Download Presentación de PowerPoint

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Granger Causality on Spatial Manifolds:
applications to Neuroimaging
Pedro A. Valdés-Sosa
Cuban Neuroscience Centre
Multivariate Autoregressive Model
for EEG/fMRI
1
2
…
t
t-1
…
p
 y1,t   a1,1
 y  a
 2,t    2,1

 

 
 y p ,t   a p ,1
a1,2
a2,2
a p ,2
a1, p   y1,t 1   e1,t 
a2, p   y2,t 1   e2,t 


  

  
a p , p   y p ,t 1   e p ,t 
t =1,…,N
y t  A y t 1  et
t =1,…,Nt
W= {1,L , p}
Point influence Measures
I s® u
is the simple test
H0 : a (s, u)= 0
s, u ОW
Granger Causality must be measured on a
MANIFOLD
W= surface of the brain
r
y (s, t ) =
е т т тa
k
k= 1
W
(s, u ) y (u, t - k )du + e (s, t )
Influence Measures defined on a Manifold
An influence field I s® W is a multiple test H 0 : a (s, u)= 0
for a given s ОW
and all
u ОW
Discretization of the Continuos AR Model -I
r
y (s, t ) =
е т т тa
k
k= 1
yi , t = т т т y (u, t ) du
D (si )
йy1; t щ
к ъ
к Mъ
к ъ
y t = ккyi ; t ъ
ъ
к Mъ
к ъ
кy ъ
кл p ; t ы
ъpґ 1
(s, u ) y (u, t - k )du + e (s, t )
W
aik, j = т L т ak (siў, u ўj ) ds ўdu ў
D (si )ґ D (ui )
r
yt =
е
A k y t-
k= 1
et ~ N (0,  )
k
+ et
Multivariate Regression Formulation
й y Tr ... y1T щ
к
ъ
к .
ъ
.
к
ъ
X = кк .
...
. ъ
ъ
к .
ъ
.
к
ъ
кT
ъ
T
y
...
y
кл N - 1
N- r ъ
ы
T
B = [A1 , K , A r ]
T
щ
Z= й
лy r + 1 , K , y N ы
Z = XB+ E
й1 щ
к ъ
vec (B)   = ккL ъ
ъ
к p ъ
кл ъ
ы
й1i щ
к ъ
i
i
i
 = ккL ъ

=
b
{
k
j ,k }
ъ
к i ъ
кл r ы
ъ
ML Estimation and detection of Influence
fields
ˆ = arg min Z - XB
B
B
ˆ = ( XT X)- 1 XT Z
B
tki , j
bˆki , j
=
SE bˆ i
( )
k, j
2
Σ
= arg min Z - XB
2
B
ˆ i = (XT X)- 1 X T z i
I k , i® W = {tki , j }
1Ј iЈ p
Problemas with the Multivariate Autoregressive
Model for Brain Manifolds
 y1,t   a1,1
 y  a
 2,t    2,1

 

 
 y p ,t   a p ,1
p→∞
a1, p   y1,t 1   e1,t 
a2, p   y2,t 1   e2,t 


  

  
a p , p   y p ,t 1  e p ,t 
a1,2
a2,2
a p ,2
t =1,…,N
y t  A y t 1  et
# of parameters
2
(
p
+ p)
g = r Чp 2 +
2
Prior Model on Influence Fields
M
p (;(P1 ,  1 ),L , (PM ,  M )) = C. Х exp (- Pm (-m1 ))
m= 1
ˆ = arg min Z - X B
B
B
2

M
+ е Pm (-m1 )
m= 1
X  = tr (XT  - 1X)
2
Pm (w ) =
length ( x )
е
l= 1
( )
pm wl
Priors for Influence Fields
I x® B
Are of
minimum
norm, or
maximal
smoothness,
etc.
Valdés-Sosa PA Neuroinformatics (2004) 2:1-12
Valdés-Sosa PA et al. Phil. Trans R. Soc. B (2005) 360: 969-981
Penalty Functions
Estimation via MM algorithm
ˆ ik + 1 = (XT X + D(ˆ ik + 1 ))- 1 XT zi
D( ) =
i
M
е
ў
diag ( pm ( wli ) / wli )
m= 1
pm, e (q) = pm (q) - e т
De ( ) =
i
M
е
ў
|q|
0
pl
dt
e+ t
diag ( pm ( wli ) / ( wli + e))
m= 1
Penalty Covariance combinations
sparseness
Model
(
)
L1, I rp2
(
smoothness
L2, I rp2
)
Known as to
wavleteers as
LASSO
Basis Pursuit
Ridge
Frames
Data Fusion
(L1, L )
rp 2
Spline (“LORETA”)
(L2, L )
rp2
(
)(
L1, I rp2 L2, I rp2
(
)(
L1, I rp2 L1, Drp2
both
Name in statistics
Elastic Net
)
Fused Lasso
)
“Ridge Fusion”
(L2, I )(L2, D )
rp2
rp2
(L1, I )(L1, L )(L2, I )(L2, L )
rp2
rp2
rp 2
rp 2
?
Simulated “fMRI”
yt  A yt 1  et
Correlations of the EEG with the fMRI
3
EEG
fMRI
2.5
2
1.5
1
0.5
0
-0.5
-1
r=-0.62
-1.5
-2
10
20
30
40
50
Martinez et. al Neuroimage July 2004
60
70
80
90
100
Related documents