Download References - Mines ParisTech CBIO

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
biogm
October 12, 2009
References
[1] M. Alexandersson, S. Cawley, and L. Pachter. SLAM: cross-species gene
finding and alignment with a generalized pair hidden Markov model.
Genome Res., 13(3):496–502, Mar 2003.
[2] M. J. Beal, F. Falciani, Z. Ghahramani, C. Rangel, and D. L. Wild. A
Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21(3):349–356, Feb 2005.
[3] B. E. Engelhardt, M. I. Jordan, K. E. Muratore, and S. E. Brenner. Protein
Molecular Function Prediction by Bayesian Phylogenomics. PLoS Comput.
Biol., 1(5):e45, Oct 2005.
[4] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks
to analyze expression data. J. Comput. Biol., 7(3-4):601–620, 2000.
[5] D. Heckerman. A tutorial on learning with Bayesian networks. In M. Jordan, editor, Learning in graphical models, pages 301–354. MIT Press, Cambridge, MA, USA, 1999.
[6] S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and
functional structures between genes by using Bayesian networks and nonparametric regression. Pac. Symp. Biocomput., pages 175–186, 2002.
[7] S. Imoto, S. Kim, T. Goto, S. Miyano, S. Aburatani, K. Tashiro, and
S. Kuhara. Bayesian network and nonparametric heteroscedastic regression
for nonlinear modeling of genetic network. J. Bioinform. Comput. Biol.,
1(2):231–252, Jul 2003.
[8] S. Imoto, K. Sunyong, T. Goto, S. Aburatani, K. Tashiro, S. Kuhara, and
S. Miyano. Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. Proc. IEEE Comput. Soc.
Bioinform. Conf., 1:219–227, 2002.
1
[9] R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N.J. Krogan, S. Chung,
A. Emili, M. Snyder, J.F. Greenblatt, and M. Gerstein. A Bayesian networks approach for predicting protein-protein interactions from genomic
data. Science, 302(5644):449–453, 2003.
[10] W. H. Majoros, L. Pertea, and S. L. Salzberg. Efficient implementation
of a generalized pair hidden Markov model for comparative gene finding.
Bioinformatics, 21(9):1782–1788, May 2005.
[11] J. D. McAuliffe, L. Pachter, and M. I. Jordan. Multiple-sequence functional
annotation and the generalized hidden Markov phylogeny. Bioinformatics,
20(12):1850–1860, Aug 2004.
[12] K. Murphy and S. Mian. Modelling gene expression data using dynamic
Bayesian networks. Technical report, Computer Science Division, University of California, Berkeley, CA., 1999.
[13] E. Segal, N. Friedman, D. Koller, and A. Regev. A module map showing conditional activity of expression modules in cancer. Nat. Genet.,
36(10):1090–1098, Oct 2004.
[14] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and
N. Friedman. Module networks: identifying regulatory modules and their
condition-specific regulators from gene expression data. Nat. Genet.,
34(2):166–176, Jun 2003.
[15] E. P. Xing, W. Wu, M. I. Jordan, and R. M. Karp. LOGOS: A modular
Bayesian model for de novo motif detection. J. Bioinform. Comput. Biol.,
2:127–154, 2004.
2
Related documents