Download Supplemental Table IV

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Supplemental Table I. Information on ERF genes from Arabidopsis, japonica and
indica rice closely related to BERF1.
Percentages of aminoacid identity and similarity with BERF1 are reported (s, short version;
l, long version). Lines separate distinct loci. Where the same gene has been identified in
both japonica and indica rice, identity and similarity with BERF1 are given only with the
japonica sequence. Chromosomal locations are reported with reference to the TIGR
japonica rice genome sequence and the TAIR Arabidopsis genome sequence. *Sub1A is
only present in indica rice where it maps on chromosome 9, 45 kb from Sub1B (Xu et al.,
2006).
TIGR ID/
gene
species
GenBank
Protein
Chromosome,
coordinates
Accession
length
% identity
s-BERF1
% identity
l-BERF1
reference
63%
68%
Nakano et al.,
(2006); Lin et al.,
(2007)
(aa)
9,
OsERF72/
OsEBP2
Japonica rice
Os09g26420
OsBIERF1
Indica rice
AY831392
OsERF71
Japonica rice
Os06g09390
1595854115961244
396
399
Cao et al. (2006)
6,
362
41,3%
41,5%
Nakano et al.,
(2006)
365
40,9%
41%
Nakano et al.,
(2006)
365
40,9%
41%
Cheong et al.,
(2003)
250
30,5%
30,5%
Nakano et al.,
(2006)
244
30,5%
30,5%
Xu et al., (2006)
232
26,7%
26,7%
Nakano et al.,
(2006)
235
26,7%
25,7%
Xu et al., (2006)
281
28%
26%
Xu et al., (2006)
359
36,7%
36,6%
Okamuro et al.,
(1997)
380
38,6%
36,7%
Okamuro et al.,
(1997)
4730451- 4732320
2,
OsERF70
Japonica rice
Os02g54160
OsEREBP1
Indica rice
AF193803
OsERF63
Japonica rice
Os09g11480
3319665033194455
9,
6404950- 6403747
Sub1b
Indica rice
DQ453964
OsERF73
Japonica rice
Os09g11460
9,
6388653-6387955
Sub1c
Indica rice
DQ453965
Sub1A
Indica rice
DQ011598
AtERF74/
RAP2.12
Arabidopsis
thaliana
At1g53910
AtERF75/
RAP2.2
Arabidopsis
thaliana
At3g14230
9*
1,
2013878020140638
3,
4737153- 4739143
Supplemental Table II. Information on EIL genes from Arabidopsis and rice.
Percentages of aminoacid identity and similarity with BEIL are reported. Chromosomal
locations are indicated with reference to the TIGR japonica rice genome sequence and the
TAIR Arabidopsis genome sequence. OsEIL1a and OsEIL1b exhibit 99% aminoacid
sequence identity between them and are arranged in tandem on rice chromosome 3,
suggesting a recent duplication event.
TIGR ID/
gene
species
GenBank
Protein
Chromosome,
coordinates
Accession
% identity
% similarity
BEIL1
BEIL1
619
63%
76%
Mao et al. (2006)
565
55%
66%
Mao et al. (2006)
641
36%
52%
Mao et al. (2006)
Length
reference
(aa)
8,
OsEIL4
Japonica rice
Os08g39830
AK072462
OsEIL3
Japonica rice
Os09g31400
AK065473
OsEIL1a
Japonica rice
Os03g20790
AAZ78349
OsEIL1b
Japonica rice
Os03g20780
OsEIL2
Japonica rice
Os07g48630
AB074972
2507929525081154
9,
1888484418883009
3,
1175491611756841
3,
1175009111752025
644
-
7,
Arabidopsis
593
36%
49%
Mao et al. (2006)
567
45%
57%
Chao et al.,
(1997);Solano et al.,
(1998)
628
36%
54%
Chao et al.,
(1997);Solano et al.,
(1998)
584
36%
53%
Chao et al.,
(1997);Solano et al.,
(1998)
518
31%
45%
Chao et al.,
(1997);Solano et al.,
(1998)
1,
thaliana
At1g73730
NP_177514
AtEIN3
Arabidopsis
thaliana
At3g20770
NP_188713
AtEIL1
Arabidopsis
thaliana
At2g27050
AF004213
AtEIL2
Arabidopsis
thaliana
At5g21120
AF004214
AtEIL3
2911632029114539
2773369227736175
3,
72604387263358
2,
1155283111555371
5,
71826247184345
Supplemental Table III. Primers used in SSCP analysis for mapping of KIBP genes.
In the case of BGRF1 and BERF1 sequencing of the amplification products detected
SNPs between the parents of the relevant mapping populations.
Primer name
Sequence
BGRF1 lu6
TGATCTCTGCTGATTTGCCGTGGT
BGRF1 lu7
TTTTGCGCGGGAAACAGTCAACGA
BERF1 lu6
AACTCCAGCCTCCAACATGC
BERF1 lu7
CCTTGCATGTGGGCAAGATGAAGA
BEIL1 27
CTCTACTGTGGCCGAATTAG
BEIL1 28
ACCTCATCGGTATTAATAGTCC
Supplemental Table IV: Modified primers used in PCR-based cloning of KIBP genes
Restriction enzyme recognition sites and attB sites are underlined
Primer name
Sequence
NcoI BEIL1 forward
GAGATCGAATCCATGGTGGATAACCTAGC
NcoI BEIL1 reverse
GGCCATGGGTTACGTTCCGAGATATTGCAT
NcoI BERF1 forward
TTGATCCACAGCTCGCCATGGGC
NcoI BERF1 reverse
ACAAGAACCCCATGGAACCACCAGC
XhoI BERF1 reverse
AACCTCGAGTAACCACCAGCTGCC
NcoI BBR forward
CGGCCGCCATGGACGACGACGGCAGCTTGAGCATTC
XhoI BBR reverse
CAACATAGCTCGAGTTTTACCTGATTGTTACAAAC
EcoRI BGRF1 forward
GGAATTCATGGCGATGCCCTTTG
XhoI BGRF1 reverse
CCCTCGAGCGGGAGTATATACCGTTG
KpnI BGRF1 forward
ATGGTACCAATGGCGATGCCCTTTG
PstI BGRF1 reverse
GACTGCAGTCACCGGGAGTATATA
BglII BEIL1 forward
GAAGATCTGATGATGGATAACCTAGCTA
PstI BEIL1 reverse
GACTGCAGTTACGTTCCGAGATATTGCAT
attB1-BEIL1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGATGGATAACCTAGCTA
attB2-BEIL1
GGGGACCACTTTGTACAAGAAGCTGGGTGTTACGTTCCGAGATATTGCAT
attB1-BERF1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTGCGGCGGAGCCATC
attB2-BERF1
GGGGACCACTTTGTACAAGAAGCTGGGTGTCAATAACCACCAGCTGCCA
Supplemental Table V: Specific oligonucleotides used in EMSA to assess interaction
between KIBP and 34 bp double strand fragments (overlapping regions are underlined).
1 forward
from 56 to 85
1 reverse
2 forward
AAAAAGCACTTGACTGTTTCTATGGTTCTCGAGG
from 77 to 107
2 reverse
3 forward
from 100 to 129
from 122 to 151
from 146 to 175
from 168 to 197
from 190 to 220
from 212 to 241
from 236 to 265
11 reverse
AAAAGCCTTATCTCTGGTCTCTCTCTCTCTCTCA
AAAATGAGAGAGAGAGAGAGACCAGAGATAAGGC
from 257 to 286
10 reverse
11 forward
AAAAACCATGTTGCTGTATTTTGCGACAGCCTTA
AAAATAAGGCTGTCGCAAAATACAGCAACATGGT
9 reverse
10 forward
AAAATAGGCATGTAGCTAGACTAGATACCATGTT
AAAAAACATGGTATCTAGTCTAGCTACATGCCTA
8 reverse
9 forward
AAAAATGCTAGCTCCATCTACTAGTGTAGGCATG
AAAACATGCCTAGACTAGTAGATGGAGCTAGCAT
7 reverse
8 forward
AAAACCTTGGCAGCAATATTATATGCATGCTAGC
AAAAGCTAGCATGCATATAATATTGCTGCCAAGG
6 reverse
7 forward
AAAATCTCCAGCAATTTATGCGTGATCTCCTTGG
AAAACCAAGGAGATCACGCATAAATTGCTGGAGA
5 reverse
6 forward
AAAAGCCACCATTATTTGATGTGAGATCTCCAGC
AAAAGCTGGAGATCTCACATCAAATAATGGTGGC
4 reverse
5 forward
AAAACAAGTGCTTGCCACAGCCTACAGCCACCAT
AAAAATGGTGGCTGTAGGCTGTGGCAAGCACTTG
3 reverse
4 forward
AAAACCTCGAGAACCATAGAAACAGTCAAGTGCT
AAAATCTCTCTCATGAATAATGGCGGTCAAGAGA
AAAATCTCTTGACCGCCATTATTCATGAGAGAGA
from 279 to 305
AAAATCAAGAGACGTTGGATGCTTTCCAAGG
AAAACCTTGGAAAGCATCCAACGTCTCTTGA
Supplemental Table VI: Specific oligonucleotides used in EMSA to map KIBP binding
sites (overlapping regions are underlined).
BEIL1
40 forward
from 122 to 141
40 reverse
41 forward
AAAACACGCATAAATTGCTGGAGA
from 139 to 158
41 reverse
42 forward
43 forward
from 156 to 175
from 257 to 274
from 272 to 290
49 forward
from 288 to 305
from 200 to 222
51 reverse
AAAGCTAGACTAGATACCATGTTGCT
AAAAGCAACATGGTATCTAGTCTAGC
from 220 to 242
50 reverse
51 forward
AAAA GTT GGA TGC TTT CCA AGG
AAAA CCT TGG AAA GCA TCC AAC
49 reverse
50 forward
AAAA ATG GCG G TCA AGA GAC GTT
AAAA AAC GTC TCT TGA C CGC CAT
45 reverse
BERF1
AAAA TCT CTC TCA TGA ATA ATG
AAAA CAT TAT TCA TGA GAG AGA
44 reverse
45 forward
AAAAAATATTATATGCATGCTAGC
AAAAGCTAGCATGCATATAATATT
43 reverse
44 forward
AAAAGTGATCTCCTTGGCAGCAAT
AAAAATTGCTGCCAAGGAGATCAC
42 reverse
BGRF1
AAAATCTCCAGCAATTTATGCGTG
AAAGCTGTATTTTGCGACAGCCTTAT
AAAATAAGGCTGTCGCAAAATACAGC
from 240 to 262
AAATATCTCTGGTCTCTCTCTCTCTC
AAAGAGAGAGGAGGAGACCAGAGATA
Supplemental Table VII: Specific primers used in standard RT-PCR experiments (barley
development, transgenic rice T1 screening)
BEIL1 1385 forward
CAAATATTGCTCCTTCCAGCATCT
BEIL1 1842 reverse
TTACGTTCCGAGATATTGCAT
BGRF1 222 forward
GCAGGCGCTCATCTACAAGT
BGRF1 703 reverse
CATAGGCAGAATACCTGAAATCTTTG
BBR 384 forward
GGTCCTTAATGCTGTTCCTGTTG
BBR 939 reverse
TGCACCTTGGCTCATTTTCC
BERF1 725 forward
TGGATTCCCTTCTTCCAGTGA
BERF1 1158 reverse
AATAACCACCAGCTGCCA
Bkn3 590 forward
GAGGTCTGACCATGAATCCCTT
Bkn3 3’UTR reverse
CGCCGACCGAGGTCACCGGT
UBI forward
AGCAGAAGCACAAGCACAAG
UBI reverse
AAGCCTGCTGGTTGTAGACG
Supplemental Table VIII: Specific primers used in quantitative RT-PCR experiments
(ethephon treatment, transgenic rice T2 analysis)
BEIL1 1385 forward
CAAATATTGCTCCTTCCAGCATCT
BEIL1 1463 reverse
GGCCAGGAGTTTGCATAATCA
BGRF1 448 forward
TACTGCGAGCGCCACATG
BGRF1 703 reverse
CATAGGCAGAATACCTGAAATCTTTG
BBR 384 forward
GGTCCTTAATGCTGTTCCTGTTG
BBR 463 reverse
AACCTGTAGGGTGGTGATGCA
BERF1 474 forward
GGCAGCCAGGGCATATGAT
BERF1 796 reverse
TCTGGTCAGAGAGCATGTTCATTC
Bkn3 900 forward
GAAGGTGGCACTGGCCGA
Bkn3 3’UTR reverse
CGCCGACCGAGGTCACCGGT
OsEIL1 1317 forward
CACAATGTCCAGTGCCCGCATAG
OsEIL1 1616 reverse
CTCTCCATGATCGTGGCATTGTC
OsEBP89 773 forward
CTGAGCTCATGGAGGAGGAC
OsEBP89 989 reverse
CAAGATCGTCAGTCGAGCAG
OsERF72 577 forward
GATGAACCAGCTGTTGCTCA
OsERF72 796 reverse
CGAATGTCTCAGTGGAAGCA
OsEREBP1 720 forward
TCCTGCAATGAACTCTGCTG
OsEREBP1 916 reverse
GGACCATTGGGTTGGTACTG
Note: OsACO1 specific primers were as in Iwai et al., 2006.
Supplemental methods
Cloning
In order to produce N-terminal fusions with a modified Thioredoxin, KIBP coding
sequences were subcloned in pENTR4 (Invitrogen) or pGEM-T easy (Promega) vectors,
and then introduced in pThioHisB expression vector (Invitrogen).
BBR and BERF1 coding sequences were amplified with specific primers NcoI-BBR f/XhoIBBR r and NcoI-BERF1 f/XhoI-BERF1 r, sub-cloned in pENTR4 vector (Invitrogen) and inframe cloned in pThioHisB as NcoI/XhoI fragments.
BGRF1 coding sequence was amplified with specific primers EcoRI-BGRF1 f/XhoI-BGRF1
r and subcloned in pENTR4 vector as EcoRI-XhoI fragment; this plasmid was
subsequently used as template together with primers KpnI-BGRF1 f/PstI-BGRF1 r: the
PCR product was then subcloned in pGEM-T easy vector (Promega) in-frame cloned in
pThioHisB as KpnI/PstI fragment.
BEIL1 coding sequence was amplified from genomic DNA of the wild type cultivar Atlas
and primers BglII-BEIL1 f/PstI-BEIL1 r: PCR product was subcloned in pGEM-T easy
vector and in-frame cloned in pThioHisB as BglII/PstI fragments respectively.
pCR-NOS terminator was obtained by TA cloning of the NOS terminator PCR product
amplified with primers XhoI for-EcoRV rev and pC1300intB-35SnosBK (AY560326) as
template.
Supplemental bibliography
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 25:3389-402.
Iwai, T., Miyasaka, A., Seo, S., and Ohashi, Y. (2006). Contribution of ethylene
biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol.
142: 1202-15.
Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., and
Newburg, L. (1987). MAPMAKER: an interactive computer package fro constructing
primary genetic linkage maps of experimental and natural populations. Genomics 1(2):
174-81.
Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory
Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Yamasaki, K., Kigawa, T., Inoue, M., Yamasaki, T., Yabuki, T., Aoki, M., Seki, E.,
Matsuda, T., Tomo, Y., Terada, T., Shirouzu, M., Tanaka, A., Seki, M., Shinozaki, K.,
and Yokoyama, S. (2005). Solution structure of the major DNA-binding domain of
Arabidopsis thaliana ethylene-insensitive3-like3. J Mol Biol 348 (2): 253-264.
Related documents