Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
SUPPLEMENTARY MATERIALS AND METHODS siRNA battery. Name siRNA sequence Ref. Source AIF (apoptosis-inducing factor) sense 5’-GAUCCUCCCCGAAUACCUCTT-3’ antisense 5’-GAGGUAUUCGGGGAGGAUCTT-3’ (Vahsen et al., 2004) SigmaProligo ANT1 (adenine nucleotide translocase 1) sense 5’-ACAGAUCAGUGCUGAGAAGTT-3’ antisense 5’-CUUCUCAGCACUGAUCUGUTT-3’ (Le Bras et al., 2006) SigmaProligo ANT2 (adenine nucleotide translocase 2) sense 5’-GCAGAUCACUGCAGAUAAGTT-3’ antisense 5’-CUUAUCUGCAGUGAUCUGCTT-3’ (Le Bras et al., 2006) SigmaProligo ANT3 (adenine nucleotide translocase 3) sense 5’-CUCCCCGACCCCAAGAACATT-3’ antisense 5’-UGUUCUUGGGGUCGGGGAGTT-3’ (de La Motte Rouge et al., 2007) SigmaProligo Apaf-1 (apoptosis-protease activating factor 1) sense 5’-UUGGUGCACUUUUACGUGATT-3’ antisense 5’-UCACGUAAAAGUGCACCAATT-3’ (Zermati et al., 2007) SigmaProligo ATM (ataxia telangiectasia mutated) sense 5’-CAUACUACUCAAAGACAUUTT-3’ antisense 5’-AAUGUCUUUGAGUAGUAUGTT-3’ (Zhou et al., 2003) SigmaProligo Bad sense 5’-GAAGGGACUUCCUCGCCCGTT-3’ antisense 5’-CGGGCGAGGAAGUCCCUUCTT-3’ (Jin et al., 2004) SigmaProligo Bak HP Validated siRNAs Hs_BAK1_5 Qiagen Bax HP Validated siRNAs Hs_BAX_10 Qiagen Bcl-2 sense 5’-GCUGCACCUGACGCCCUUCTT-3’ antisense 5’-GAAGGGCGUCAGGUGCAGCTT-3’ (Jiang and Milner, 2003) SigmaProligo Bcl-XL sense 5’-CAGGGACAGCAUAUCAGAGTT-3’ antisense 5’-CUCUGAUAUGCUGUCCCUGTT-3’ (Jiang and Milner, 2003) SigmaProligo Bid sense 5’-GAAGACAUCAUCCGGAAUATT-3’ antisense 5’-UAUUCCGGAUGAUGUCUUATT-3’ (Wagner et al., 2004) SigmaProligo Bim sense 5’-GACCGAGAAGGUAGACAUUTT-3’ antisense 5’-AAUGUCUACCUUCUCGGUCTT-3’ (Mouhamad et al., 2004) SigmaProligo BLM (Bloom syndrome protein) sense 5’-GCUAGGAGUCUGCGUGCGATT-3’ antisense 5’-UCGCACGCAGACUCCUAGCTT-3’ (So et al., 2006) Personal gift BRCA-1 sense 5’-GGGCCUUCACAAUGUCCUUTT-3’ antisense 5’-AAGGACAUUGUGAAGGCCCTT-3’ (Ganesan et al., 2002) Personal gift Casp-2 (caspase-2) sense 5’-ACAGCUGUUGUUGAGCGAATT-3’ antisense 5’-UUCGCUCAACAACAGCUGUTT-3 (Lassus et al., 2002) SigmaProligo Casp-3 (caspase-3) sense 5’-AGUGAAGCAAAUCAGAAACTT-3’ antisense 5’-GUUUCUGAUUUGCUUCACUTT-3 (Dasse et al., 2007) SigmaProligo Chk1 (checkpoint kinase 1) sense 5’-UCGUGAGCGUUUGUUGAACTT-3’ antisense 5’-GUUCAACAAACGCUCACGATT-3’ (Sorensen et al., 2005) SigmaProligo Chk2 (checkpoint kinase 2) sense 5’-UGUGUGAAUGACAACUACUTT-3’ antisense 5’-AGUAGUUGUCAUUCACACATT-3’ (Vitale et al., 2007) SigmaProligo CypD (cyclophylin D) sense 5’-GGCAGAUGUCGUCCCAAAGTT-3’ antisense 5’-CUUUGGGACGACAUCUGCCTT-3’ (Machida et al., 2006) SigmaProligo ERCC1 (excision repair cross-complementing 1) sense 5’-UAUGCCAUCUCACAGCCUGTT-3’ antisense 5’-CAGGCUGUGAGAUGGCAUATT-3’ (Chang et al., 2005) SigmaProligo siGENOME SMARTpool Cat. n° 011033 Dharmacon FANCC (Fanconi anemia group C) siGENOME SMARTpool Cat. n° 016376 Dharmacon FDXR (ferredoxin reductase) sense 5’-CGGGAGCCCGGCCCAUUUUTT-3’ antisense 5’-AAAAUGGGCCGGGCUCCCGTT-3’ (Castedo et al., 2006) SigmaProligo GSTA3.3 (glutathione S-transferase A3) sense 5’-GGUGGAACUUCUCUACUAUTT-3’ antisense 5’-AUAGUAGAGAAGUUCCACCTT-3’ (de La Motte Rouge et al., 2007) SigmaProligo HK1 (hexokinase 1) sense 5’-GAGAUGAAGAAUGGCCUCUTT-3’ antisense 5’-AGAGGCCAUUCUUCAUCUCTT-3’ (Sui and Wilson, 2004) SigmaProligo FANCD2 (Fanconi anemia group D2) sense 5’-AGGAGAUGGAGAAAGGGCUTT-3’ antisense 5’-AGCCCUUUCUCCAUCUCCUTT-3’ (Sui and Wilson, 2004) SigmaProligo sense 5’-GAACGGGGCCUGGAACCAUATT-3’ antisense 5’-UAUGGUUCCAGGCCCCGTTCTT-3’ (Massard et al., 2006) SigmaProligo Ikk1 (I-κB kinase 1) siGENOME SMARTpool Cat. n° 003473 Dharmacon Ikk2 (I-κB kinase 2) siGENOME SMARTpool Cat. n° 003503 Dharmacon IP3R1 (inositol 1,4,5-triphosphate receptor 1) sense 5’-GCUAUGUCCUAUGAAUCGATT-3’ antisense 5’-UCGAUUCAUAGGACAUAGCTT-3’ (Oakes et al., 2005) SigmaProligo IP3R3 (inositol 1,4,5-triphosphate receptor 3) sense 5’-UGGCUGUGCCACAUGGGAATT-3’ antisense 5’-UUCCCAUGUGGCACAGCCATT-3’ (Oakes et al., 2005) SigmaProligo Ku80 sense 5’-GAGCUAAUCCUCAAGUCGGTT-3’ antisense 5’-CCGACUUGAGGAUUAGCUCTT-3’ (Waninger et al., 2004) Personal gift Lck sense 5’-CUGCAAGACAACCUGGUUAUC-3’ antisense 5’-UAACCAGGUUGUCUUGCAGUG-3’ (Methi et al., 2005) SigmaProligo MRE11 (meiotic recombination MRE11) sense 5’-GAUGCCAUUGAGGAAUUAGTT-3’ antisense 5’-CUAAUUCCUCAAUGGCAUCTT-3’ (Pichierri et al., 2004) Personal gift mtCK1 (ubiquitous mitochondrial creatine kinase) sense 5’-CUGGUUGGACGCUAGAUCATT-3’ antisense 5’-UGAUCUAGCGUCCAACCAGTT-3’ (de La Motte Rouge et al., 2007) SigmaProligo NEIL1 (NEI-like mammalian glycosylase 1) siGENOME SMARTpool Cat. n° 008327 Dharmacon Nemo (NF-κB essential modulator) siGENOME SMARTpool Cat. n° 003767 Dharmacon p53 sense 5’-GACUCCAGUGGUAAUCUACTT-3’, antisense 5’-GUAGAUUACCACUGGAGUCTT-3’ (Gu et al., 2004) SigmaProligo p53R2 (p53-inducible ribonucleotide reductase small subunit 2 homologous) sense 5’-GCAGAAGAGGUCGACUUAUTT-3’ antisense 5’-AUAAGUCGACCUCUUCUGCTT-3’ (Castedo et al., 2006) SigmaProligo siGENOME SMARTpool Cat. n° 003533 Dharmacon PBR (peripheral-type benzodiazepine receptor) sense 5’-CACUCAACUACUGCGUAUGTT-3’ antisense 5’-CAUACGCAGUAGUUGAGUGTT-3’ (Gonzalez-Polo et al., 2005) SigmaProligo PIDD (p53-induced protein with a death domain) sense 5’-GCCCUCAUUCCAGAAAUGCTT-3’ antisense 5’-GCAUUUCUGGAAUGAGGGCTT-3’ (de La Motte Rouge et al., 2007) SigmaProligo PKCδ (protein kinase C δ isoform) sense 5’-GGCUGAGUUCUGGCUGGACTT-3’ antisense 5’-GUCCAGCCAGAACUCAGCCTT-3’ (Yoshida et al., 2003) SigmaProligo Puma (p53-upregulated modulator of apoptosis) sense 5’-UCUCAUCAUGGGACUCCUGTT-3’ antisense 5’-UUGAGGUCGUCCGCCAUCCTT-3’ (Gu et al., 2004) SigmaProligo Rad17 (Rad17 homolog (S. pombe)) sense 5’-CAGACUGGUUGACCCAUCTT -3’ antisense 5’-GAUGGGUCAACCCAGUCUGTT-3’ (Zou et al., 2002) SigmaProligo SMC-1 (structural maintenance of chromosomes 1) sense 5’-AUCUCAUGGAUGCCAUCAGTT-3’ antisense 5’-CUGAUGGCAUCCAUGAGAUTT-3’ (Musio et al., 2005) Personal gift TAB1 (TAK1 binding protein 1) sense 5’-GGCUCAAGUUCAGGAGUGATT-3’ antisense 5’-UCACUCCUGAACUUGAGCCTT-3’ TAB2 (TAK1 binding protein 2) sense 5’-GGAACGACUUCAAAGAGAATT-3’ antisense 5’-UUCUCUUUGAAGUCGUUCCTT-3’; Modified from (Singhirunnusorn et al., 2005) Modified from (Singhirunnusorn et al., 2005) TAB3 (TAK1 binding protein 3) sense 5’-CCACCUCAACAGCCAUCUUTT-3’ antisense 5’-AAGAUGGCUGUUGAGGUGGTT-3’ (Ishitani et al., 2003) SigmaProligo TAK1 (TGF-β-activated kinase) sense 5’-GUAGAUCCAUCCAAGACUUTT-3’ antisense 5’-AAGUCUUGGAUGGAUCUACTT-3’ (Blonska et al., 2005) SigmaProligo UNR (“irrelevant”, unrelated siRNA) sense 5’-GCCGGUAUGCCGGUUAAGUTT-3’ antisense 5’-ACUUAACCGGCAUACCGGCTT-3’ (Criollo et al., 2007) SigmaProligo VDAC1 (voltage-dependent anion channel 1) sense 5’-GUACGGCCUGACGUUUACATT-3’, antisense 5’-UGUAAACGUCAGGCCGUACTT-3’ (Criollo et al., 2007) SigmaProligo VDAC2 (voltage-dependent anion channel 2) sense 5’-CUAGUUGGUUAUCUAGUUATT-3’ antisense 5’-UAACUAGAUAACCAACUAGTT-3’ (de La Motte Rouge et al., 2007) SigmaProligo VDAC3 (voltage-dependent anion channel 3) sense 5’-GAUUGGACUGGGUUAUACUTT-3’ antisense 5’-AGUAUAACCCAGUCCAAUCTT-3’ (de La Motte Rouge et al., 2007) SigmaProligo HK2 (hexokinase 2) hTERT (telomerase reverse transcriptase) p65 (NF-κB p65 subunit) SigmaProligo SigmaProligo The siRNA downregulating SMC-1 was a present from Dr. Filippo Rosselli; siRNAs targeting BLM, BRCA-1, Ku80 and MRE11 were kindly gifted by Dr. Bernard Lopez. The remaining siRNAs of the battery were purchased from the indicated companies: Dharmacon (Lafayette, USA), Qiagen (Hilden, Germany) or Sigma-Proligo (The Woodlands, USA). The UNR siRNA was employed as a negative control for transfection. Reverse transfection in 96-well plates. To screen the battery of siRNAs reported above, NSCLC A549 cells were reverse transfected in 96-well plates at seeding, following an experimental approach developed in our lab (de La Motte Rouge et al., 2007). To this aim, 300 pmol of siRNA dissolved in 2.1 mL of serum-free, antibiotic-free, DMEM:F12 (1:1) with L-glutamine but no phenol red (Gibco-Invitrogen) were combined with 2.1 mL of the same medium containing 63 μL of HiPerFect transfection reagent (Qiagen) and let stand at room temperature for 30 min. Transfection complexes were then mixed to 7.8 mL of complete medium (DMEM/F12 (1:1) with Lglutamine but no phenol red supplemented with 10% FCS and antibiotics) in which approximately 2.35 x 105 cells had been previously resuspended. The resulting cell suspension was seeded into a 96-well plate (approximately 3500 cells in 100 μL of medium per well), and transfected cells were cultured for 48 h prior to the administration of 50 μM CDDP. Finally (after additional 24 h of treatment), plates were analyzed for cell proliferation and cytotoxicity. Mathematical definition of the assay-independent values ΔWST-1 and ΔLDH. To analyze the influence of siRNAs on CDDP-induced antiproliferative and cytotoxic responses in 96-well plate assays, we employed the assay-independent indicator Δ, as previously reported (de La Motte Rouge et al., 2007). Since both residual proliferation and cytotoxicity were assessed, we introduced two distinct Δ values, namely ΔWST-1 and ΔLDH. For proliferation assays, first the residual proliferation of CDDP-treated transfected cells was calculated as the percentage of untreated, but transfected cells (%WST-1siRNA = 100 x WST1CDDP,siRNA / WST-1control,siRNA). Then, for each siRNA, ΔWST-1 was computed as the difference between its residual proliferation (%WST-1siRNA, as just defined) and the residual proliferation of cells transfected with a control, irrelevant siRNA (%WST-1siUNR, usually between 50 and 60%). Accordingly, ΔWST-1 positive values indicated cytoprotective effects of the siRNA against CDDPinduced antiproliferation, whereas negative values were associated with chemosensitization. For cytotoxicity tests, LDH release was calculated as the percentage of the maximal release induced by a membrane-permeabilizing agent (%LDHsiRNA), following the manufacturer’s instructions. Since %LDHsiRNA never exceeded 5 % in untreated cultures (independently from the transfected siRNAs), the ensuing analysis involved only CDDP-treated wells. In this context, ΔLDH was defined as the difference between CDDP-induced LDH release in transfected cells (%LDHsiRNA, as just defined) and the LDH release promoted by CDDP in cells transfected with a control, irrelevant siRNA (%LDHsiUNR, usually between 30 and 40%). Contrarily to ΔWST-1, ΔLDH positive values were associated with an increased cytotoxic response following CDDP administration, while negative values indicated siRNA-mediated cytoprotection. The use of Δs ensured two main advantages: first, the introduction of assay-independent indicators allowed for normalization among different assays; second, ΔWST-1 permitted to analyze the influence of siRNAs on CDDP-induced responses separately from their effects per se on proliferation. SUPPLEMENTARY REFERENCES Blonska M, Shambharkar PB, Kobayashi M, Zhang D, Sakurai H, Su B et al. (2005). TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptorinteracting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J Biol Chem 280: 43056-43063. Castedo M, Coquelle A, Vivet S, Vitale I, Kauffmann A, Dessen P et al. (2006). Apoptosis regulation in tetraploid cancer cells. Embo J 25: 2584-2595. Chang IY, Kim MH, Kim HB, Lee do Y, Kim SH, Kim HY et al. (2005). Small interfering RNAinduced suppression of ERCC1 enhances sensitivity of human cancer cells to cisplatin. Biochem Biophys Res Commun 327: 225-233. Criollo A, Galluzzi L, Chiara Maiuri M, Tasdemir E, Lavandero S, Kroemer G (2007). Mitochondrial control of cell death induced by hyperosmotic stress. Apoptosis 12: 3-18. Dasse E, Bridoux L, Baranek T, Lambert E, Salesse S, Sowa ML et al. (2007). Tissue inhibitor of metalloproteinase-1 promotes hematopoietic differentiation via caspase-3 upstream the MEKK1/MEK6/p38alpha pathway. Leukemia 21: 595-603. de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T et al. (2007). A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 67: 6253-6262. Ganesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, Miron A et al. (2002). BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111: 393-405. Gonzalez-Polo RA, Carvalho G, Braun T, Decaudin D, Fabre C, Larochette N et al. (2005). PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene 24: 7503-7513. Gu J, Zhang L, Swisher SG, Liu J, Roth JA, Fang B (2004). Induction of p53-regulated genes in lung cancer cells: implications of the mechanism for adenoviral p53-mediated apoptosis. Oncogene 23: 1300-1307. Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K (2003). Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. Embo J 22: 6277-6288. Jiang M, Milner J (2003). Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev 17: 832-837. Jin Z, Gao F, Flagg T, Deng X (2004). Nicotine induces multi-site phosphorylation of Bad in association with suppression of apoptosis. J Biol Chem 279: 23837-23844. Le Bras M, Borgne-Sanchez A, Touat Z, El Dein OS, Deniaud A, Maillier E et al. (2006). Chemosensitization by knockdown of adenine nucleotide translocase-2. Cancer Res 66: 9143-9152. Machida K, Ohta Y, Osada H (2006). Suppression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells. J Biol Chem 281: 14314-14320. Massard C, Zermati Y, Pauleau AL, Larochette N, Metivier D, Sabatier L et al. (2006). hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 25: 4505-4514. Methi T, Ngai J, Mahic M, Amarzguioui M, Vang T, Tasken K (2005). Short-interfering RNAmediated Lck knockdown results in augmented downstream T cell responses. J Immunol 175: 73987406. Mouhamad S, Besnault L, Auffredou MT, Leprince C, Bourgeade MF, Leca G et al. (2004). B cell receptor-mediated apoptosis of human lymphocytes is associated with a new regulatory pathway of Bim isoform expression. J Immunol 172: 2084-2091. Musio A, Montagna C, Mariani T, Tilenni M, Focarelli ML, Brait L et al. (2005). SMC1 involvement in fragile site expression. Hum Mol Genet 14: 525-533. Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T et al. (2005). Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A 102: 105-110. Pichierri P, Franchitto A, Rosselli F (2004). BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. Embo J 23: 3154-3163. Singhirunnusorn P, Suzuki S, Kawasaki N, Saiki I, Sakurai H (2005). Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J Biol Chem 280: 7359-7368. So S, Nomura Y, Adachi N, Kobayashi Y, Hori T, Kurihara Y et al. (2006). Enhanced gene targeting efficiency by siRNA that silences the expression of the Bloom syndrome gene in human cells. Genes Cells 11: 363-371. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J et al. (2005). The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7: 195-201. Sui D, Wilson JE (2004). Selective depletion of the Type I, Type II, and Type III isozymes of hexokinase in mammalian cells using small interfering RNAs. Biochem Biophys Res Commun 319: 768-773. Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N et al. (2004). AIF deficiency compromises oxidative phosphorylation. Embo J 23: 4679-4689. Vitale I, Galluzzi L, Vivet S, Nanty L, Dessen P, Senovilla L et al. (2007). Inhibition of Chk1 kills tetraploid tumor cells through a p53-dependent pathway. PLoS ONE 2: e1337. Wagner KW, Engels IH, Deveraux QL (2004). Caspase-2 can function upstream of bid cleavage in the TRAIL apoptosis pathway. J Biol Chem 279: 35047-35052. Waninger S, Kuhen K, Hu X, Chatterton JE, Wong-Staal F, Tang H (2004). Identification of cellular cofactors for human immunodeficiency virus replication via a ribozyme-based genomics approach. J Virol 78: 12829-12837. Yoshida K, Wang HG, Miki Y, Kufe D (2003). Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. Embo J 22: 1431-1441. Zermati Y, Mouhamad S, Stergiou L, Besse B, Galluzzi L, Boehrer S et al. (2007). Nonapoptotic role for apaf-1 in the DNA damage checkpoint. Mol Cell 28: 624-637. Zhou N, Xiao H, Li TK, Nur EKA, Liu LF (2003). DNA damage-mediated apoptosis induced by selenium compounds. J Biol Chem 278: 29532-29537. Zou L, Cortez D, Elledge SJ (2002). Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 16: 198-208.