Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Anintroductiontobrainnetworks AlexFornito BrainandMentalHealthLab MonashInstituteofCognitiveandClinicalNeurosciences MonashUniversity e:[email protected] @AFornito two fundamental principles of brain organization segregation Broca’s Leborgne (akaTan) integration 1999 1990-1992 development of discovery of BOLD diffusion contrast tractography Scoville &Milner’sHM Nature,1993 Huth etal.Nature,2015 Harlow’sPhineasGage Polyak, 1957 Ogawaetal.PNAS,1992 Conturo etal.PNAS,1999 Felleman &VanEssen,Cereb Cortex,1991 connectome: nanoscale nm a comprehensivestructuraldescriptionofthe networkofelementsandconnections formingthehumanbrain. Sporns,Tononi,Kötter,PLoS CompBiol,2005 microscale nmto𝜇m meso 𝜇m to mm macroscale mmtocm modellingbrainnetworksasgraphs edge node any network can be modelled as a graph of nodes connected by edges nodes represent fundamental processing units edges represent the interactions between nodes a briefhistoryofgraphtheory LeonhardEuler (1707-1783) PaulErdős (1913-1996) Alfréd Rényi (1921-1970) a briefhistoryofgraphtheory realnetworkshavehubs random realnetworksaresmall-world scalefree Barabasi &Albert,Science,1999; Barabasi &Oltvai,NatRevGenet,2004 WattsandStrogatz,Nature,1999 realnetworksaremodular Girvan&Newman,PNAS,2004;Clauset,Moore&Newman,Nature,2008 definingnodes cytoarchitecture 1. 2. 3. probabilistic Brainnodesshouldhave: Intrinsicconsistency Extrinsicdifferentiation Spatiallyconstrained Fornitoetal.NeuroImage,2013 Brodmann,1909 chemoarchitecture anatomical Eickhoff etal.NeuroImage,2007 Tzuorio-Mazoyer,etal.NeuroImage,2002 Desikan,etal.NeuroImage,2006 data-driven Yeoetal.JNeurophysiol,2011 Craddocketal.HumBrainMapp,2012 Poweretal.Neuron,2011 voxel-based vandenHeuvel etal.NeuroImage,2009 Hayasaka &Laurienti,NeuroImage,2010 Eickhoff etal.NeuroImage,2006 random Hagmann,etal.PLoS One,2007 Zalesky,etal.NeuroImage,2010 Fornitoetal.FontSysNeurosci,2010 myeloarchitecture Glasser &VanEssen JNeurosci 2011 functional Dosenbach,etal.Science,2010 Fornitoetal.PNAS,2012 multimodal Glasser etal. Nature,2016 definingedges Structuralconnectivity Thephysical(anatomical)connectionsbetweenbrainregions Intrinsicallydirected DirectionalitycannotberesolvedwithMRI Functionalconnectivity Astatisticaldependencebetweenspatiallydistinctneurophysiologicalsignals Estimatedatlevelofmeasuredsignals Canbedirectedorundirected Effectiveconnectivity Theinfluencethatoneneuronalsystemexertsoveranother Usuallymodel-based Describescausalinteractionsattheneuronallevel Friston etal,1994,HumBrainMapping;Fornitoetal,2015,NatRevNeurosci definingedges structural functional electron microscopy tract-tracing electrophysiology Bocketal.Nature,2011 Whiteetal.PTRS,1986 Ohetal.Nature,2014 http://connectivity.brain-map.org Yuetal.Cereb Cortex,2008 geneticlabelling informatics Chiangetal.Curr Biol,2011 www.flycircuit.tw PLI Axer,etal.NeuroImage,2011 Modha &SinghPNAS,2010 Shanahanetal.Fron CompNeurosci,2013 http://cocomac.org calciumimaging ECoG Bastos etal.Neuron,2015 Brovelli,etal.PNAS,2004 M/EEG Ahrensetal.NatMethods,2013 fMRI DWI Hagmann etal.PLoS One,2007 Engeletal.Neuron,2013 Smithetal.NeuroImage,2011 mappingstructuralconnectivityinhumanswithDWI Johansen-Berg&Rushworth,AnnRevNeurosci,2014;Mori&Zhang,Neuron,2008; Tournier etal.Magn ResMed,2011;Isenberg,2011;Thomas,etal.PNAS,2014 measuringconnectionweightswithdiffusionMRI connectionweightstypicallyestimatedas: numberofconnectingstreamlines averagetractFAorotherdiffusivityindex but: emergingapproachesinclude: axondiameter&density(Assaf etal.NeuroImage,2013) trackdensityimaging(Calamante,etal.NeuroImage,2011) myelincontent(Deoni etal.Magn ResMed,2008) definingedges structural functional electron microscopy tract-tracing electrophysiology Bocketal.Nature,2011 Whiteetal.PTRS,1986 Ohetal.Nature,2014 http://connectivity.brain-map.org Yuetal.Cereb Cortex,2008 geneticlabelling collated Chiangetal.Curr Biol,2011 www.flycircuit.tw PLI Axer,etal.NeuroImage,2011 Modha &SinghPNAS,2010 Shanahanetal.Fron CompNeurosci,2013 http://cocomac.org calciumimaging ECoG Bastos etal.Neuron,2015 Brovelli,etal.PNAS,2004 M/EEG Ahrensetal.NatMethods,2013 fMRI DWI Hagmann etal.PLoS One,2007 Engeletal.Neuron,2013 Fornitoetal.NeuroImage,2013 Smithetal.NeuroImage,2011 mappingfunctionalconnectivitywithfMRI statisticaldependence correlation partialcorrelation mutualinformation … etc rest Fox&Raichle,NatRevNeurosci,2002 Achard etal.JNeurosci,2005 Smithetal.NeuroImage,2011 task dynamics Zalesky etal.PNAS,2014 Hutchison,etal.NeuroImage,2013 Fornitoetal.PNAS,2012 Fornitoetal.Biol Psychiatry,2012 Coleetal.NatNeurosci,2013 topologicalbiasesofcommonfunctionalconnectivitymeasures Fornito, Zalesky & Bullmore, 2016, Fundamentals of Brain Network Analysis Zalesky, Fornito, Bullmore, NeuroImage, 2012 fromdatatograph definenodes&edges functional connectivity buildgraph structural connectivity adjacency matrix braingraph Fornito, Zalesky, & Breakspear. 2015, Nat Rev Neurosci matricesandgraphsareformallyequivalent Fornito, Zalesky & Bullmore, 2016, Fundamentals of Brain Network Analysis whichgraphbestrepresentsthebrain? binary weighted heterogeneousnodes directed heterogeneousedges hybrid whichgraphbestrepresentsthebrain? Fornito, Zalesky, & Breakspear. 2013, NeuroImage; Fornito, Zalesky, Bullmore, 2016, Fundamentals of Brain Network Analysis fromdatatograph definenodes&edges functional connectivity buildgraph structural connectivity adjacency matrix braingraph Fornito, Zalesky, & Breakspear. 2015, Nat Rev Neurosci networkanalysis connectivity topology fromdatatograph definenodes&edges functional connectivity buildgraph structural connectivity networkanalysis adjacency matrix connectivity Networkthresholding&statistics AndrewZalesky Paths,diffusion&communication Bratislav Misic Modularity(static&dynamic) braingraph SarahMuldoon Centrality&hubs Martijn vandenHeuvel Null&generativemodels PetraVertes Fornito, Zalesky, & Breakspear. 2015, Nat Rev Neurosci topology summary Graphs provide useful models of brain networks A unified framework for representing multiscale organization There are different methods for defining brain nodes and edges Each has pros and cons; constrains interpretation of findings Brain networks can be directed/undirected and weighted/unweighted Node/edge heterogeneity and dynamics can also be accomodated Brain networks can be analysed at the level of connectivity or topology Effects can be mapped at individual edges, nodes, or globally resources graphtheory/networkscience Newman(2010)Networks:Anintroduction. Newman(2003)SIAMRev. Albert&Barabasi (2002)RevModernPhysics graphtheoryandthebrain Sporns (2011)Networksofthebrain. Amazon http://amzn.to/1MLgMhU Elsevier http://bit.ly/1Hp29OZ Sporns (2012)Discoveringthehumanconnectome. Bullmore &Sporns (2009)NatRevNeurosci. Bullmore &Bassett(2011)Annu RevClin Psychol. Fornito,Zalesky &Breakspear (2013)NeuroImage. software Brainconnectivitytoolbox: https://sites.google.com/site/bctnet/ Graphanalysistoolbox: https://www.nitrc.org/projects/gat/ Network-basedstatistic: http://www.nitrc.org/projects/nbs/ Task-relatedfunctionalconnectivity(cPPI): http://www.nitrc.org/projects/cppi_toolbox/ Anopen-accessjournalfornetwork neuroscienceatalllevels, frommoleculartomacroscales Networkvisualization http://immersive.erc.monash.edu.au/neuromarvl/ http://www.mitpressjournals.org/netn