Download Droplet microfluidics: a tool for massively parallel single-cell

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Droplet microfluidics:
a tool for massively parallel single-cell analysis
Juozas Nainys
Vilnius University, Lithuania
Evolution in electronics
• Miniaturization Enables Fast Processing Speeds
• Integration of Multiple Functions on One Device
• Scaleable
2
Evolution of liquid handling
❍ Each chemical in a separate tube
Labels
❍ Hand manipulation
1970
❍ Handwritten labeling
Glass wear
❍ 1000s of assays per week
❍ Each chemical in well of a plate
Barcodes
❍ Robotic handling
1990
❍ Barcode labeling
❍ 1000s of assays per hour
Fluorescent
❍ Each chemical in microscopic droplet
Labels
❍ Microfluidic handling on chip
2005
❍ Fluorescent labels (“Barcodes”)
❍ 1,000’s of assays per second
Microfluidic droplets
3
Microfluidic systems
96 reactions
(latest chip: ~ 800 reactions)
Valve based
Well based
~10,000 reactions
1 well = 10 µm
Droplet based
>1,000,000 reactions
4
in vitro compartmentalization
Each droplet can be considered as a single tube or a 96-well
Oil
50 µm
Reagents
Reaction volume: 1pL – 1nL
Oil
Reaction volume: 1µL – 200µL
Reaction volume: >10 ml
5
Reduced volumes improve reaction sensitivity
1 µL
1 nL
1 pL
1 fM
1 pM
1 nM
6
Encapsulation of biological samples
❍ Emulsification of different liquids
❍ Each droplet can have a single molecule, bead or cell
❍ Precise and uniform
❍ Reproducible
❍ Up to 20,000 per second
❍ 1 to 200 μm size drops
Reagents
50 µm
Beads
Cells
7
Droplet microfluidics for single-cell biology
Cells
Oil
Speed 0.01x
Loading module
Reagent A
200µm
Reagent B Oil
• Small reaction volumes (pL to nL)
• Access to >10.000 single-cells per experiment
• one cell = one droplet = one well
8
Single-cell profiling
Population Single-cell
average measurement
9
Single-cell barcoding & sequencing
DNA barcoding
beads
Cells
Main disadvantage: cell + bead co-encapsulation events are rare
10
11
How do we make hydrogel beads?
H
N
O
O
P
O O-
O
N
H
NO2
O
Acrylic phosphoroamidite Photo-cleavable
moiety
spacer
PE1 primer site
T7 RNAP promoter
O
O P O CGATGACGTAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTC -3'
O-
Acrylamide
Ac-DNA primers
100 µm
3’
3’
3’
3’
3’
Hydrogel
beads
Hydrogel bead collection
ssDNA primers
Hydrogel bead with ssDNA
12
Barcode synthesis (split & pool)
3’
3’
Photo-cleavable
spacer
3’
3’
T7 RNAP
promoter
PE1 site
3’
3’
Hydrogel
beads
PE1* site
barcode1*
W1* site
PE1* site
barcode1*
W1* site
PE1 site
barcode1
W1 site
ssDNA primers
5’
3’
PE1 site
ssDNA “stubs”
5’
3’
3’
W1* site
barcode2*
UMI*
poly-A
5’
ssDNA “barcodes”
W1* site
barcode2*
UMI*
poly-A
5’
3’
3’
W1 site
barcode2
UMI
poly-T
W1 site
barcode2
UMI
poly-T
3’
3’
3’
3’
Hydrogel
beads
Photo-cleavable
spacer
T7 RNAP PE1 site
promoter
3’
barcode1
barcoded ssDNA primers
[SPC]-[T7RNApromoter]-[SEQSITE]-[CELL-BCD1]-[ADAPTER]-[CELL-BCD2]-[UMI]-[polyT]
13
Bead encapsulation real-time
Reagents
Cells
~100 drops s-1
Hydrogel
beads
14
Co-encapsulation: 1 cell + 1 barcode
RT/lysis
Encapsulation
Cells
Hydrogel
beads
Collection
15
Lysis reagents
+ RT mix
T7-promoter barcode UMI polyT
5’-Acryd-PC3’
Cells
Barcoding
beads
3’
3’
3’
3’
3’
Hydrogel
beads
Synthesize
barcode beads
Encapsulate
cells+beads
Photo-release
barcodes
barcoded ssDNA primers
RT/
barcoding
reaction
Break
droplets
Library prep /
enrich targets
Sequence
16
Lysis reagents
+ RT mix
T7-promoter barcode UMI polyT
5’-Acryd-PC3’
cell lysis
Cells
Barcoding
beads
3’
3’
3’
3’
3’
Hydrogel
beads
Synthesize
barcode beads
Encapsulate
cells+beads
Photo-release
barcodes
barcoded ssDNA primers
RT/
barcoding
reaction
Break
droplets
Library prep /
enrich targets
Sequence
17
Lysis reagents
+ RT mix
T7-promoter barcode UMI polyT
5’-Acryd-PC3’
DNA barcode release
Cells
Barcoding
beads
3’
3’
3’
3’
3’
Hydrogel
beads
Synthesize
barcode beads
Encapsulate
cells+beads
Photo-release
barcodes
barcoded ssDNA primers
RT/
barcoding
reaction
Break
droplets
Library prep /
enrich targets
Sequence
18
Emulsion RT reaction
Lysis reagents
+ RT mix
Droplet
T7-promoter barcode
UMI polyT
Emulsion
5’-Acryd-PC3’
mRNA
primer
TT TT
TTT
Cells
T
TT TT
TTTT
Barcoding
beads
sequencing
adaptor
T7 RNAP
promoter
mRNA
Synthesize
barcode beads
Encapsulate
cells+beads
Photo-release
barcodes
RT/
barcoding
reaction
Break
droplets
UMI
cell barcode
TTTTT
AAAAA
cDNA
Library prep /
enrich targets
Sequence
19
RNA quantity (BioAnalyzer [FU])
Encapsulate
cells
Reverse
transcription
Break
droplets
Library prep
Sequence
aRNA Library
Primer-dimer
UV pre-RT
mRNA capture
with released
DNA barcodes
UV post-RT
MW
marker
mRNA capture
on the beads
aRNA length post-IVT (nt)
20
Breaking and pooling
Lysis reagents
+ RT mix
mRNA
T7-promoter barcode UMI polyT
5’-Acryd-PC3’
primer
TT TT
TTT
T
TT TT
Cells
TTTT
Barcoding
beads
sequencing
adaptor
T7 RNAP
promoter
UMI
cell barcode
mRNA
Synthesize
barcode beads
Encapsulate
cells+beads
Photo-release
barcodes
RT/
barcoding
reaction
Break
droplets
TTTTT
AAAAA
cDNA
Library prep /
enrich targets
Sequence
21
Library prep
RT
Second strand
synthesis
Lysis reagents
+ RT mix
IVT
KAPA
PCR
Second
RT
step
Illumina
seq
T7-promoter barcode UMI polyT
5’-Acryd-PC3’
Library prep.
Cells
T7 Pol linear amplification
} cell 1
Barcoding
beads
} cell 2
} cell 3
} cell n
Synthesize
barcode beads
Encapsulate
cells+beads
Photo-release
barcodes
RT/
barcoding
reaction
Break
droplets
Library prep /
enrich targets
Sequence
22
Lysis reagents
+ RT mix
T7-promoter barcode UMI polyT
5’-Acryd-PC3’
Data analysis
Cells
Barcoding
beads
Synthesize
barcode beads
Encapsulate
cells+beads
Photo-release
barcodes
RT/
barcoding
reaction
Break
droplets
Library prep /
enrich targets
Sequence
23
Zilionis, Rapolas, Nainys, Juozas et al. "Single-cell barcoding and sequencing using droplet microfluidics.”
Nature Protocols 12.1 (2017): 44-73.
24
Control: can we distinguish different cells?
oil
mouse ES
oil
human
lymphocytes
x1
x2
multi-
4% multi-cell droplets
Mapped to mouse
(x12)
Mapped to human
Klein, Allon M., Mazutis, Linas, et al. "Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells." Cell 161.5 (2015): 1187-1201.
25
Low technical
noise
Reduced reaction
volume reduces
technical noise
Klein, Allon M., Mazutis, Linas, et al. "Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells." Cell 161.5 (2015): 1187-1201.
26
COMPUTATIONAL
ALGORITHMS
27
Computational analyses
Low level
•
•
•
•
Demultiplex
Align transcripts
Create cell x count matrix
Resource intensive
High level
•
•
•
•
•
Dimensionality reduction
Clustering
Imputation
Visualization
Done locally
28
Dirty secret of scRNAseq
29
Data dropout problem
Francesconi,M.,&Lehner,B.(2014).Theeffectsofgeneticvariationongeneexpressiondynamicsduringdevelopment. Nature, 505(7482),208-211.
30
Benefits of imputation
MAGIC
(Markov Affinity-based Graphical Imputation of Cells)
Paul,F.,etal.(2015).Transcriptionalheterogeneityandlineagecommitmentinmyeloidprogenitors. Cell, 163(7),1663-1677.
31
Benefits of imputation
van Dijk, David, Nainys Juozas et al. "MAGIC: A diffusion-based imputation method reveals gene-gene interactions in single-cell RNAsequencing data." bioRxiv (2017): 111591.
32
What’s next in the field?
•
•
•
•
Whole transcriptome
Single-cell epigenomics (ATAC-Seq)
Targeted transcriptomics
Non-coding RNA
Hydrogel beads
with customized primers
3’
Assay reagents
3’
3’
3’
Cells
3’
Hydrogel
beads
ssDNA primers
Hydrogel
beads
33
Fast-track options
Acknowledgements
Linas Mazutis
Dana Pe’er
David van Dijk
Ambrose Carr
Vaidotas Kiseliovas
Rapolas Zilionis
Microfluidic modules control the flow of droplets
Formulate
Load
Combine
Mix
Store
Detect
Re-Loading
Split
Direct
36
Integrates microfluidics platform
Library (genes,
cells, RNA, etc)
Biochemical
Reagents
Mixing
Negatives
Incubation
Microfluidics chip
Detection
Droplet
fusion
Sorting
Data
collection
Substrate
Positives
37
Surfactants
Surfactants used to stabilize droplets are the key
Microfluidic channel
Water
Poly(ethylene)
glycol
Na+
SDS
Droplet
Oil
Fluorinated
polypropylene
tails
Surfactant
Poor surfactant
Efficient surfactant
100 µm
100 µm
Slowed down ~ 100-times
38
Thank you!
Related documents