Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
SECTION 7.4 7.4 ■ Find the length of the arc of the given curve from point A to point B. A1, 0, 2. 9y xx 3 ; 2 3. y x 1 ; 2 3 B8, 3 B(4, A0, 0, 2 3 ■ Set up, but do not evaluate, an integral for the length of the curve. 10 –12 10. y tan x, ) 11. y x 3, A1, 0, B2, 1 4. 12xy 4y 4 3; ■ 5–9 ■ ■ ■ ■ ■ ■ ■ ■ ■ 1 0x1 13. y x 3, 1x3 8. y ln1 x , 0 x 12 2 9. y lncos x, Copyright © 2013, Cengage Learning. All rights reserved. ■ ■ ■ 0 x 4 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0x1 14. y 1x, 6 x 3 7. y lnsin x, ■ 0 x 2 13–16 ■ Use Simpson’s Rule with n 10 to estimate the arc length of the curve. 4 1 x 6. y , 4 8x 2 0x1 ■ Find the length of the curve. 5. y 3 x 2 232, 0 x 4 12. y e x cos x, A( 127 , 1), B( 67 24 , 2) ■ ■ 1 S Click here for solutions. 1– 4 2 ■ ARC LENGTH A Click here for answers. 1. y 1 x 23; ARC LENGTH 15. y sin x, 0x 16. y tan x, 0 x 4 ■ ■ ■ ■ ■ ■ 1x2 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 2 ■ SECTION 7.4 ARC LENGTH 7.4 ANSWERS E Click here for exercises. √ √ 1 1. 27 80 10 − 13 13 2. 14 3 √ 13−8 3. 13 27 4. 59 24 5. 43 6. 181 9 7. ln 1 + √2 3 8. ln 3 − 1 2 √ 2+1 π/4 √ 10. 0 1 + sec4 x dx 1√ 11. 0 1 + 9x4 dx π/2 12. L = 0 1 + e2x (1 − sin 2x) dx 9. ln 13. 1.548 14. 1.132 15. 3.820 Copyright © 2013, Cengage Learning. All rights reserved. 16. 1.278 S Click here for solutions. SECTION 7.4 7.4 ARC LENGTH ■ 3 SOLUTIONS E Click here for exercises. 2/3 ⇒ dy/dx = − 23 x−1/3 1. y = 1 − x x4 dy 1 1 + 2 ⇒ = x3 − 3 ⇒ 4 8x dx 4x 2 1 1 dy 1 1 = 1 + x6 − + = x6 + + . So 1+ dx 2 16x6 2 16x6 3 3 1 −3 1 4 1 −2 3 L = 1 x + 4x dx = 4 x − 8 x 1 81 1 1 = 4 − 72 − 4 − 18 = 181 9 6. y = ⇒ 1 + (dy/dx)2 = 1 + 49 x−2/3 . So 8 √ 2/3 8 9x +4 4 1 + 2/3 dx = dx L= 9x 3x1/3 1 1 40 √ 1 = 18 u du u = 9x2/3 + 4, du = 6x−1/3 dx 13 40 √ √ 1 1 = 27 80 10 − 13 13 = 27 u3/2 13 Or: Let u = x1/3 . 7. y = ln (sin x) 2 2 1/2 2. 9y = x (x − 3) , 3y = x ⇒ y = 12 x1/2 − 12 x−1/2 (x − 3), y = 13 x3/2 − x1/2 2 ⇒ (y ) = 14 x − 1 2 + 12 x−1 2 ⇒ 1 + (y ) = 14 x + 12 + 14 x−1 ⇒ 1 + (y )2 = 12 x1/2 + 12 x−1/2 . So 4 4 L = 0 12 x1/2 + 12 x−1/2 dx = 12 23 x3/2 + 2x1/2 0 14 = 12 16 + 4 = 3 3 3. y 2 = (x − 1)3 , y = (x − 1)3/2 3 2 ⇒ dy/dx = (x − 1)1/2 2 ⇒ 9 4 1 + (dy/dx) = 1 + (x − 1). So 2 9 2 x− L = 1 1 + 94 (x − 1) dx = 1 4 2 √ 3/2 13−8 = 13 27 = 49 · 23 94 x − 54 5 4 dx 4 4. 12xy = 4y + 3, x = −1 y y + 3 4 ⇒ Copyright © 2013, Cengage Learning. All rights reserved. 2 5. y = 13 x + 2 3/2 ⇒ √ 1/2 (2x) = x x2 + 2 ⇒ dy/dx = 2 x + 2 2 1 + (dy/dx)2 = 1 + x2 x2 + 2 = x2 + 1 . So 1 1 L = 0 x2 + 1 dx = 13 x3 + x 0 = 43 . 1 2 −2 y dx = y2 − , dy 4 2 1 dx y −4 = y4 − + so ⇒ dy 2 16 2 dx 1 y −4 = y4 + + ⇒ 1+ dy 2 16 2 dx y −2 1+ = y2 + . So dy 4 3 2 2 y y −2 1 dy = − y2 + L= 4 3 4y 1 1 8 1 1 1 59 = 3 − 8 − 3 − 4 = 24 dy dx 2 dy cos x = = cot x ⇒ dx sin x = 1 + cot2 x = csc2 x. So π/3 π/3 csc x dx = [ln (csc x − cot x)]π/6 √ = ln √23 − √13 − ln 2 − 3 √ 2 √ 3 = ln 1 + √ = ln √3 2 1− √3 = ln 2 + 3 3 ( ) L= π/6 dy −2x ⇒ = dx 1 − x2 2 2 1 + x2 dy 4x2 =1+ = . So 1+ dx (1 − x2 )2 (1 − x2 )2 1/2 1/2 1 + x2 2 dx = L= −1 + dx 1 − x2 (1 − x) (1 + x) 0 0 1/2 1 1 dx −1 + + = 1+x 1−x 0 2 8. y = ln 1 − x ⇒ = [−x + ln (1 + x) − ln (1 − x)]1/2 0 1 3 1+ ⇒ = − 12 + ln 32 − ln 12 − 0 = ln 3 − 1 2 1 (− sin x) = − tan x cos x 2 ⇒ 1 + (y ) = 1 + tan2 x = sec2 x. So √ π/4 = ln 2 + 1 L = 0 sec xdx = ln (sec x + tan x)|π/4 0 9. y = ln (cos x) ⇒ y = 2 ⇒ 1 + (y ) = 1 + sec4 x. So π/4 √ 1 + sec4 x dx. L= 0 10. y = tan x 3 ⇒ y = 3x2 1√ L = 0 1 + 9x4 dx. 11. y = x 2 ⇒ 1 + (y ) = 1 + 9x4 . So x ⇒ y = ex (cos x − sin x) ⇒ 2 1 + (y ) = 1 + e2x cos2 x − 2 cos x sin x + sin2 x 12. y = e cos x = 1 + e2x (1 − sin 2x) π/2 1 + e2x (1 − sin 2x) dx. So L = 0 4 ■ SECTION 7.4 ARC LENGTH 2 2 ⇒ 1 + (y ) = 1 + 3x2 = 1 + 9x4 ⇒ √ 1√ L = 0 1 + 9x4 dx. Let f (x) = 1 + 9x4 . Then by Simpson’s Rule with n = 10, 3 13. y = x L≈ 1/10 3 [f (0) + 4f (0.1) + 2f (0.2) + 4f (0.3) + · · · + 2f (0.8) + 4f (0.9) + f (1)] ≈ 1.548 2 dy 1 1 dy 1 14. y = = 1+ 4. ⇒ =− 2 ⇒ 1+ x dx x dx x 1 Therefore, with f (x) = 1 + 4 , x 2 L = 1 1 + 1/x4 dx ≈ S10 = 2−1 10 · 3 [f (1) + 4f (1.1) + 2f (1.2) + 4f (1.3) + 2f (1.4) + 4f (1.5) + 2f (1.6) + 4f (1.7) + 2f (1.8) + 4f (1.9) + f (2)] ≈ 1.132104 2 2 15. y = sin x, 1 + (dy/dx) = 1 + cos x, √ π√ L = 0 1 + cos2 x dx. Let g (x) = 1 + cos2 x. Then π L ≈ π/10 g (0) + 4g 10 + 2g π5 + 4g 3π 3 π 3π 10 + 2g 2π + 4g + 2g + 4g 7π 5 2 5 10 + 2g 4π + 4g 9π + g (π) 5 10 ≈ 3.820 2 ⇒ 1 + (y ) = 1 + sec4 x. So √ π/4 √ L= 0 1 + sec4 x dx. Let g (x) = 1 + sec4 x. Then π L ≈ π/40 g (0) + 4g 40 + 2g 2π + 4g 3π 3 40 5π 6π 40 7π + 2g 4π + 4g + 2g + 4g 40 40 8π 40 9π 40 π + 2g 40 + 4g 40 + g 4 ≈ 1.278 Copyright © 2013, Cengage Learning. All rights reserved. 16. y = tan x