Download PBeshay_QualExam_Presentation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Sub-threshold Sense Amplifier
(SA) Compensation Using
Auto-zeroing Circuitry
Peter Beshay
Department of Electrical Engineering
University of Virginia, Charlottesville
Robust
Low
Power
VLSI
01/21/2014
Outline






Motivation
Introduction
DAZ Circuit
16kB SRAM
Chip Measurements
Conclusion
2
Motivation
Source: IdeaConnection.com
Source: groups.csail.edu/
Source: Implantable-device.com
3
Motivation
SRAM are used in implantable devices
 Contribute significantly to the total
System-on-chip (SOC) power
consumption
SRAM Power Consumption (1)
(1) N. Verma, Phd thesis
4
Motivation
Main Limitations
Process Variations effect,
Slow Speed
Normalized Energy
Minimum Energy occurs in sub-threshold [1]
Eactive = CVDD2
Etotal/operation minimized in sub-VT
VDD (V)
Energy Consumption vs. VDD (1)
(1) N. Verma, Phd thesis
5
Motivation
Work Focus
Minimizing the energy of the read operation of
sub-threshold SRAMs.
 Sense Amplifier are utilized during the read operation of the
SRAMs.
 The intrinsic offset voltage of the SAs causes increased read
energy and degraded performance of the SRAM read operation [2].
6
Outline





Introduction
DAZ Circuit
16kB SRAM
Chip Measurements
Conclusion
7
Sense Amplifier
Vout =1 if V1 > V2
Vout =0 Otherwise
𝑨𝒏𝒂𝒍𝒐𝒈𝒚
𝑉1
𝑉𝑜𝑢𝑡
𝑉2
Enable
SA Offset Voltage
Vout =1 if V1 > V2
Vout =0 Otherwise
𝑨𝒏𝒂𝒍𝒐𝒈𝒚
𝑉1
𝑉𝑜𝑢𝑡
𝑉2
Enable
𝐕𝐨𝐟𝐟𝐬𝐞𝐭
Vout =1 if V1 > V2 + 𝐕𝐨𝐟𝐟𝐬𝐞𝐭
Vout =0 Otherwise
𝑉1
𝑉𝑜𝑢𝑡
𝑉2
Enable
9
SA Offset Voltage
Vout =1 if V1 > V2
Vout =0 Otherwise
𝑨𝒏𝒂𝒍𝒐𝒈𝒚
𝑉1
𝑉𝑜𝑢𝑡
𝑉2
Enable
𝑉1
𝑉𝑜𝑢𝑡
𝑉2
Enable
𝐎𝐜𝐜𝐮𝐫𝐞𝐧𝐜𝐞𝐬
𝐕𝐨𝐟𝐟𝐬𝐞𝐭
Vout =1 if V1 > V2 + 𝐕𝐨𝐟𝐟𝐬𝐞𝐭
Vout =0 Otherwise
𝐕𝐨𝐟𝐟𝐬𝐞𝐭
10
Row Decoder
6T SRAM Read Operation
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
.
6T Bitcell
..
.
6T Bitcell
…
..
.
6T Bitcell
SAE
11
Row Decoder
6T SRAM Read Operation
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
.
6T Bitcell
..
.
6T Bitcell
…
..
.
6T Bitcell
SAE
12
Row Decoder
6T SRAM Read Operation
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
.
..
.
…
..
.
SAE
13
Row Decoder
6T SRAM Read Operation
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
.
..
.
…
..
.
SAE
14
6T SRAM Read Operation
Row Decoder
BL=𝐕𝐃𝐃
𝐁𝐋=𝐕𝐃𝐃
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
.
..
.
…
..
.
SAE
15
6T SRAM Read Operation
Row Decoder
BL=𝐕𝐃𝐃
𝐁𝐋=𝐕𝐃𝐃
WL
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
WL=.𝐕
𝐃𝐃
..
.
…
..
.
SAE
16
6T SRAM Read Operation
Row Decoder
BL=𝐕𝐃𝐃
𝐁𝐋=𝐕𝐃𝐃
WL
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
WL=.𝐕
𝐃𝐃
1
..
.
…
..
.
0
SAE
17
6T SRAM Read Operation
Row Decoder
BL=𝐕𝐃𝐃
𝐁𝐋=𝐕𝐃𝐃
WL
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
WL=.𝐕
𝐃𝐃
1
6T Bitcell
BL, BL
..
.
6T Bitcell
…
..
.
0
SAE
18
6T SRAM Read Operation
∆V > 𝐕𝐨𝐟𝐟𝐬𝐞𝐭
Row Decoder
BL=𝐕𝐃𝐃
𝐁𝐋=𝐕𝐃𝐃
WL
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
WL=.𝐕
𝐃𝐃
1
6T Bitcell
∆V
6T Bitcell
BL, BL
..
.
…
..
.
0
SAE
19
6T SRAM Read Operation
∆V > 𝐕𝐨𝐟𝐟𝐬𝐞𝐭
Row Decoder
BL=𝐕𝐃𝐃
𝐁𝐋=𝐕𝐃𝐃
WL
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
WL=.𝐕
𝐃𝐃
1
6T Bitcell
∆V
6T Bitcell
BL, BL
..
. SAE
…
..
.
0
SAE
20
6T SRAM Read Operation
∆V > 𝐕𝐨𝐟𝐟𝐬𝐞𝐭
Row Decoder
BL=𝐕𝐃𝐃
𝐁𝐋=𝐕𝐃𝐃
WL
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
WL=.𝐕
𝐃𝐃
1
6T Bitcell
∆V
6T Bitcell
BL, BL
..
. SAE
…
..
.
0
SAE
21
6T SRAM Read Operation
Row Decoder
BL=𝐕𝐃𝐃
𝐁𝐋=𝐕𝐃𝐃
WL
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
WL=.𝐕
𝐃𝐃
6T Bitcell
∆V
6T Bitcell
BL, BL
..
. SAE
…
..
.
Pre-charge
1
0
SAE
22
6T SRAM Read Operation
Row Decoder
BL=𝐕𝐃𝐃
𝐁𝐋=𝐕𝐃𝐃
WL
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
WL=.𝐕
𝐃𝐃
6T Bitcell
∆V
6T Bitcell
BL, BL
..
. SAE
…
..
.
Pre-charge
1
0
SAE
23
6T SRAM Read Operation
𝑬𝒑𝒓𝒆𝒄𝒉𝒂𝒓𝒈𝒆 = 𝐂𝐁𝐋 𝐕𝐃𝐃 ∆𝐕
Row Decoder
BL=𝐕𝐃𝐃
𝐁𝐋=𝐕𝐃𝐃
WL
6T Bitcell
6T Bitcell
6T Bitcell
6T Bitcell
..
WL=.𝐕
𝐃𝐃
6T Bitcell
∆V
6T Bitcell
BL, BL
..
. SAE
…
..
.
Pre-charge
1
0
SAE
24
PMOS-input Latch SA
Enable the SA
𝐄𝐍
BL
𝐄𝐍
𝐁𝐋
M5
M6
M3
M4
M1
OUT
Sense the input voltage
M2
𝐄𝐍
Cross coupled inverter to
latch the output
𝐎𝐔𝐓
Precharge the output to VDD
25
PMOS-input Latch SA
BL=0.45V
𝐄𝐍
OUT
𝐄𝐍
𝐁𝐋 = 𝟎. 𝟒𝐕
M5
M6
M3
M4
M1
M2
EN
𝐄𝐍
OUT, 𝐎𝐔𝐓
𝐎𝐔𝐓
26
PMOS-input Latch SA
V=𝐕𝐃𝐃
BL=0.45V
𝐄𝐍
OUT
𝐄𝐍
𝐁𝐋 = 𝟎. 𝟒𝐕
M5
M6
M3
M4
M1
M2
EN
𝐄𝐍
OUT, 𝐎𝐔𝐓
𝐎𝐔𝐓
27
Offset Voltage
𝐕𝐆𝐒 −𝐕𝐭𝐡
𝐕𝐃𝐒
𝐖 𝐧𝐕
𝐈𝐃 = 𝐈𝟎 𝐞 𝐭𝐡𝐞𝐫𝐦𝐚𝐥 (𝟏 − 𝐞𝐕𝐭𝐡𝐞𝐫𝐦𝐚𝐥 )
𝐋
𝐄𝐍
BL=0.5
𝐄𝐍
OUT
M5
M6
M3
M4
M1
M2
𝐁𝐋=0.5
∆𝑽𝒕𝒉 mismatch causes the currents to
Be different, for zero differential input
(BL=BL)
𝐄𝐍
𝐎𝐔𝐓
28
Digital Auto-zeroing (DAZ)
•
We propose a digital auto-zeroing (DAZ) scheme
inspired by analog amplifier offset correction.
•
The main advantages of the approach are
• Near-zero offset after cancellation.
• Suitable for sub-threshold operation due to the
repeated offset compensation phase.
•
Several attempts have been made before to tackle the
problem including:
• Redundancy [3]
• Transistor upsizing [4]
• Digitally controlled compensation [5]
29
Outline





Introduction
DAZ Circuit
16kB SRAM
Chip Measurements
Conclusion
30
Auto-zeroing in analog amplifiers
• Amplification is done
in two phases
• Φ1: Sample the offset
on a capacitor
Dynamic Offset Cancellation (2)
• Φ2: Subtract the
offset from the input
signal
(2) K Kang et al, “Dynamic Offset Cancellation Technique” cse.psu.edu/~chip/course/analog/insoo/S04AmpOffset.ppt
DAZ Scheme
𝑉𝑜𝑢𝑡
Enable=0
𝑇𝑢𝑛𝑒 𝑡ℎ𝑒 𝑆𝐴
𝑉𝑜𝑢𝑡
Enable=1
• Phase1 (ENR1)
A zero differential input
is applied to the sense
amp.
• Phase2 (ENO)
The SA resolves based on
its intrinsic offset.
DAZ Scheme
BL
𝑉𝑜𝑢𝑡
BL
Enable=0
• Phase3 (ENR2)
The differential input is
applied to the sense
amp.
BL
𝑉𝑜𝑢𝑡
BL
Enable=1
• Phase4 (ENI)
The SA resolves based on
the differential input.
DAZ Circuit
ENR1
ENR1
ENR2
ENR2
BL
𝐁𝐋
ENI
𝐄𝐍
OUT
𝐄𝐍
ENI
M5
M6
M3
M4
M1
M2
MC2
𝐂𝐩
MC1
𝐄𝐍
𝐎𝐔𝐓
Charge
Pump
• DAZ circuit applied to
a latch-based sense
amp with PMOS
inputs
• DAZ circuit uses a
split-phase clock and
charge pump (CP)
feedback circuit for
repetitive
compensation.
DAZ Circuit
ENR1
ENR1
ENR2
ENR2
BL
𝐁𝐋
ENI
𝐄𝐍
OUT
𝐄𝐍
ENI
M5
M6
M3
M4
M1
M2
MC2
𝐂𝐩
MC1
𝐄𝐍
𝐎𝐔𝐓
Charge
Pump
• Transistors MC1 and
MC2 control the
drive strength of the
right side of the SA.
• The CP controls the
drive current in both
MC1 and MC2 to
equalize the strength
of the SA right and
left sides.
DAZ Circuit
ENR1
ENR1
ENR2
ENR2
BL
𝐁𝐋
ENI
𝐄𝐍
𝐄𝐍
ENI
M5
M6
M3
M4
M1
M2
MC2
Cp
MC1
Charge
Pump
𝐄𝐍
ENR2
OUT
𝐎𝐔𝐓
𝐄𝐍𝐈
M11
M13
M9
M10
ENO
𝐄𝐍𝐑𝟐
M12
Phase 1
ENR1
ENR1
ENR2
ER1: A zero differential input is
applied to the sense amp.
ENR2
BL
𝐁𝐋
ENI
𝐄𝐍
𝐄𝐍
ENI
M5
M6
M3
M4
M1
M2
MC2
Cp
MC1
Charge
Pump
𝐄𝐍
ENR2
OUT
𝐎𝐔𝐓
𝐄𝐍𝐈
M11
M13
M9
M10
ENO
𝐄𝐍𝐑𝟐
M12
Phase 2
ENR1
ENR1
ENR2
ENO: The SA resolves based on its
intrinsic offset.
ENR2
BL
𝐁𝐋
ENI
𝐄𝐍
𝐄𝐍
ENI
M5
M6
M3
M4
M1
M2
MC2
Cp
MC1
Charge
Pump
𝐄𝐍
ENR2
OUT
𝐎𝐔𝐓
𝐄𝐍𝐈
M11
M13
M9
M10
ENO
𝐄𝐍𝐑𝟐
M12
Phase 3
ENR1
ENR1
ENR2
ER2: The differential input is
applied to the sense amp.
ENR2
BL
𝐁𝐋
ENI
𝐄𝐍
𝐄𝐍
ENI
M5
M6
M3
M4
M1
M2
∆v
MC2
Cp
MC1
Charge
Pump
𝐄𝐍
ENR2
OUT
𝐎𝐔𝐓
𝐄𝐍𝐈
M11
M13
M9
M10
ENO
𝐄𝐍𝐑𝟐
M12
Phase 4
ENR1
ENR1
ENR2
ENI: The SA resolves based on the
differential input.
ENR2
BL
𝐁𝐋
ENI
𝐄𝐍
𝐄𝐍
ENI
M5
M6
M3
M4
M1
M2
MC2
Cp
MC1
Charge
Pump
𝐄𝐍
ENR2
OUT
𝐎𝐔𝐓
𝐄𝐍𝐈
M11
M13
M9
M10
ENO
𝐄𝐍𝐑𝟐
M12
Precision
• The precision of the scheme depends on the accuracy
of setting the voltage on the output capacitor (Cp).
Settling Time
= 60us
41
Offset Tuning
• Accuracy (offset voltage) vs. settling time trade-off
through Cp tuning.
40
Cp=0.74pF
35
Settling Time (us)
30
25
Cp=0.43pF
20
Cp=0.24pF
15
Cp=0.14pF
10
5
Cp=0.13pF
0
2
4
6
8
10
12
Min Achieved Offset (mV)
14
16
18
20
42
Outline





Introduction
DAZ Circuit
16kB SRAM
Chip Measurements
Conclusion
43
16kB SRAM Test-case
• A 20mV DAZ SA is used in a 16kB SRAM with
1bank, 512 rows and 256 columns using commercial
45nm technology node [6].
• 10% reduction of the read energy
• 24% reduction of the read delay
Chip Measurements
• 45nm technology test chip.
•
•
One regular SA array for benchmarking
DAZ SA array with Cp=32fF.
• DAZ circuit limits the absolute value of the maximum
offset to 50 mV and provided 80% improvement in σ [6].
44
Limitation
• Area overhead (major concern in SRAM designs)
• 2.5X for 50mV offset compensation
• Can be significant for small offsets
• Energy overhead of the continuous calibration (split
phases, charge pump)
• 3.5X the energy of a regular SA
• Sensitivity to split phase frequency.
45
Outline





Introduction
DAZ Circuit
16kB SRAM
Chip Measurements
Conclusion
46
Conclusion
• We proposed a circuit that is capable of improving sense-amp offset to
near zero, which is valuable for sub-threshold operation due to the
repeated calibration phase.
• Applying the scheme on a 16 kB SRAM in 45nm technology node
showed a reduction in the total energy and delay of 10% and 24%
respectively.
• Measurements from a test chip fabricated in 45 nm technology
showed the circuit’s ability to limit the absolute maximum value of
the offset voltage to 50 mV using a 32fF output capacitance.
47
References
1. B. H. Calhoun et al. "Sub-threshold circuit design with shrinking CMOS
devices." ISCAS 2009.
2. J. Ryan et al. “Minimizing Offset for Latching Voltage-Mode Sense Amplifiers
for Sub-threshold Operation” ISQED 2008.
3. N. Verma et al. “A 256 kb 65 nm 8T Sub-threshold SRAM Employing
Sense-Amplifier Redundancy” ISSCC 2008.
4. L. Pileggi et al. “Mismatch Analysis & Statistical Design” CICC 2008.
5. M. Bhargava et al. “Low-Overhead, Digital Offset Compensated, SRAM Sense
Amplifiers” CICC 2009.
6. P. Beshay et al. "A Digital Auto-Zeroing Circuit to Reduce Offset in SubThreshold Sense Amplifiers." JLPEA 2013
48
Questions
49
Related documents