Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Introduction to quantum computing (with superconducting circuits) Lecture 2 Version: 14/08/29 Frontiers of Condensed Matter San Sebastian, Aug. 28-30, 2014 Dr. Leo DiCarlo [email protected] dicarlolab.tudelft.nl Summary of Lecture #1 θ Quantum states ϕ X Quantum gates QFT H Uf Rnˆ (θ ) Quantum msm’t M̂ Anatomy of a simple quantum algorithm Qubit register M Ancilla qubits initialize create maximal superposition encode function in a unitary clever process measure will involve entanglement and disentanglement between qubits Maintain quantum coherence (DiVincenzo criteria) 1) Start in superposition: all values at once! 2) Build complex transformation out of one-qubit and two-qubit gates 3) Somehow* make the answer result in a computational-basis state at end! *use quantum interference: the magic of properly designed algorithm Outline of Lecture #2 ● Quantum computing hardware based on superconducting circuits One- & two- qubit gates Quantum measurement Simple quantum algorithms (games) achieving speedup. Several architectures have ran quantum algorithms Photons Nuclear Spins (NMR) NV centers 1998 Trapped Ions 2003 2000 2012 Superconducting circuits 2009 The appeal of integrated electrical circuits Modular architecture: few building blocks Intel Parallel fabrication LC circuit as a quantum harmonic oscillator E φ 7 6 +Q L 5 C 4 3 -Q 2 ωr ( Hˆ ωr aˆ † aˆ + 1 = 2 ) φˆ Qˆ φˆ Qˆ † aˆ = +i −i ; aˆ = φZPF QZPF φZPF QZPF φZPF = 2ωr L ; QZPF 2ωr C 1 0 φ annihilation and creation operators aˆ , aˆ † = 1 trapped photons! M. Devoret, Les Houches Session LXIII (1995) Why microwave frequencies + cryogenic temp? CAN PLACE CIRCUIT IN ITS QUANTUM GROUND STATE E 7 6 5 4 3 2 ω r 1 0 φ ω r k BT P(n = 0) = 1 − e 5 GHz 20 GHz ~ 1 K − ω r / k B T Why superconducting? φ E 7 6 5 4 3 2 ωr important: as little dissipation as possible 1 0 φ dissipation broadens energy levels, enhancing energy relaxation Why Josephson? E 7 6 generator = µwave LASER 5 4 3 ωr 2 1 0 φ IN LINEAR CIRCUITS, ALL TRANSITIONS BETWEEN QUANTUM LEVELS ARE DEGENERATE! Cannot confine system to a two-level subspace = LEAKAGE Why Josephson? NEED NONLINEARITY TO FULLY REVEAL QM E Position coordinate Emission spectrum ω34 ω23 ω12 ω01 frequency Josephson tunnel junction A NON-LINEAR INDUCTOR WITH NO DISSIPATION Ι ~1nm S I S superconductorinsulatorsuperconductor tunnel junction φ = ∫−∞ V ( t ')dt ' t φ0 φ I= sin 2π 2π LJ φ0 φ U = − EJ cos 2π φ0 φ0 = 2 EJ bare Josephson potential φ h 2e Josephson junctions in real life: imperfectly beautiful Al/AlOx/Al credit L. Frunzio and D. I. Schuster credit I. Siddiqi and F.Pierre EJ ~ 50 K LJ ~ 150 pH 100nm EJ ~ 0.5 K LJ ~ 15 nH Superconducting circuits: artificial atoms Josephson junctions C E 3 2 1 0 φ Transmon qubit: Koch et al., PRA (2008), Schreier et al., PRB (2008) Flux control of qubit frequencies I1 Φ1 Fast & Local LJ (Φ ) C I2 Φ2 ω01 / 2π ≈ 1 ~ 4 − 8 GHz LJ (Φ )C (ω01 − ω12 ) / 2π ≈ 300 MHz Cavity QED with wires “Circuit QED” Wallraff et al., Nature (2004) Blais et al., Phys. Rev. A (2004) out Josephson-junction qubits in Transmission-line resonator • mediates interaction between qubits • protects qubits from continuum • allows qubit readout Expts: Sillanpää et al., Nature (2007) Majer et al., Nature (2007) (Phase qubits / NIST) (Transmon qubits / Yale) First quantum processors 2009 model DiCarlo et al., Nature (2009) 1 mm 2010 model DiCarlo et al., Nature (2010) Reed et al., Nature (2012) 2012 model J. P. Groen et al., Phys. Rev. Lett. (2013) 2013 model O.P. Saira et al., Phys. Rev. Lett. (2014) Latest Delft processor (2014 Model) 2014 Model: 2D+ connectivity flux controls feedline Control and readout by frequency multiplexing CPW cross-overs Air bridges Similar developments at Chalmers, UCSB, ETH 3D circuit QED 200 nm 250 µm A Schoelkopf group breakthrough: H. Paik et al., PRL (2011) A quantum computing roadmap Review: Devoret & Schoelkopf, Science (2013) Single-qubit control and measurement 0 X = 1 1 0 = X 0 Y = i −i 0 = Y Rotations 1 Z = 0 0 −1 = Z Rˆ nˆ (θ ) = cos(θ / 2) Iˆ − i sin(θ / 2)n ⋅ σ σ = Xˆ , Yˆ , Zˆ H = 1 2 1 1 1 −1 = H Rn (θ ) { } One-qubit gates: X and Y rotations fL z Preparation 1-qubit rotations Measurement y x cavity I cos(2π f Lt ) V R transmon (a.u.) Flux bias on right One-qubit gates: X and Y rotations fR z Preparation 1-qubit rotations Measurement y x cavity I cos(2π f R t ) V R transmon (a.u.) Flux bias on right One-qubit gates: X and Y rotations fR z Preparation 1-qubit rotations Measurement y x cavity Q sin(2π f R t ) V R transmon (a.u.) Flux bias on right see Fidelity > 99% J. Chow et al., PRL (2009) Individual qubit readouts NbTiN Coupling resonator - QUANTUM BUS Readout Q1 Readout Q2 Qubit 1 Qubit 2 2 mm Feedline Readout 1 Readout 2 01 00 10 00 11 10 11 01 Characterizing individual readout fidelity NbTiN Readout 1 Readout Q2 10 00 11 01 Qubit 1 averaged transients 1i 0i Qubit 2 Feedline 2 mm single-shot histograms Characterizing individual readout fidelity NbTiN Readout 1 Readout Q2 10 00 11 01 Qubit 1 averaged transients 1i 0i Qubit 2 Feedline 2 mm single-shot histograms Characterizing individual readout fidelity NbTiN Readout 1 Readout Q2 10 00 11 01 Qubit 1 Qubit 2 2 mm Feedline error budget 0i 96% +1 Fidelity = 84% 1i 88% -1 A quantum computing roadmap C-NOT/C-Phase, Deutsch-Jozsa, Grover’s, Measurement-free error correction (repetition code) Review: Devoret & Schoelkopf, Science (2013) A universal set of gates 0 X = 1 1 0 = X 0 Y = i −i 0 = Y Rotations 1 Z = 0 0 −1 = Z Rˆ nˆ (θ ) = cos(θ / 2) Iˆ − i sin(θ / 2)n ⋅ σ σ = Xˆ , Yˆ , Zˆ 1 0 U = 0 0 0 1 0 0 0 0 0 0 1 0 0 −1 = Conditional phase gate 1 H = 2 1 1 1 −1 = H Rn (θ ) { 1 0 U = 0 0 0 1 0 0 0 0 0 1 0 0 1 0 Controlled-NOT } Spectroscopy of two qubits + cavity VR right qubit Dispersive qubit-qubit swap interaction left qubit Cavity-qubit interaction Vacuum Rabi splitting cavity V R transmon (a.u.) Flux bias on right Background: Majer et al., Nature (2007) Wallraff et al., Nature (2004) Resonant qubit-bus interaction right qubit left qubit Cavity-qubit resonant interaction Vacuum Rabi splitting cavity 2g V R transmon (a.u.) Flux bias on right 2g Background: Majer et al., Nature (2007) Wallraff et al., Nature (2004) Dispersive qubit-qubit interactions 2g × ( g / ∆) right qubit natural speed Dispersive qubit-qubit swap interaction slow-down factor ~1/10 2g / ∆ 2 left qubit ∆ cavity V R transmon (a.u.) Flux bias on right Background: Majer et al., Nature (2007) Wallraff et al., Nature (2004) Two-qubit gate: turn on interactions VR Conditional phase gate Use control lines to push qubits near a resonance cavity V R transmon (a.u.) Flux bias on right Two-excitation manifold of system 20 • Transmon “qubits” have multiple levels… 11 Two-excitation manifold • Avoided crossing (160 MHz) 11 ↔ 20 Flux bias on right transmon (a.u.) Strauch et al. PRL (2003): proposed using interactions with higher levels for computation in phase qubits Adiabatic conditional-phase gate 20 11 tf f 01 + f10 ϕa = −2π ∫ δ f a (t )dt t0 2-excitation manifold ζ 11 → eiϕ11 11 tf ϕ11 = ϕ10 + ϕ01 − 2π ∫ ζ (t )dt t0 10 1-excitation manifold 10 → e 01 01 → e Flux bias on right transmon (a.u.) iϕ01 iϕ10 10 01 Implementing C-Phase with 1 fancy pulse 00 01 10 11 1 0 0 eiϕ01 Uˆ 0 0 0 0 0 0 00 0 01 0 10 iϕ11 11 e 0 eiϕ10 0 Adjust timing of flux pulse so that only quantum amplitude of 11 acquires a minus sign: 1 0 Û 0 0 0 1 0 0 0 0 0 0 1 0 0 −1 π Gates at the raw speed of circuit QED Q B g D 21B ↔ eD 2 0 B swap in in 10 ns 02 11 11 01 10 10 20 20 eD 21B ↔ g D 2 2 B eD 21B ↔ f D 2 0 B c-phase in in <20 ns 00 Saira et al., PRL 112, 070502 (2014) Proposed by: G. Haack et al., PRB (2010) Gates at the raw speed of circuit QED Q B g D 21B ↔ eD 2 0 B swap in in 10 ns eD 21B ↔ g D 2 2 B 02 11 01 10 20 eD 21B ↔ f D 2 0 B c-phase in in <20 ns 00 Saira et al., PRL 112, 070502 (2014) Proposed by: G. Haack et al., PRB (2010) Gates at the raw speed of circuit QED Q B g D 21B ↔ eD 2 0 B swap in in 10 ns −1 eD 21B ↔ g D 2 2 B 02 01 11 20 eD 21B ↔ f D 2 0 B c-phase in in <20 ns 10 00 Saira et al., PRL 112, 070502 (2014) Proposed by: G. Haack et al., PRB (2010) Generating and detecting 2-qubit entanglement 0 0 Rπy /2 Rπy /2 ±1 ±1 π /2 Ry ρ= Z ∑ σ kσ j j ,k∈{ I , X ,Y , Z } 4 σ kσ j Z Pauli set 00 01 10 11 11 00 01 10 Tomography with joint readout: Filipp et al., PRL (2009) Bell inequalities z CHSH = X ′X + X ′Z − Z ′X + Z ′Z x’ z’ CHSH = X ′X − X ′Z + Z ′X + Z ′Z θ x no readout correction Clauser, Horne, Shimony & Holt (1969) LHV bound: CHSH ≤ 2 1.80 ± .01 UCSB group has closed detection loophole (w/ 2.07): Ansmann et al., Nature (2009) Bell inequalities z CHSH = X ′X + X ′Z − Z ′X + Z ′Z x’ z’ CHSH = X ′X − X ′Z + Z ′X + Z ′Z θ x Clauser, Horne, Shimony & Holt (1969) LHV bound: CHSH ≤ 2 not a foolproof test of hidden variables… (locality & detection loopholes) With joint readout: Chow et al., PRA (2010) with readout correction 2.57 ± .01 Deutsch’s problem: is your coin fair? f2 f1 f3 f4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 unbalanced balanced Classical Problem: You are handed a “black box” with one of the functions f i programmed in, but you’re not told which one. Determine if the function is balanced or unbalanced. Deutsch’s quantum algorithm ● Execute this sequence calling the quantum black box once. 0 1 H x H y Uf x H m Ẑ y ⊕ f ( x) m = +1 function is unbalanced m = −1 function is balanced Also implemented in NMR: Chuang et al., Nature (1998) Ion traps: Guide et al., Nature (2003) NV centers: Van der Sar et al., Nature (2012) Encoding of the functions f1 f4 f3 f2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 U f1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 x y U f3 U f2 X 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 U f4 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 85% 85% 86% 86% Single-shot success Quantum speedup in Deutsch-Jozsa algorithm speedup no speedup -1 1 -1 1 -1 1 -1 1 Quantum speedup This work: J. Cramer Master’s thesis, TU Delft (2012) First demonstration of quantum speedup in sc. circuits: Yamamoto et al., PRB (2010) Grover’s search algorithm ● Consider the n-to-1 bit function: ∗ y f= ( x) = ● Problem: find x 1 for x = x ∗ 0 for x ≠ x ∗ Case n=2: Classically, takes on average 2.25 uses of the black box to succeed… Quantum mechanically, 1 use of the quantum black box gives right answer! Grover’s search algorithm ● Execute this sequence, which calls the quantum black box once. 0 H x 0 1 x H H ● Answer: Uf y H π H m1 Ẑ m0 H H Ẑ Grover’s analysis “inversion about mean” y ⊕ f ( x) (+1, +1) x = 00 (+1, −1) ∗ = 01 x = ⇒ ∗ (m1 , m0 ) x = 10 (−1, +1) (−1, −1) x∗ = 11 ∗ Grover’s search algorithm 0 H H x 0 H 1 H x H Uf y π H m1 Ẑ m0 H Ẑ y ⊕ f ( x) Quantum phase kick-back Grover’s search algorithm x∗ 0 0 H H 1 0 0 0 0 0 1 0 0 −1 0 0 00 + 01 + 10 + 11 0 0 0 1 H H π H m1 Ẑ m0 H Ẑ 00 + 01 − 10 + 11 − 00 − 01 + 10 + 11 −( 0 − 1 ) ⊗ ( 0 + 1 ) − 10 0 0 Grover, PRL (1997) Rπy /2 Rπy /2 Qoogle Grover as a quantum game between our ‘twins’ Rπy /2 Rπy /2 π Rπy /2 10 Rπy /2 Quantum searching algorithm step-by-step ψ ideal = 00 Rπy /2 0 b 0 Rπy /2 c Qoogle Begin in ground state: 10 Rπy /2 d e Rπy /2 π f Rπy /2 Rπy /2 g DiCarlo et al., Nature (2009) Quantum searching algorithm step-by-step 1 ψ ideal= ( 00 + 01 + 10 + 11 ) 2 Rπy /2 0 b 0 Rπy /2 c Qoogle Create a maximal superposition: look everywhere at once! 10 Rπy /2 d e Rπy /2 π f Rπy /2 Rπy /2 g Quantum searching algorithm step-by-step 1 ψ ideal= ( 00 + 01 − 10 + 11 ) 2 Rπy /2 0 b 0 Rπy /2 c Qoogle Apply Qoogle to mark the solution 10 Rπy /2 d e Rπy /2 π f Rπy /2 Rπy /2 g Quantum searching algorithm step-by-step 1 ψ ideal 00 + 11 ) ( 2 Some more 1-qubit rotations… Rπy /2 0 b 0 Rπy /2 c Qoogle Now we arrive in one of the four Bell states 10 Rπy /2 d e Rπy /2 π f Rπy /2 Rπy /2 g Quantum searching algorithm step-by-step 1 ψ ideal= ( 00 − 01 + 10 − 11 ) 2 Rπy /2 0 b 0 Rπy /2 c Qoogle Another (but known) 2-qubit operation now undoes the entanglement and makes an interference pattern that holds the answer! 10 Rπy /2 d e Rπy /2 π f Rπy /2 Rπy /2 g Quantum searching algorithm step-by-step ψ ideal = 10 Final 1-qubit rotations reveal the answer: Focus quantum amplitude on the answer: “10”! Rπy /2 0 b 0 Rπy /2 c Qoogle Correct answer would found >80% of the time! 10 Rπy /2 d e Rπy /2 π f Rπy /2 Rπy /2 g 0 0 Rπy /2 Rπy /2 oracle Quantum speedup in 2-qubit Grover algorithm ij π Rπy /2 m1 Rπy /2 m2 Rπy /2 0 Rπy /2 0 oracle Quantum speedup in 2-qubit Grover algorithm π ij 1 0 Rπy /2 m1 Rπy /2 m2 84% = Psuccess, perfect readout 84% 87% 87% -1 00 01 10 11 00 01 10 11 Essentially the same algorithmic fidelity as we did in 2009: DiCarlo et al. Nature (2009) (Yale) Rπy /2 0 π /2 0 Ry oracle Quantum speedup in 2-qubit Grover algorithm π ij m1 π /2 Quantum speedup 87% m2 Ry 1 84% = Psuccess, perfect readout 84% 87% 0 -1 Rπy /2 This work: J. Cramer Master’s thesis, TU Delft (2012) First demonstration of quantum speedup in sc. circuits: Dewes et al., PRL & PRB (2012) (52-67% success) speedup 71% 71% 74% 72% Single-shot success 00 01 10 11 00 01 10 11 no speedup 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 Grover search beyond 2 qubits Grover’s iteration 0 H H x 0 1 H H x Uf y y ⊕ f ( x) Case n>2: by computer demo. H π H m1 Ẑ m0 H Ẑ Grover’s analysis “inversion about mean” Demo on computer Performance of Grover’s quantum algorithm O ( 2n−1 ) O ( N) O ( 2n/2 ) ● Grover’s algorithm does not scale polynomially with the number of bits n, and hence it is not efficient! ● The best classical approach requires, on average, N/2=2n-1 calls of the classical black box. ● The quadratic speedup offered by Grover’s is still useful. Summary of Lecture #2 ● Superconducting quantum processors based on circuit quantum electrodynamics: Nonlinear LC oscillators as qubits; Interconnected, readout and protected using resonators. ● Universal gate set based on single-qubit rotations and C-Phase gates. ● Can controllably create and undo entanglement. ● Simple quantum games (Deutsch-Josza, Grover’s) with quantum speedup achieved. ● The power of a quantum algorithm lies in using quantum superposition to create all possible inputs at once, and then evaluating a function for all inputs in one call! ● The challenge in designing a quantum algorithm lies in finding an analysis step that uses quantum interference to focus quantum probability amplitudes toward the solution of the problem. ● Some computational problems can be solved more efficiently using a quantum computer. Specific example: Classical & Quantum seearch scaling N vs N Tomorrow: basic quantum error correction (thy and expt)