Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Beyond Zero Resistance – Phenomenology of Superconductivity Nicholas P. Breznay SASS Seminar – Happy 50th! SLAC April 29, 2009 Preview • Motivation / Paradigm Shift • Normal State behavior • Hallmarks of Superconductivity – Zero resistance – Perfect diamagnetism – Magnetic flux quantization • Phenomenology of SC – London Theory, Ginzburg-Landau Theory – Length scales: l and x – Type I and II SC’s Physics of Metals - Introduction • Atoms form a periodic lattice • Know (!) electronic states key for the behavior we are interested in • Solve the Schro … H E 2 2 H (r ) V (r ) 2m … in a periodic potential V (r ) V (r K ) K K is a Bravais lattice vector Wikipedia Physics of Metals – Bloch’s Theorem 2 2 V ( r ) E 2m • Bloch’s theorem tells us that eigenstates have the form … ik r ( r ) e u( r ) … where u(r) is a function with the periodicity of the lattice … u( r ) u( r K ) Free particle Schro 2 2 H E 2m ik r ( r ) Ae Wikipedia Physics of Metals – Drude Model • Model for electrons in a metal – Noninteracting, inertial gas – Scattering time t p (t ) d damping term p(t ) qE dt t • Apply Fermi-Dirac statistics E Ef 2k 2 E 2m k http://www.doitpoms.ac.uk/tlplib/semiconductors/images/fermiDirac.jpg Physics of Metals – Magnetic Response in SI B m0 ( H M ) • Magnetism in media • Larmor/Landau diamagnetism M cH linear response B m0 (1 c ) H – Weak anti-// response m0 m r H • Pauli paramagnetism mH – Moderate // response familiarly • Typical c values – – cCu~ -1 x 10-5 – cAl~ +2 x 10-5 minimal response to B fields – mr ~ 1 B = m0H E E Ef Ef H k k Physics of Metals – Drude Model Comments • Wrong! – Lattice, e-e, e-p, defects, – t ~ 10-14 seconds MFP ~ 1 nm p (t ) d p(t ) qE dt t ne2t E J m p 2 ne2 2 ( ) 1 2 , p m0m • Useful! – DC, AC electrical conductivity – Thermal transport k 2k B 2 8 W L 2 . 44 10 sT 3e 2 K2 Lmeas 2.1 2.6 108 • Lorenz number k/sT – Heat capacity of solids Cv T AT 3 Electronic contribution Lattice meas ~1 fe's Wikipedia Preview • Motivation / Paradigm Shift • Normal State behavior • Hallmarks of Superconductivity – Zero resistance – Perfect diamagnetism – Magnetic flux quantization • Phenomenology of SC – London Theory, Ginzburg-Landau Theory – Length scales: l and x – Type I and II SC’s Hallmark 1 – Zero Resistance • Metallic R vs T – e-p scattering (lattice interactions) at high temperature – Impurities at low temperatures R Lattice (phonon) interactions Electrical resistance Residual Resistance (impurities) R0 TD/3 Temperature Hallmark 1 – Zero Resistance • Superconducting R vs T R R0 “Transition temperature” Tc Temperature Hallmark 1 – Zero Resistance • Hard to measure “zero” directly • Can try to look at an effect of the zero resistance • Current flowing in a SC ring – Not thought experiment – standard configuration for highfield laboratory magnets (1020T) • Nonzero resistance changing current changing magnetic field • One such measurement Magnetic (dipole) field I Circulating supercurrent Superconductor SC 1018 Cu From Ustinov “Superconductivity” Lectures (WS 2008-2009) Hallmark 1 – Zero Resistance Notes • R = 0 only for DC • AC response arises from kinetic inductance of superconducting electrons – Changing current electric field • Model: perfect resistor (normal electrons), inductor (SC electrons) in parallel Vac L R • Magnitude of “kinetic inductance”: At 1 kHz, L ~ 10 12 RNormal http://www.apph.tohoku.ac.jp/low-temp-lab/photo/FUJYO1.png Hallmark 2 – Conductors in a Magnetic Field Normal metal E B 0 B E t E B m0 J t E j Apply field Field off B(t ) ~ B0 (1 e t /t ) t L/ R Hallmark 2 – Conductors in a Magnetic Field Normal metal Apply field Perfect (metallic) conductor Apply field Field off Cool Superconductor Apply field Cool Hallmark 2 – Meissner-Oschenfeld Effect Superconductor • B = 0 perfect diamagnetism: cM = -1 B m0 ( H M ) 0 M cH H Apply field • Field expulsion unexpected; not discovered for 20 years. B/m0 -M Hc H Hc H Cool Hallmark 3 – Flux Quantization B dA n0 Earth’s magnetic field ~ 500 mG, so in 1 cm2 of BEarth there are ~ 2 million 0’s. h hc 0 ~ 2 1015V s ~ 2 107 G cm 2 2e 2e first appearance of h in our description; quantum phenomenon Total flux (field*area) is integer multiple of 0 Hallmark 3 – Flux Quantization Apply uniform field Measure flux Aside – Cooper Pairing • In the presence of a weak attractive interaction, the filled Fermi sphere is unstable to the formation of bound pairs electrons • Can excite two electrons d above Ef, obtain bound-state energy < 2Ef due to attraction • New minimum-energy state allows attractive interaction (e-p scattering) by smearing the FS The physics of superconductors Shmidt, Müller, Ustinov Preview • Motivation / Paradigm Shift • Normal State behavior • Hallmarks of Superconductivity – Zero resistance – Perfect diamagnetism – Magnetic flux quantization • Phenomenology of SC – London Theory, Ginzburg-Landau Theory – Length scales: l and x – Type I and II SC’s SC Parameter Review • Magnetic field energy density • Extract free energy difference between normal and SC states with Hc Hc g m0 2 2 • Know magnetic response important; use R = 0 + Maxwell’s equations … ? g(H) gnormal state gsc state Hc H London Theory – 1 • Newton’s law (inertial response) for applied electric field d F m vs dt d JS eE m dt ns e d E J S dt m ns e 2 Supercurrent density is J s ns evs 2 ns e E dJ S m dt Faraday’s law ns e2 E dJ S m dt d ns e2 JS dt m B 0 n e dB dJ s S m dt dt 2 ns e2 JS B m We know B = 0 inside superconductors Fritz & Heinz London, (1935) London Theory – 2 London Equations d E J S dt m ns e 2 ns e2 JS B m =0; Gauss’s law for electrostatics Ampere’s law E B m0 J m0 0 t B m0 J 2 ns e2 B B m0 B m 2 ns e 2 B m0 B m Magnetic Penetration Depth - l • Screening not immediate; characteristic decay length 2 1 B 2B m l m0 n s e 2 2 l • Typical l ~ 50 nm • m,e fixed – l uniquely specifies the superconducting electron density ns Sometimes called the “superfluid density” B( z ) B0e z / l SC B(z) B0 l z Ginzburg-Landau Theory - 1 • First consider zero magnetic field • Order parameter • Associate with cooper pair 2 density: ns Free energy of superconducting state Free energy of normal state fs fn 2 2 4 • Expand f in powers of ||2 To make sense, > 0, (T) Free energy of SC state ~ # of cooper pairs Need > -Infinity; B > 0 Ginzburg-Landau Theory - 2 fs fn 2 2 4 • For < 0, solve for minimum in fs-fn … fs fn 2 d d 2 4 2 f f 0 s n 2 2 http://commons.wikimedia.org/wiki/File:Pseudofunci%C3%B3n_de_onda_(teor%C3%ADa_Ginzburg-Landau).png Ginzburg-Landau Theory - 3 fs fn 2 2 4 2 • Know that fn-fs is the condensation energy: 2 f s fn 2 fn fs 1 2 Bc 2 m0 fn fs 1 2 Bc 2 m0 m0 2 Bc Ginzburg-Landau Theory - 4 p2 H V , 2m • Momentum term in H: p i 2 B f magnetic 2 m0 • Now – include magnetic field p i qA • Classically, know that to include magnetic fields … fs fn 2 2 4 2 B 1 2 i 2eA f s fn 2 2m 2m0 2 4 Ginzburg-Landau Theory - 5 2 B 1 • Free Energy Density f s f n i 2eA 2 2 2m 2m0 2 dF 0 4 2 B 4 1 2 2 i 2eA dV 0 d 2 2m 2 m0 1 i 2eA2 0 2m 2e J Re * i 2eA m 2 Ginzburg-Landau Theory - 6 2 Take real, normalize 1 i 2eA2 0 2m 2 Define Linearize in x (T ) 3 2 2 0 2m 2 2 3 0 (T ) 2m 2 (T ) 2m 2 2 0 x (T ) 2 Superconducting coherence length - x 2 1 i 2eA2 0 2m 2 2 0 x (T ) 2 • Characteristic length scale for SC wavefunction variation Vacuum SC (x) x Superconductor x Pause • London Theory magnetic penetration depth l • Ginzburg-Landau Theory coherence length x lx two kinds of superconductors! Surface Energy and “Type II” H(x) H(x) (x) l (x) x l x x x x l l x Surface Energy: x l H(x) (x) x l SC energy penalty for excluding B gmagnetic(x) gsc(x) 2 g cond H m0 c 2 2 g cond H m0 c 2 energy gain for being in SC state Surface Energy: x l H(x) (x) x l SC energy penalty for excluding B gmagnetic(x) gsc(x) gnet(x) 2 g cond H m0 c 2 2 g cond H m0 c 2 energy gain for being in SC state net energy penalty at a surface / interface Surface Energy: x l H(x) (x) x SC l energy penalty for excluding B gmagnetic(x) gsc(x) 2 g cond H m0 c 2 2 g cond H m0 c 2 energy gain for being in SC state gnet(x) net energy gain at a surface / interface Type I Type II k H(x) (x) l x l x l x H(x) (x) l x x l gmagnetic(x) gmagnetic(x) 1 k 2 gsc(x) k gsc(x) gnet(x) gnet(x) • elemental superconductors x nm l (nm) Tc (K) Hc2 (T) Al 1600 50 1.2 .01 Pb 83 39 7.2 Sn 230 51 3.7 1 2 • predicted in 1950s by Abrikosov x nm l (nm) Tc (K) Hc2 (T) Nb3Sn 11 200 18 25 .08 YBCO 1.5 200 92 150 .03 MgB2 5 185 37 14 Type II Superconductors x l Normal state cores Superconducting region H http://www.nd.edu/~vortex/research.html The End • London Theory magnetic penetration depth l • Ginzburg-Landau Theory coherence length x lx two kinds of superconductors