Download Academic Background

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Tsun-Mei (Alice) Chang
Department of Chemistry
900 Wood Rd. Box 2000
University of Wisconsin-Parkside
Kenosha, WI 53141
(262)595-2426
6394 Andover Dr.
Gurnee, IL 60031
(847) 816-7661
Email: [email protected]
Academic Background
Ph. D. in Chemical Physics, Columbia University
M. Phil. in Chemical Physics, Columbia University
M. A. in Chemical Physics, Columbia University
B.S. in Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C.
June 1992
May 1990
May 1988
June 1987
Research Experience
Assistant/Associate Professor, University of Wisconsin-Parkside
 Molecular simulations of liquid interfaces
 Study of structures and phase behavior of amphiphilic systems
 Computational investigation of ionic liquids
AWU Summer Faculty Fellowship/Contract, Pacific Northwest National Laboratory
 Gibbs ensemble approach to liquid/vapor phase equilibrium
 Investigation of rotation dynamics of small molecules in various solvents
 Molecular dynamics studies of liquid/liquid interfaces
1999-present
2000-2012
Visiting Scholar, University of Illinois, Urbana-Champaign
1997-1999
 Integral equation study of phase behavior and structures of copolymer solutions and blends
 Investigation of miscibility of polymer blends with various architectures
AWU Postdoctoral Fellow, Pacific Northwest National Laboratory
 Molecular dynamics studies of mass transport processes across liquid interfaces
 Investigation of ion-solvent exchange kinetics
 Development of polarizable potential models for water and organic molecules
1994-1997
Postdoctoral Research Associate, University of California, Los Angeles
1992-1994
 Prediction of metal thin film morphologies using simulations and statistical approaches
 Ab initio study of charge transfer between metal adsorbates and substrates
Research Assistant, Columbia University and University of Wisconsin
1987-1992
 Relaxation dynamics and spectral line broadening of quantum mechanical systems
 Numerical Renormalization group study of electron and exciton transport in disordered
materials
1
Teaching Experience
Assistant/Associate Professor, University of Wisconsin-Parkside
 Chemistry 101: General Chemistry I
 Chemistry 102: General Chemistry II
 Chemistry 115: Chemical Sciences Laboratory
 Chemistry 302: Physical Chemistry I
 Chemistry 303: Physical Chemistry II
 Chemistry 304: Physical Chemistry Laboratory I
 Chemistry 332: Chemical Computations Laboratory
 Chemistry 333: Advanced Chemical Computations Laboratory
 Chemistry 490: Advanced Chemistry Laboratory II
 Chemistry 495: Senior Seminar
1999-present
Department of Materials Science & Engineering, University of Illinois, Urbana-Champaign
 Guest lecturer for Introduction to Polymer Science & Engineering
Department of Chemistry, Columbia University
 Senior Teaching Assistant for General Chemistry Laboratory
 Teaching Assistant for General Chemistry Laboratory
 Teaching Assistant for graduate-level Quantum Mechanics
1999
1998-1999
Computation Experience
Operating Systems: UNIX, VMS, UNICOS, PC, LINUX
Software: AMBER, GAUSSIAN, GAMESS, GVB, MOLPRO, NWCHEM
Programming Languages: FORTRAN, C, BASIC
Publications
1. L. X. Dang, G. K. Schenter, T.-M. Chang, S. M. Kathmann, and T. Autrey, “The Role of
Solvents on the Thermodynamics and Kinetics of Forming Frustrated Lewis Pairs" J. Phys.
Chem. Lett. (submitted)
2. T. Peng, T.-M. Chang, X. Sun, A. V. Nguyen, and L. X. Dang, “Development of TIP4PEwions non-polarizable potential for explicit simulation”, J. Molec. Liq. 173, 47, (2012)
3. L. X. Dang and T.-M. Chang, “Molecular Mechanism of Gas Adsorption into Ionic Liquids: A
Molecular Dynamics Study”, J. Phys. Chem. Lett. 3, 175 (2012) (cover article)
4. C.D. Wick, T.-M. Chang, J. Slocum, and O. Cummings, “Computational Investigation of the nAlkane-Water Interface with Many-Body Potentials: The Effect of Chain Length and Ion
Distributions”, J. Phys. Chem. C116, 783 (2012).
2
5. T.-M. Chang, L. X. Dang, R. Devanathan, and M. Dupuis “Structure and Dynamics of N, NDiethyl-N-Methyl Ammonium-Triflate Ionic Liquid, Neat and with Water, from Molecular
Dynamics Simulations”, J. Phys. Chem. A114, 12764 (2010).
6. C. D. Wick, T.-M. Chang, and L. X. Dang “Molecular Mechanism of CO2 and SO2 Molecules
Binding to the Air/Liquid Interface of 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic
Liquid: A Molecular Dynamics Study with Polarizable Potential Models”, J. Phys. Chem.
B114, 14965 (2010). (cover article)
7. M. Baer, C. J. Mundy, T.-M. Chang, F. M. Tao, and L. X. Dang “Interpreting Vibrational SumFrequency Spectra of Sulfur Dioxide at the Air/Water Interface: A Comprehensive Molecular
Dynamics Study” J. Phys. Chem. B114, 7245 (2010).
8. X. Q. Sun, T.-M. Chang, Y. Cao, S. Niwayama, W. L. Hase, and L. X. Dang, “Solvation of
Dimethyl Succinate in a Sodium Hydroxide Aqueous Solution. A Computational Study”, J.
Phys. Chem. B113, 6473 (2009).
9. J. L. Daschbach, X. Q. Sun, T.-M. Chang, P. K. Thallapally, P. McGrail, and L. X. Dang
“Computational Studies of Load-Dependent Guest Dynamics and Free Energies of Inclusion
for CO2 in Low-Density p-tert-Butylcalix[4]arene at Loadings up to 2:1”, J. Phys. Chem. A113,
3369 (2009).
10. T.-M. Chang and L. X. Dang, “Computational Studies of Structures and Dynamics of 1, 3Dimethylimidazolim Salt Liquids and their Interfaces Using Polarizable Potential Models”, J.
Phys. Chem., J. Phys. Chem. A113, 2127 (2009).
11. T.-M. Chang and L. X. Dang, “Computational studies of liquid water and diluted water in
carbon tetrachloride”, J. Phys. Chem. A112, 1694 (2008). (cover article)
12. J. L. Daschbach, T.-M. Chang, L. R. Corrales, L. X. Dang, and P. McGrail, “Molecular
Mechanisms of Hydrogen-Loaded Beta-Hydroquinone Clathrate”, J. Phys. Chem. B110 (cover
article), 17291 (2006).
13. T.-M. Chang and L. X. Dang, “Recent Advances in Molecular Simulations of Ion Solvation at
Liquid Interfaces”, Chem. Rev. 106, 1305 (2006) (cover article)
14. L. X. Dang, T.-M. Chang, M. Roeselova, B.C. Garrett, and D. J. Tobias, “On NO3--H2O
interactions in aqueous solutions and interfaces”, J. Chem. Phys. 124, 066101 (2006).
15. T.-M. Chang and L. X. Dang, “Liquid/Vapor Interface of Methanol-Water Mixtures: A
Molecular Dynamics Study”, J. Phys. Chem. B106, 235 (2005).
16. L. X. Dang and T.-M. Chang, “Many-Body Interactions in Liquid Methanol and its
Liquid/Vapor Interface: a Molecular Dynamics Study”, J. Chem. Phys. 119, 9851 (2003).
17. T.-M. Chang and L. X. Dang, “On the Rotational Dynamics of an NH4+ Ion in Water”, J. Chem.
Phys. 118, 8813 (2003).
3
18. L. X. Dang and T.-M. Chang, “Computational Studies of Liquid Water Interfaces” in “Water in
Confining Geometries”, ed. V. Buch and J. P. Devlin, (Springer-Verlag, New York, 2003).
19. R. Patil, K. S. Schweizer, and T.-M. Chang, “Stretching, Packing, and Thermodynamics in
Highly Branched Polymer Melts”, Macromolecules 36, 2544 (2003)
20. L. X. Dang, T.-M. Chang, and A. Z. Panagiotopoulos, “Gibbs Ensemble Monte Carlo
Simulations of Coexistence Properties of a Polarizable Potential Model of Water”, J. Chem.
Phys. 117, 3522 (2002).
21. L. X. Dang and T.-M. Chang, “Molecular Mechanism of Ion Binding to the Liquid/Vapor
Interface of Water”, J. Phys. Chem. B106, 235 (2002). (cover article)
22. T.-M. Chang and L. X. Dang, “Mass Transfer across the CCl4-H2O Liquid/Liquid Interface
with Polarizable Potential Models", Recent Res. Devel. in Physical Chem. 2, 867 (1999).
23. T.-M. Chang and L. X. Dang, “Detailed Study of Potassium Solvation Using Molecular
Dynamics Techniques”, J. Phys. Chem. 103, 4714 (1999).
24. T.-M. Chang and L. X. Dang, “Transfer of chloroform across the water-carbon tetrachloride
liquid-liquid interface”, J. Chem. Phys. 108, 818 (1998).
25. T.-M. Chang and L. X. Dang, “Ion solvation in polarizable chloroform: A molecular dynamics
study”, J. Phys. Chem. 101, 10518 (1997).
26. L. X. Dang and T.-M. Chang, “Molecular dynamics study of water clusters, liquid and
liquid/vapor interface of water with many-body potentials” J. Chem. Phys. 106, 8149 (1997).
27. T.-M. Chang, L. X. Dang, and K. A. Peterson, “Computer simulation of chloroform with a
polarizable potential model”, J. Phys. Chem. 101, 3413 (1997).
28. T.-M. Chang and L. X. Dang, “Transfer of CH4 across CCl4-H2O liquid/liquid interface with
polarizable potential models” Chem. Phys. Lett. 263, 39 (1996).
29. T.-M. Chang and L. X. Dang, “Molecular dynamics simulations of CCl4-H2O liquid/liquid
interface with polarizable potential models” J. Chem. Phys. 104, 6772 (1996).
30. T.-M. Chang, K. A. Peterson, and L. X. Dang, “Molecular dynamics simulations of liquid,
interface, and ionic solvation of polarizable carbon tetrachloride” J. Chem. Phys. 103, 7502
(1995).
31. T.-M. Chang and E. A. Carter, “Equilibrium structures and growth mechanisms for fcc(111)
thin metal films” J. Phys. Chem. 99, 7637 (1995).
32. T.-M. Chang and E. A. Carter, “Mean-field theory of heteroepitaxial thin metal film growth”
Surf. Sci. 318, 187 (1994).
4
33. B. B. Laird, T.-M. Chang, and J. L. Skinner, “On the ratio T2/T1 for non-Ohmic spectral
densities” J. Chem. Phys. 101, 852 (1994).
34. T.-M. Chang and J. L. Skinner, “Non-Markovian population and phase relaxation and
absorption lineshape for a two-level system strongly coupled to a harmonic quantum bath”
Physica A 193, 483 (1993).
35. T.-M. Chang, J. D. Bauer, and J. L. Skinner, “Critical exponents for Anderson localization” J.
Chem. Phys. 93, 8973 (1990).
36. J. D. Bauer, T.-M. Chang, and J. L. Skinner, “Correlation length and inverse-participation-ratio
exponents and multifractal structure for Anderson localization” Phys. Rev. B. 42, 8121 (1990).
37. J. L. Skinner, T.-M. Chang, and J. D. Bauer, “Localization critical exponents”, NATO ASI,
(1990).
38. J. L. Skinner, J. D. Bauer, and T.-M. Chang, “Fractal dimension and correlation length
exponents for Anderson localization” J. Lumin. 45, 333 (1990).
5
Related documents