy
s2 2 s
s2y 0 ®
m )
2
ds
ds
d2y
d2y
dy
dy
s2 2 s
s2y 0 ® s2 2 s
Ÿs 2 " 0 y 0, v 0.
ds
ds
ds
ds
ii The general solution is:
my UU ke ")t y m
y C 1 J 0 Ÿs C 2 Y 0 Ÿs C 1 J 0
iii 4y UU e "0.1t y y UU 1 e "0.1t y 0,
4
2
)
k ")t/2
m e
C2Y0
2
)
2
y
k ")t/2
m e
y U Ÿ0 " 12 .
yŸ0 1,
2
) 0. 1, m 4, k 1. s )
k ")t/2 2
m e
0. 1
1 e "0.1t/2 10e "0.05t
4
y C 1 J 0 Ÿ10e "0.05t C 2 Y 0 Ÿ10e "0.05t ,
U
U
y U C 1 Ÿ"0. 5e "0.05t J 0 Ÿ10e "0.05t C 2 Ÿ"0. 5e "0.05t Y 0 Ÿ10e "0.05t yŸ0 C 1 J 0 Ÿ10 C 2 Y 0 Ÿ10 C 1 Ÿ"0. 2459 C 2 Ÿ0. 0557 1
y U Ÿ0 "0. 5C 1 Ÿ"J 1 Ÿ10 " 0. 5C 2 Ÿ"Y 1 Ÿ10 0. 5C 1 Ÿ0. 0435 0. 5C 2 Ÿ0. 2490 " 1
2
C 1 Ÿ"0. 2459 C 2 Ÿ0. 0557 1
0. 5C 1 Ÿ0. 0435 0. 5C 2 Ÿ0. 2490 " 12
2 J 0 Ÿx + ln x
Y 0 Ÿx =
2
2
" =
.
!
k1
,
C 1 "4. 786 962
C 2 "3. 179 788
Ÿ"1 k
1 1 . . . 1 x 2k , + 0. 57721566
2
k
2 2k Ÿk! 2
y "4. 786 962J 0 Ÿ10e "0.05t " 3. 179 788Y 0 Ÿ10e "0.05t Let
7
.
J 0 Ÿx !
m0
Ÿ"1 m
x 2m X 1 " 1 x 2 1 x 4
4
64
2 2m m!Ÿm !
2 1 " 1 x 2 1 x 4 + ln
Y 0 Ÿx X =
4
64
2 " 1 Ÿ1 x 2 1
1
" =
4
16Ÿ4 2 1 " 1 x 2 1 x 4 + ln
=
4
64
1
2
y X "4. 786 962 = 1 " Ÿ10e "0.05t 2 4
" 3. 179 788
x
2
1 x4 1
1 1 1 x6
2
2
3
64Ÿ36 2 " 1 x 2 3 x 4 11 x 6
x
" =
4
128
13 824
2
1 Ÿ10e "0.05t 4
64
"0.05t
2 1 " 1 Ÿ10e "0.05t 2 1 Ÿ10e "0.05t 4 + ln Ÿ10e
=
4
2
64
2 " 1 Ÿ10e "0.05t 2 3 Ÿ10e "0.05t 4 11 Ÿ10e "0.05t 6
3. 179 788 =
4
128
13 824
625
2
"0.1t
"0.2t
e
"4. 786 962 = 1 " 25e
4
2 1 " 25e "0.1t 625 e "0.2t ¡+ lnŸ5e "0.05t ¢
" 3. 179 788 =
4
1875
2
"0.1t
e "0.2t 171 875 e "0.3t
3. 179 788 = "25e
8
216
1
0.8
0.6
0.4
0.2
0
8
2
4
6
8
10
t
12
14
16
18
20
Related documents